
@galaxykate’s

Encyclopedia of
Generativity

You can build a generator! Yes you! Even without code, or with
a little code, or with sophisticated math-filled code! Lots of
generative content uses extremely sophisticated and brilliant
AI and fails anyway. Some of the best generative content is
simple! The hardest part of procedural content is DESIGN:
what you make and how you use it.

❤ YOU CAN DO THIS! ❤

Thinking About Generators
Generators can be BIG or SMALL, SIMPLE or COMPLEX, in the
SPOTLIGHT, or in the BACKGROUND

A generator might let a small team (or a single person) make
lots more content than they could make alone, or it might help
you make weird and surprising content, or it might help you
make impossible-for-humans-to-make content.

You might make generators that make textures for games,
textures for fabric, impossible spaces in VR, humorous stories,
serious stories, cocktail recipes, music, light shows, poetry, 3D
printed teapots, a chatbot on Twitter, dialog, soap opera
stories, game rules, or SO MUCH MORE. Generate lots of small
stuff before you generate something big, there is much you will
learn!

Techniques To Improve Any Generativity:
So You Have 18,446,744,073,709,551,616 Planets…
You can generate many… things. They are all mathematically
unique, but they aren’t perceived as unique You may have the
10,000 bowls of oatmeal problem: all your content is perceived as
unmemorable (despite being technically different)
Is this a problem?

(Did you say the Really Big Number? In your marketing? Because it got you a lot of media coverage? Then its
a problem. Never listen to the Really Big Number.)

Sometimes content can be oatmealish, and be just fine, but
sometimes it needs to have character. Know your oatmealishness
levels:
• Background/In-fill (just don’t be empty!)
• Perceptual differentiation
• Perceptual uniqueness
• Characterful (test: would you write fanfic for this generated

item? Have a few pieces of characterful content, sprinkled with
perceptually unique content, and maybe some infill in the
background.

Ownership: MSG For PCG
 • Allow users to name content
 • Showing off content with their name attached, to a large

audience (the “victorian explorers club” model, DIY anti
colonialist reading here)

 • Let players take credit for your generativity: let them
become creators, curators, retellers

Data Structures
 • A/B test generators
 • Release new generative content safely
 • Create editors and run user-made generators safely

(Tracery/Cheap bots done quick)
 • Visualize your generators to spot problems

Building An Artist-In-Box
Find an expert in the domain to talk to, or read up on the
domain space. Try to understand how an expert would build
one of these. When do they use intuition or formal
procedure? What steps do they take? Even fields like cocktail
recipes and renaissance architecture have their own strange
rules!
You're making an artist-in-a-box, so you need to teach the
algorithm everything a good artist would know.
 • Write all the good things this domain needs
 • Write all the bad things that can go wrong
 ◦ put a star next to the ones that break) it, not just bad

(an ugly teapot vs one with a hole in the bottom, a
boring game vs an unwinnable one)

 • Write how you know when one is good (a “heuristic”)

Possibility Space And Expressive Range
Your generator will make many things, some good and some
bad. The total number of things it can generate is the
possibility space, like the number of six-letter words is
“191102976”. The expressive range is the kind of stuff in your
generative space, like how most of those six-letter words are
nonsense, but some are gerunds and many are nouns.

For More Info About Constraints
 • Mike Cook’s Danesh project
 • So you Want to build a Generator - Kate Compton
 • Expressive Range: Evaluating and Comparing Generative

Systems - Gillian Smith

Subtractive methods
Generate and test: If you can write an algorithm to judge
“quality”…generate until you get some good content.
Throwaway vs ranking/prioritization: test for brokenness,
but rank by quality, its better to return crappy content than
wait forever for “good enough” Beware of false functions
(there is no “fun equation”)

Seeded random number generation
 • Seeded random numbers: Same seed? Same

generation! (if nothing is framerate or input dependent!)
 • Whitelist a catalog of known good content
 • It’s faster to verify questionable content than to build a

testing function
Computationally exploring the possibility space (aka,

“search”): Brute force search, Hill-climbing, Genetic
algorithms (mostly works with parametric generation)

Constraint solving: You can describe a possibility space
and constraints, just find the valid parameters.
 • IK-solving
 • Answer set solving (Potassco Clingo)
 • Brute force!
 • DO. NOT. WRITE. YOUR. OWN.
 • if a member of you team starts doing this, STOP

THEM (brute force is ok. just pay attention to
exponential growth)

If you find you want to do constraint solving, here are some helpful
resources about a good tool. (https://eis-blog.soe.ucsc.edu/2011/10/
map-generation-speedrun/) (https://sourceforge.net/p/potassco/
mailman/message/31086395/) (https://thelazydev.net/blog/post/the-
basics-of-answer-set-programming)

https://eis-blog.soe.ucsc.edu/2011/10/map-generation-speedrun/
https://sourceforge.net/p/potassco/mailman/message/31086395/
https://thelazydev.net/blog/post/the-basics-of-answer-set-programming

Methods
Additive And Subtractive
Additive methods build up your possibility space and expand
your expressive range. Subtractive methods prune away bad
parts of the possibility space, and search for good artifacts in
the space.

Here are some kinds of additive methods * Tiles * Grammars *
Distributions * Parametric * Interpretive * Simulations. There are
probably more (like deep learning and fractals!)

Distribution
You can put stuff down randomly, but it looks unreal and
awkward. “Real” distributions are hierarchical and clustered, but
also maintain spacing. Three properties help distributions look
good:
 • Barnacling surrounds large objects with some smaller

objects and many tinier objects
 • Footing adds texture or difference where two things

intersect
 • Greebling covers large flat areas in interesting (but

meaningless shapes)
Algorithms to do distribution Fast Object Distribution, Andrew
Willmott on Spore Voronoi pattern with easing: https://
www.wired.com/2012/04/whats-voronoi-dr-evil-mad-scientist/

Fractals And More
Fractals and other math can create impossible
mathematical spaces for games and VR. It's not for the
faint-of-heart or scared-of-math, but can lead to spectacular
results. Warning, if often does not work well with traditional
gameplay! http://marctenbosch.com/news/category/
miegakure/ http://elevr.com/hypernom/ (github and arxiv
paper)
Simulations
Often simulations are used to build generative content, like
the simulated particles behind Spore's texturing, or the
complex simulation behind Dwarf Fortress and Bad News.
 • Cellular automata
 • Agent-based simulations (The Sims and Bad News)
 • Physics simulation
 • Boids and braitenberg vehicles
Here's a paper I wrote about doing dance animation with
steering. https://dl.dropboxusercontent.com/u/3116524/
teuhana-iccc2015.pdf

Conferences And Jams:
ICCC International Conference on Computational Creativity,
Foundations of Digital Games, Nanogenmo, ProcJam
Online Resources
http://galaxykate0.tumblr.com/post/139774965871/so-you-want-
to-build-a-generator | http://cheapbotsdonequick.com/ http://
tracery.io/ http://natureofcode.com/ http://
www.contextfreeart.org/ http://ncase.me/simulating/ http://
pcgbook.com/

https://www.wired.com/2012/04/whats-voronoi-dr-evil-mad-scientist/
http://marctenbosch.com/news/category/miegakure/
http://elevr.com/hypernom/
https://dl.dropboxusercontent.com/u/3116524/teuhana-iccc2015.pdf
http://galaxykate0.tumblr.com/post/139774965871/so-you-want-to-build-a-generator
http://cheapbotsdonequick.com/
http://tracery.io/
http://natureofcode.com/
http://www.contextfreeart.org/
http://ncase.me/simulating/
http://pcgbook.com/

Parametric
Imagine you have N different sliders. Each of which
controls some aspect of generative content, like the width
and color of leaves or bushiness of a plant. Each slider can
go from 0 to 1. So each plant in your possibility space can
be represented as the position of these sliders [0.0, 0.94,
0.12, 0.45].
This has some neat side effects
 • saving the vector saves the content
 • modellable as points in an N-dimensional cube
 • nearby points in the space make similar content
 • any position is a valid artifact!
 • You can do genetic algorithms or user directed walks

through the space
 • or “regionize" the space
For more info about user-controlled parametric design
“Petalz: Search-based Procedural Content Generation for
the Casual Gamer”

Interpretive
Often you want to turn a simple input into a complex one.
Interpretive methods interpret or complexify or transform
content. This is especially good for user-provided content like
mouse gestures or shadow-, body- or hand-tracking!
Perlin and simplex noise Perlin noise (and its later faster
cousin, Simplex noise) map input values to a continuous ever-
changing output value. Note that Simplex noise itself is
patented, so use the similar OpenSimple noise to avoid
issues.
Voronoi and Delaunay and other geometry/triangulation
algorithms You have some points or other geometry and you
want to make a mesh around them. Handy algorithms:
Chew's second algorithm, Quad edges, Worley Noise
Constructive solid geometry, extrusion Can you take a path
and place geometry or textures along it? This is what
photoshop brushes do. But Spore also used particle trails to
create the patterns on planets and creatures!
Metaballs can take a set of points, and build a complex
smooth mesh around them. This expensive but impressive
technique was used in Spore and Oculus Medium.Notable Examples Of Interpretive Generation

 • The Treachery of Sanctuary - Chris Milk (https://creators.vice.com/en_us/article/how-it-works-chris-milks-ithe-treachery-of-sanctuaryi))
 • Text Rain - Camille Utterback (1999)
 • Grasshopper modelling software
 • Tiltbrush: extruding interesting geometry along curves
 • Oculus Medium: voxels and metaballs, (probably?)
 • I/O Brush by the Tangible Media Group at MIT, stamps sampled photos and GIFs along curves (http://tangible.media.mit.edu/project/io-brush/))
 • Illustrator and Photoshop brushes, here's a canonical history of the evolution of digital paintbrushes (http://excelsior.biosci.ohio-state.edu/~carlson/history/PDFs/

14_paint.pdf)
 • LuminAI project (Georgia Tech)
 • Nervous System: parametric and interpretive generation for 3D printed fashion and design. (http://n-e-r-v-o-u-s.com/blog/)
 • The Painting Fool, parsing images into regions, and coming up with brush strokes and styles to render them (http://www.thepaintingfool.com/)
 • SSX's procedural snowboard track layout (http://documentslide.com/documents/ssx-procedural-slides.html) (http://www.gdcvault.com/play/1015547/Asking-the-

Impossible-on-SSX))

I made cut-and-play cards to help you design your own interpretive generators!
(http://www.galaxykate.com/arttoys/arttoy-cards.pdf)

https://creators.vice.com/en_us/article/how-it-works-chris-milks-ithe-treachery-of-sanctuaryi)
http://tangible.media.mit.edu/project/io-brush/)
http://excelsior.biosci.ohio-state.edu/%7Ecarlson/history/PDFs/14_paint.pdf
http://n-e-r-v-o-u-s.com/blog/
http://www.thepaintingfool.com/
http://documentslide.com/documents/ssx-procedural-slides.html
http://www.gdcvault.com/play/1015547/Asking-the-Impossible-on-SSX)
http://www.galaxykate.com/arttoys/arttoy-cards.pdf

