
International Journal on Digital Libraries (2006) 6(2): 115–123
DOI 10.1007/s00799-005-0128-x

REGULAR PAPER

Robert Kahn · Robert Wilensky

A framework for distributed digital object services

Published online: 13 March 2006
c© Springer-Verlag 2006

The following paper was written by the authors over a pe-
riod of approximately 16 months during the period Novem-
ber 1993 to May 1995 in an attempt to explore a set of open
research issues and to integrate them with certain ideas of
a small group of researchers who had been briefed on the
notions inherent in the Digital Object Architecture that one
of the authors (Kahn) had been developing at the Corpora-
tion for National Research Initiatives (CNRI). This research
group had been organized by CNRI as part of its “Com-
puter Science Technical Reports” (CSTR) project that was
funded by the Defense Advanced Research Projects Agency
(DARPA).

The CSTR project had several objectives, of which one
was to digitize existing collections of technical reports from
five leading computer science departments at universities in
the U.S and make the reports available on the Internet. A
second objective was to fund research at these institutions on
digital libraries, especially research that made good use of
their local collections. A third objective was to link hetero-
geneous electronic libraries, such as were being developed
in the program.

The difficulties inherent in this third objective ultimately
led to this paper. In particular, the motivation arose from
a set of concerns first expressed by these researchers at
a meeting at CNRI on October 25, 1993 when the Digi-
tal Object Architecture was first presented to the research
group by Kahn. In the discussion that resulted, many issues
emerged, some of which we ultimately decided must be re-
solved in any architecture, and some of which—perhaps just
as crucially—could be deferred for the time being. For ex-
ample, questions arose about the role of semantics in iden-
tifiers; we decided to address them early on. Another issue
that proved controversial was how to deal with situations in

R. Kahn (B)
Corporation for National Research Initiatives, Reston, VA
E-mail: rkahn@cnri.reston.va.us

R. Wilensky
University of California at Berkeley, Berkeley, CA
E-mail: wilensky@cs.berkeley.edu

which the digital objects were actually mobile programs in
the network. Since a digital object could contain other digi-
tal objects, this led directly to the notion of a mobile repos-
itory. The basic question was how best to describe this kind
of situation and explain how to access information that was
not at a known specific location or IP address on the net.
We decided not to cover this aspect of the architecture in the
interest of getting closure on the paper.

A critical part of this effort was dealing with various in-
tellectual property issues; and the architecture was designed
to take this important aspect into account. We were fortunate
to have the help of Ms. Patrice Lyons, an experienced in-
tellectual property lawyer, in the formulation of certain key
elements of the architecture dealing with terms and condi-
tions for access to information, and in the drafting of the
paper. Although her name does not appear on the paper, her
insights and contributions played an important role in the
preparation of the paper.

One key component of the architecture is a general-
purpose resolution system, known as the Handle System

R©
,

an implementation of which has been operational on the In-
ternet since 1994. At present, close to 50 million identifiers
are assigned to digital objects and resolvable by the system,
which has been available 7x24 for many years. It is antici-
pated that the number of resolvable identifiers in the system
will grow rapidly and could easily exceed a billion in the not
too distant future.

Much progress has occurred in the past decade on the
remainder of the architectural components, such as reposi-
tories, metadata registries, and the associated implementa-
tions; and the Handle System continues to evolve to meet
new requirements. Uses in both government and the private
sector continue to expand. Digital ID World selected the
Digital Object Architecture for its 2003 award for balanc-
ing innovation with practical reality. Many groups are now
using the technology. For example, the International DOI
Foundation relies on the Handle System for administering its
identifiers, and the Advanced Distributed Learning project,
an effort of the U.S. Department of Defense, requires the use



116 R. Kahn, R. Wilensky

of the Handle System for identification of its materials and
for resolution of identifiers.

Since the mid-1980s, CNRI had been working on various
aspects of digital libraries and mobile programs, referred to
as “Knowbot programs.” Certain key aspects of this work
were subsequently written up in a patent application that
was filed with the U.S. Patent and Trademark Office prior
to its presentation to the research group in late 1993. The
purpose of the patent filing was to insure that the technology
would not be constrained by others and its integrity could be
maintained. It has since been made available by CNRI un-
der an open source license. The CNRI patent was issued in
2000, but during the intervening years significant progress
was made by CNRI and by others in implementing key com-
ponents of the architecture.

One reason the Internet was broadly appealing was its
openness to applications of all kinds that could use it as an
underlying infrastructure. The same basic attribute can be
seen in the digital object architecture. It neither constrains
the choice of applications, nor mandates how they must be
implemented. However, as a powerful reference model, with
demonstrated implementations of its components, it enables
others to confront difficult system design and implementa-
tion projects from a well-formulated starting point that en-
ables, and, more accurately, reinforces the ability for hetero-
geneous information systems to interoperate with each other.

By taking a complex subject and rendering it accessible
in simpler terms, it was possible to make a basic set of ideas
more understandable to a larger audience. It was not easy to
write the paper, and indeed we went through close to a dozen
iterations over more than a year in the sometimes elusive
search for clarity of expression. We are pleased to see the
paper included in this special issue.

1 Introduction

This document describes fundamental aspects of an infras-
tructure that is open in its architecture and which supports a
large and extensible class of distributed digital information
services. Digital libraries are one example of such services;
numerous other examples of such services may be found in
emerging electronic commerce applications. Here we define
basic entities to be found in such a system, in which infor-
mation in the form of digital objects is stored, accessed, dis-
seminated, and managed. We provide naming conventions
for identifying and locating digital objects, describe a ser-
vice for using object names to locate and disseminate ob-
jects, and provide elements of an access protocol.

We use the term digital object here in a technical sense,
to be defined precisely below. Files, databases, and so forth
that one may ordinarily think of as objects with a digital ex-
istence are not digital objects in the sense used here, at least
not until they are made into an appropriate data structure,
etc., as we will describe shortly.

Only the most basic elements of the infrastructure are
described herein. These elements are intended to constitute

a minimal set of requirements and services that must be in
place to effect the infrastructure of a universal, open, wide-
area digital information infrastructure system (“the Sys-
tem”). We anticipate that many other services and elabora-
tions will come into existence as the System is further de-
veloped, either building upon or otherwise added to these
elements.

This paper focuses on the network-based aspects of the
infrastructure, namely those for which knowledge of the
contents of digital objects is not required. Definition of
the content-based aspects of the infrastructure is purposely
not addressed in this paper. An important goal in limiting
the description of the infrastructure in this way is not to con-
strain the higher level user and service level choices that,
for many reasons, might be inappropriate to fix upon at this
point in time. With only the most basic elements of the
infrastructure in place, technological evolution would not
be overly constrained. Further, the likelihood of achieving
widespread interoperability of services at some early point
in the future will be preserved. No doubt, the resulting ca-
pability will have a greater potential for enhancement and
evolution through the participation of many others in help-
ing to define it.

2 Overview and definitions

In this section, we first present an informal overview of
the elements of the System, sketching its elements and how
they are supposed to function together. These elements in-
clude the notions of digital objects, handles, metadata and
key metadata, repositories, handle generators, originators,
users, global naming authorities and local naming author-
ities, and a repository access protocol. Then we provide
more formal definitions of these entities, and explicate their
details.

2.1 Informal overview

Conceptually, the System works as follows: An originator,
i.e., a user with digital material to be made available in the
System, makes the material into a digital object. A digital
object is a data structure whose principal components are
digital material, or data, plus a unique identifier for this ma-
terial, called a handle (and, perhaps, other material). To get a
handle, the user requests one from an authorized handle gen-
erator. A user may then deposit the digital object in one or
more repositories, from which it may be made available to
others (subject, of course, to the particular item’s terms and
conditions, etc.). Upon depositing a digital object in a repos-
itory, its handle and the repository name or IP address is reg-
istered with a globally available system of handle servers.
Users may subsequently present a handle to a handle server
to learn the network names or addresses of repositories in
which the corresponding digital object is stored.

Interactions such as depositing digital objects or ac-
cessing digital objects in repositories is accomplished using



A framework for distributed digital object services 117

a repository access protocol (RAP), which all repositories
must support.

A digital object stored in a repository, and whose handle
has been registered with the handle server system, is called a
registered digital object. Registered digital objects are of pri-
mary concern to us here, as they are explicitly constructed to
be known about by others, presumably for widespread avail-
ability. However, we do not constrain repositories to con-
tain only registered digital objects. Nor are repositories con-
strained to operate only via the repository access protocol,
although they must all support it.

Handles are the primary global identifiers for digital ob-
jects. However, we do not anticipate that users will neces-
sarily manipulate handles directly; nor is the system of han-
dle servers intended as the only means by which users will
locate objects. More likely, location services will be accom-
plished by various value-added providers not defined as part
of the infrastructure. Rather, the handle server system pro-
vides a kind of public safety net, which facilitates the loca-
tion of a digital object given only its handle.

We emphasize that the term digital object is used here in
a technical sense of a particular sort of data structure, and
not in the general sense of any object that may have digital
form. Perhaps a term such as digital infrastructure object
would better capture this intention. However, we have found
this alternative terminology to be somewhat cumbersome in
practice, and have therefore chosen to retain the simpler term
digital object instead.

2.2 Definitions

We now define our terminology more formally, and describe
the operation of the various components of the System in
some detail.

Formally, a digital object is an instance of an abstract
data type that has two components, data and key-metadata.
The data is typed, as is described below. The key-metadata
includes a handle, i.e., an identifier globally unique to the
digital object; it may also include other metadata, to be spec-
ified. Possible primitive and composite data types for digital
object data are discussed below.

A repository is a network-accessible storage system in
which digital objects may be stored for possible subse-
quent access or retrieval. The repository has mechanisms
for adding new digital objects to its collection (depositing)
and for making them available (accessing), using, at a min-
imum, the repository access protocol. The repository may
contain other related information, services, and management
systems.

Repositories have official, unique names, assigned or ap-
proved to assure uniqueness by a global naming authority. In
general, the global naming authority will assign a name to a
local naming authority. The local naming authority may use
this name as the name of a repository. In addition, it may
extend this name to create new names by suffixing the name
with a “.”, followed by a new (relatively) unique name com-
ponent. Each such name represents a naming authority and

potential associated repository. (i.e., In general, repositories
will have unique names of the form “X.Y.Z”.)

Note that a repository name is not necessarily the name
of a particular host. For example, it may correspond to a set
of hosts at different physical locations.

A stored digital object is a digital object stored in a
repository. In addition, handles are expected to be made
known to a system of handle servers, as described below.
Such a handle is a registered handle. A registered digital
object is a stored digital object whose handle has been regis-
tered. (Note that a handle cannot be registered until its corre-
sponding digital object is stored) Repositories provide users
access to stored objects under terms and conditions that may
be set by the depositor and/or a given repository.

Registered digital objects are the entities of primary con-
cern to the infrastructure, since they are stored in a reposi-
tory and made known via the registration of their handles. In-
termediate entities, such as stored digital objects, are defined
only because they may arise in implementations of reposito-
ries that provide access to registered digital objects.

However, their existence is not strictly necessary. For ex-
ample, a repository may offer a service in which it deposits a
digital object and registers the handle simultaneously, there-
fore creating a registered digital object without creating a
prior stored, but not registered, digital object. (It is possible,
of course, to create other useful classes of digital objects.
For example, we may define a proposed digital object as a
digital object whose handle field contains a string that has
not yet been registered and whose uniqueness may not yet
be known.)

Each repository contains a properties record for each of
its stored digital objects. The properties record comprises
all metadata for a digital object, including its key-metadata,
but also, other metadata the repository may maintain for that
digital object. Notionally, the key-metadata component is
a subset of metadata, which is invariant for a digital ob-
ject over repositories. No attempt is made in this paper to
delineate how much of the metadata should be included
in the key-metadata, other than requiring that it include
the mandatory handle. Possible examples of repository-
dependent metadata are the general terms and conditions for
access and usage of the digital object, and the date and time
of deposit.

A simple repository access protocol (RAP) is supported
by each repository (and defined in Sect. 3.1). Only the min-
imal necessary aspects of the RAP are specified here. We
anticipate that these aspects of the RAP, or the RAP itself,
will be a subset of the interface protocol used by reposito-
ries, and require only the functions or operation of the RAP
not be affected by any implemented supersets of the pro-
tocol. In particular, the RAP allows for accessing a stored
digital object or its metadata by specifying its handle, a ser-
vice request type, and additional parameters. If this request
is complied with, the output of the service request is a termed
a dissemination. A dissemination is the result of an access
service request, along with additional data affixed to it, to be
specified below.



118 R. Kahn, R. Wilensky

An originator is an entity that authorizes or validates a
set of digital objects; it is responsible for each such digital
object including making it available in the System and defin-
ing terms and conditions for its use. Every digital object has
an originator, which may be an individual or an organiza-
tion (there may be a number of kinds of originators worth
distinguishing, but we do not differentiate them here). Orig-
inators may deposit and access the digital objects they au-
thorize or validate and may authorize others to do so (this
also includes the right to withdraw or modify the objects),
subject to the procedures established by individual repos-
itories. Naming authorities have the right to insert handle
entries for handles they generate into the handle server sys-
tem and to authorize others to do so. The relationship of the
originator to the naming authority is left unspecified here.
An originator and/or a naming authority may also delegate
this authorization ability to others (typically this would be to
one or more repositories). Such delegation includes at least
the right to authorize the further deposit of digital objects on
behalf of the originator and insertion of designated groups of
handles on behalf of the naming authority. Repositories may
establish additional requirements of various kinds. The pro-
cess by which an originator or a naming authority informs a
repository of any such authorization is left unspecified here.

The initial repository used to deposit a registered dig-
ital object is designated the repository of record (ROR).
The ROR is responsible for authorizing additional instances
of the digital object at other repositories, and for making
changes or withdrawals of such additional instances of the
digital objects, usually upon the direction of the originator.
Once designated, the ROR may subsequently be changed by
an authorized party to another repository, but the method for
achieving this is not specified here. The notion of ROR is
not defined for stored digital objects that are not registered.

A handle is a globally unique string, produced by an au-
thorized handle generator. It consists of two logical parts,
concatenated with an intervening separator character. The
two logical parts are: (1) name of a local naming authority,
which controls the handle generation process, and (2) a lo-
cally unique string, which is assigned by (one of) its handle
generator(s). An originator may ask a handle generator for a
handle, or it may propose a local string to be used. The lo-
cal handle generation process should insure that local strings
are unique. Handles have no prescribed maximum length in
principle, but there will be a default length in existence at
any time, which can be adjusted upwards if necessary.

For handles to be unique, the names of local naming au-
thorities are controlled by the global naming authority for
the System. The global naming authority generates names
for local naming authorities, and assigns these to local nam-
ing authorities for use by the handle generators they autho-
rize. A prospective local naming authority may propose a
name for itself to the global naming authority for valida-
tion and registration. A local naming authority, named, say,
“X”, may create additional, derived naming authorities of
the name “X.Y”, etc., each authorizing its own handle gener-
ator. (At this point, it is left unspecified whether the naming

authority name spaces for repositories and for handle gener-
ators are distinct.)

In addition to the first globally assigned component (e.g.
“X”), each subsequent component field of a naming author-
ity name (e.g. “Y”, or “Z”) must be nonnull and not con-
tain the character “.”. There may be other restrictions on
the nonalphanumeric characters to be used in naming au-
thority names. In particular, the default separator charac-
ter is “/” (so, e.g., “X.Y/local-string” is a typical handle
from the naming authority “X.Y”) Other separator charac-
ters, and a syntax for defining other separator characters,
(from a restricted class of nonalphanumeric characters) may
be defined, and may entail other restrictions on the possi-
ble characters used in naming authority names, e.g., a con-
ceivable syntax is to specify a nondefault separator by an
initial nonalphanumeric character, so that “%X.Y%local-
string” is a valid handle. We leave unspecified at this point
how this might be accomplished, whether otherwise iden-
tical handles with different separators are identical or dis-
tinct, whether an escape character for restricted characters
exists, and whether the separator characters are restricted
(e.g., whether “a/b” is a possible naming authority name that
can only be used with a nondefault separator). Initially, nam-
ing authority names will be issued conservatively, being re-
stricted to alphanumeric characters.

The handle generator may be a person, an organization,
or a fully-automated process running on some machine or
a set of machines. An originator may control a naming au-
thority, but there may be naming authorities that are not con-
trolled by originators. The details of interaction with handle
generators are left unspecified.

It is also unspecified what an originator must supply to
a handle generator in order to receive a handle. An origina-
tor may propose handles to be assigned to its digital objects.
Moreover, the handle generator need not assume any respon-
sibility for insuring that a handle, which it generates, is asso-
ciated with any particular digital object; that correspondence
may be left to the originator.

A stored digital object may have associated with it in a
repository a transaction record, which records transactions
of that repository involving the digital object. The transac-
tion record may contain entries such as the time and date of
deposit of the object, the time and date of each request for
retrieval of the object, the identity of the requesting party,
the handle and service request for the object, and the ap-
plicable terms and conditions including amount and method
of payment. Transaction records will only be made avail-
able to authorized parties. Repositories are not required to
have transaction records persist for any period of time and it
may store transaction records at various times and places as
deemed necessary subject to administrative controls.

The data of each digital object is typed. Data types as-
sumed to be in the System include bit-sequence, digital-
object, and handle, and also set-of-bit-sequences, set-of-
digital-objects, and set-of-handles. Other data types can be
defined and made available to the System via the type con-
struction operators set-of and compose; these types are then



A framework for distributed digital object services 119

registered in a global type registry. The mechanism for this
registration is currently unspecified. Note also that there is,
at present, no (defined) registration of methods associated
with types.

In contrast, one can create subtypes of digital objects by
introducing new fields of metadata; these may be arranged
hierarchically. For example, one might create a subtype
of digital object called computer-science-technical-report,
which has metadata for author, institution, series, and so
forth.

We shall informally refer to digital objects whose data
is a set, one of whose elements is of type digital-object, as
composite digital objects. A digital object that is not com-
posite is said to be elemental. (Note that this definition ex-
plicitly excludes the application of the adjective composite
to a digital object whose data is another digital object, i.e.,
whose data is of type digital-object, as distinguished from a
singleton set of this type. Nothing precludes the existence of
such objects, however.)

The terms and conditions of a composite object may
implicitly or explicitly be unioned with those of its con-
stituent objects to arrive at the terms and conditions for those
constituent objects. Terms and conditions may be explicitly
imposed only on the composite object, in which case they
would apply to each constituent object; or each constituent
may have its own separate terms and conditions in addition.
(Of course, creating composite digital objects may be sub-
ject to copyright and any other legal restrictions pertaining
to its constituent objects.)

A digital object’s data may incorporate information or
material in which copyright, design patent, or other rights
or interests are claimed. There may also be rights associated
with the digital object itself. An author may have submitted a
digital object for purposes of registering a claim to copyright
in a work that may be incorporated in the object. Since the
copyright pertains to the underlying work fixed in the form
of the particular submitted representation, the rights would
normally pertain to all representations of the work, includ-
ing, but not limited to, those representations of the work that
are contained in other digital objects.

While we intentionally avoid issues of content in the in-
frastructure, we note that the entities provided thus far give
users a number of means to include digital objects that con-
tain or may be interpreted to manifest the same or simi-
lar information or material. As an example, a literary work
may be fixed in a number of different formats, e.g., LaTex,
PostScript, and GIF page images. Each fixation may corre-
spond to a distinct (elemental) digital object, each with its
own unique handle, and other metadata). A composite digi-
tal object may then be created whose data is the set of these
digital objects. Similarly, one could create a composite digi-
tal object whose constituent objects were the fixations of the
literary works of Shakespeare in PostScript. The handle of
this composite digital object, in effect, names the PostScript
collection of Shakespeare’s literary works.

Note that it is possible to construct objects with simi-
lar effects without using composite digital objects. For ex-

ample, the single digital object intended to correspond to
a work could have data of type set-of-bit-sequences, rather
than of type set-of-digital-objects, and contain each of the
forms of fixation therein. In this case, digital objects may
not exist corresponding to the individual fixations. Another
possibility is to have a digital object whose data is of type
set-of-handles. In this case, the handles would name the in-
dividual fixations (which may not even be available from
the same repository). Such a digital object may contain other
data fields that further describe (or annotate) the handles. Yet
another possibility is to create a markup language, which
admits handles, plus other conventions for expressing how
they relate to each other (for example, whether the individ-
ual handles are meant to be interpreted as different fixations
of the same work, or a list of bibliographic citations, etc.) A
digital object whose data comprise sentences in this markup
language could serve to represent the same entities as do
composite digital objects.

We use the informal term meta-object to refer to a digi-
tal object whose primary purpose is to provide references to
other digital objects. Both digital objects whose data are of
type set-of-handles and digital objects in a markup language
that admits handles, would be instances of meta-objects.

A digital object may be mutable in that it may be
changed after it is placed in a repository. Although none
of the key-metadata may be changed, nor may any known
digital object that it contains be changed (unless the origi-
nal digital object is also changed), most other changes are
permissible. Minor changes might be made to correct a mis-
spelling or other such error; changes to the title of a muta-
ble digital object may be permissible. A mutable composite
digital object could be modified to add the representation of
an underlying work in a new format. Mutability would also
be a useful way to allow digital objects that are designed to
change with time or are dynamically computed.

A digital object that cannot be changed is said to be im-
mutable. If an object is immutable, then, once it is placed
in a repository, the result of all subsequent requests to that
repository that are functionally dependent on the data of the
object must be identical. (However, it may be possible to re-
move an immutable object from a repository, or deny access
to it at different points in time.) That a digital object is im-
mutable may be reflected in its key-metadata. It is also pos-
sible that a given repository may preclude changing a stored
object by an indication in its nonkey-metadata.

Once set, the mutability or immutability of a digital ob-
ject cannot itself be changed. Users who wish to achieve a
comparable effect would have to create a new digital object
with similar data and altered metadata. The original digital
object may then be withdrawn or not, as desired.

There is no requirement that a digital object be stored in
a repository in any particular manner. Conceptually, the de-
scription of a digital object is strictly a logical one and is not
intended to describe any particular implementation. In par-
ticular, it is possible that, in response to a request to access
a particular digital object, a server runs a program that com-
putes the digital object on the fly. It is possible for multiple



120 R. Kahn, R. Wilensky

digital objects to be embedded in a program (e.g., a data base
manager or knowledge-based system) that emits them upon
request. The program may itself be a digital object. Thus,
accessing and depositing are virtual processes, and may or
may not involve the actual depositing and retrieval of actual
objects per se, although such actual storage and retrieval is
likely to be prevalent.

3 Accessing digital objects

3.1 Repository access protocol (RAP)

Each repository must support a simple protocol to allow de-
posit and access of digital objects or information about dig-
ital objects from that repository. This is called Repository
Access Protocol. RAP is meant to provide only the most
basic capabilities and may evolve over time. Repositories
may support other more powerful query languages that al-
low users to access objects that meet meaningful criteria. At
present, the RAP includes deposit of digital objects, access
to digital objects by handle, and related repository services.
Each of these capabilities will produce different results, de-
pending on the specific nature of the service request.

3.1.1 Access to a digital object (ACCESS_DO)

Access to a digital object will generally invoke a service pro-
gram that performs stated operations on the digital object or
its metadata depending on the parameters supplied with the
service request. Defined service requests include metadata,
key-metadata, and digital object; the first requests only the
metadata, the second only the key-metadata, and the latter,
the entire digital object (i.e., the key-metadata and the data).
Other systems-level services may be defined. Possible exam-
ples of such additional services might be encrypt, i.e., return
the digital object in some encrypted form, or compress, i.e.
store a fewer set of bits than supplied with the property that
the original bits can be regenerated, perhaps exactly. How-
ever, we do not define such additional requests, here.

In addition, it is possible that data-type-dependent ser-
vice requests will be introduced. Possible examples of such
data-type-dependent services requests might be execute (for
digital objects a portion or all of whose data component is
of type program), or subpart (which requests only a com-
ponent of the data or metadata of the digital object, further
specified by some parameter). We emphasize that such data-
type-dependent service requests are not defined as part of the
System infrastructure.

When a digital object is accessed via ACCESS_DO, the
recipient receives a dissemination, that is, the result of the
service request, along with information such as the key-
metadata of the digital object, the identity of the repository,
the service request that produced the result, the method of
communication (if appropriate), and a transaction string cor-
responding to an entry in the transaction record. The trans-
action string is unique to the repository. In addition, the dis-

semination may contain an appropriately authenticated ver-
sion of some portion of the properties record for that object,
including the specific terms and conditions that apply to this
use of the digital object and the materials contained therein.

As noted above, depending on the nature of the AC-
CESS_DO service request, the dissemination may not be
stored as a digital object per se. It might instead include data
that is not contained in any registered digital object, such
as a portion of a digital object’s data, the digital object data
in a compressed format, or the result of executing the data
of the digital object. In all cases, however, the key-metadata
(including, of course, the handle) of the digital object is in-
cluded.

From a copyright perspective, if the service request
produced a dissemination that was derived from a particular
digital object, the digital object may be contained in the
dissemination, in the sense that the dissemination may
be encumbered by the rights associated with the digital
object. For example, if the data of a stored digital object
represents an episode of a television program, and the
dissemination contains the data corresponding only to the
2 min of this television program, the dissemination may be
said to contain the digital object in a legal sense, even if it
does not properly contain all of its data.

3.1.2 Deposit of a digital object (DEPOSIT_DO)

Several forms of DEPOSIT_DO are possible. For example,
one form may take data, a handle, and perhaps other meta-
data as arguments, and produce a stored digital object and
properties record from these arguments. Another possible
form may take a digital object as argument, perhaps with
additional metadata, and simply deposit it. Yet another form
may take only data and certain nonkey-metadata, and auto-
matically request a handle from a handle server, and then
simultaneously store the object and register the handle.

The DEPOSIT_DO command may be used to replicate
an existing digital object at additional repositories. The ex-
act method of controlling such replication, if any, is unspec-
ified here. A DEPOSIT_DO command may also be used to
directly modify an existing mutable digital object. Alterna-
tively, a modified version of an existing digital object may
be stored as a new digital object rather than by modifying
the existing one.

3.1.3 Access to reference services (ACCESS_REF)

This command provides a uniform and understood way to
identify alternate means of accessing a specified repository
and/or information about objects in that repository. Two
possible responses are (i) No information, and (ii) a list
of servers, protocol-name pairs, with the interpretation that
each server, speaking the named protocol, will provide in-
formation about the contents of the repository. (i.e., we pro-
vide a means of allowing a repository to have its contents
indexed, queried, or otherwise described. It is possible, for



A framework for distributed digital object services 121

example, that a repository will be its own provider of infor-
mation about its contents, and list only itself, and some pro-
tocol, as the information provider about its contents. How-
ever, it is not required that any accounting of the contents
of a repository be available, or that it be available from any
one service. This is because we do not require that reposito-
ries per se correspond to coherent collections, which may be
distributed across independently operated repositories.)

The initial RAP has been purposely kept simple, and all
the more complex transactions are assumed to be handled
by other protocols, or by subsequent extensions of the RAP.
In the first case, a primary use of the RAP for more sophis-
ticated repositories is to have it present the other protocols
that it supports (e.g., Z39.50, SQL3, ZQL, Dienst) as alter-
native access methods.

It may be desirable to extend the RAP in any number of
ways, for example, to explicitly include, for example, a pay-
ment mechanism or a negotiation mechanism or a more so-
phisticated interactive model-based interaction mechanism.

Above we described the possibility that a user may con-
struct a single digital object whose data is the set of all fixa-
tions (i.e., known formats) of a given work. If so, then there
is as yet no formally defined method within the RAP to de-
termine what formats are available, and then, to extract one
of them. We expect a set of mechanisms to be developed
which expand upon the internal structure of the objects in
the infrastructure, but this level of description has intention-
ally been omitted here.

3.2 The handle server infrastructure

A highly reliable distributed system of handle servers is
maintained as part of the infrastructure. These servers map
handles to network resources at which the corresponding
digital objects are available. Handle directory servers are
also stipulated; these will be located at certain well-known
locations and will maintain a table of network addresses of
handle servers (generally, each handle server will contain
such a directory). This table will generally be downloaded
by each participating site frequently enough to be “accept-
ably “ up-to-date at all times. Local handle servers may also
exist. A local handle server could be run by an organiza-
tion if it wishes to keep a store of pertinent handles locally.
These local servers may access the global system of handle
servers, but are not themselves necessarily accessible from
the global system. Caching handle servers also may be run
at local workstations on behalf of individual users to store
location information for frequently used handles.

The handle server system is intended to be a means of
universal basic access to registered digital objects. In the
worst case, a user can present a handle to a handle server and
be advised of some repository, which an authorized party
has asserted contains the digital object designated by the
handle. The handle server is not meant to be the only, or
even primary, means, to locate repositories. Primary access
may be provided locally and also by value-added service

providers, likely in a variety of different and possibly in-
compatible ways. Users interacting with such services may
not encounter handles; and such services may interact with
repositories via RAP or via protocols that do not involve
handles.

Handle servers provide a number of services, three of
which are RESOLVE, INSERT, and DELETE. A party that
is authorized to insert, delete, and otherwise change handle
entries for a particular naming authority is called a handle
administrator. A naming authority will generally designate
one or more repositories to act as handle administrators on
its behalf. This designation will be made known by the nam-
ing authority to the handle server system.

(i) RESOLVE: A handle is sent to a handle server to lo-
cate network addresses of repositories containing that ob-
ject. The handle is first mapped to locate the handle server
from the handle directory server table but is not otherwise
interpreted. One can also supply a handle to a separate sys-
tem, which invokes the above procedures to find the stated
object. Local handle servers may use any technique to do
the mapping. The handle servers maintained as part of the
infrastructure map the handles by hashing them.

No guarantee is made that the identified repositories will
provide the designated object. Rather, the user is assured
only that the specified repositories are where authorized
maintainers of repository services have indicated particular
digital objects reside.

Since a handle is just a unique string, it can be mapped to
an actual repository by any of several mechanisms, including
a mechanism that attempts to interpret the string. Repository
names are not actual network addresses; they must first be
mapped to network locations. The method for accomplish-
ing these mappings is not specified. The handle service is
one available means for both kinds of mappings; it would
specify at least the location of the interface that supports the
RAP protocol for a given repository. There may also be a
need to explicitly provide a country identifier for reposito-
ries, naming authorities, and/or originators. For the present,
however, country identifiers are to be omitted.

When a repository is identified by a handle server, it will
be most efficient to map the handle directly into the net-
work address (or addresses) of the repository. This mapping
avoids having to do a double lookup from repository name
to repository location. However, if the location of the repos-
itory were to change, the handle server would have to be no-
tified so it could make the corresponding changes. It is pos-
sible that certain repository names may resolve to broadcast
addresses to locate specific machines. This might be the case
where a single repository consists of multiple machines on
a local area network at a given site. The handle administra-
tor may determine whether to store IP addresses or domain
names or other information in the handle server. The entries
are typed and therefore one or more of the above information
types may be provided by the administrator for retention in
the handle server.

(ii) INSERT (DELETE): Information associating han-
dles with network services are inserted into (deleted from)



122 R. Kahn, R. Wilensky

the handle server system by the handle administrator or
other parties authorized by it. Such authorized parties
include repositories of record. The repository of record is
presumed to make known to the handle server system that
it contains (or no longer contains) a particular digital object
some reasonable time after the digital object is deposited
in (withdrawn from) it. Similarly, the repository of record
would make known to the handle server system the identity
of other repositories, which it authorizes to store a given
digital object. The handle server system may perform certain
administrative functions upon receipt of unauthorized re-
quests. In addition, some form of reporting may be desirable
to insure that entities that misbehave can be detected.

3.3 Value-added reference services

The handle server system is intended as a safety net of in-
formation about where digital objects reside. There will no
doubt be other, valuable services that provide information
to users about the location of digital objects in repositories.
However, we do not consider these services per se to be part
of the infrastructure of the System. Instead, they comprise
value-added services whose nature we do not see as appro-
priate to constrain.

In addition, as mentioned above, we do not require
repositories to provide a description of their contents.
Repositories may not house coherent collections, and hence,
querying or searching a repository may be a service appro-
priate only to the repository administrator, not to a user. Pre-
sumably, such capabilities will exist in the form of value-
added services. It is such services, rather than repositories
per se, that users would interrogate to identify digital objects
of a certain nature. Such services may, of course, be offered
by repositories themselves, especially in the case when one
is intended to house a coherent collection. However, such a
server is not a requirement of a well-behaved repository.

4 Imposing semantics on handles

As discussed above, a handle is presumed to have two logi-
cal components, a local naming authority name, and an iden-
tifier unique to that naming authority. These naming authori-
ties will be assigned in a manner. For example, there may be
a “naming authority” named “berkeley”, which will autho-
rize other naming authorities within the “berkeley” domain.
Within the “berkeley” domain, names are locally assigned
to other naming authorities. Thus, the name “berkeley.cs”
might be assigned to the authority responsible for naming
the UCB Computer Science technical report series (or to
several such series). Note that this particular naming author-
ity will not generally correspond to a valid Internet address,
even though it may follow similar syntactic conventions.

Particular naming authorities may follow their own con-
ventions for assigning semantic or nonsemantic strings to
their objects. For example, “berkeley.cs” may follow a pro-
posed convention for its technical reports, and give each of

the corresponding digital objects (whether composite ob-
jects or meta-objects) a local handle, e.g., “csd- 93-712”.
(The “csd”—for “Computer Science Division” is perhaps re-
dundant; however, we use it here to indicate the possibility
of a single naming authority issuing several distinct series.)

The full unique handle for this digital object would be

berkeley.cs/csd-93-712

where the “/” separates the naming authority name from the
string unique to that authority.

In addition, digital objects may exist for this work in
each of a number of fixations (formats). The handles for
these fixations may also be semantically interpretable, e.g.,
the string “csd-93-712/all.ps” might be the unique local part
of the handle for the digital object corresponding to the
PostScript version of this work; “csd-93- 712/all.tif ” the
handle for the tiff representation. (Note that the character”/”
is allowed in the local name. It may also be desirable to dis-
tinguish other characters, but this is not discussed further in
this paper.)

Other schemes may be used to generate handles in other
ways. For example, the local portion of a handle might corre-
spond to a date-time format, so that the digital object above
might instead have the handle

berkeley.cs/1994.12.05.23.42.12;7

These handle forms can be embedded within various
syntactic wrappers to distinguish them in various contexts
from other notations. For example, the handle might be ex-
pressed in URN syntax as follows:

<URN:ASCII:ELIB-v.2.0:berkeley.cs/
csd-93-712>

Here “ELIB-v.2.0” is supposed to suggest (via “ELIB”)
that this is a URN for electronic library material, and also,
(via “-v.2.0”) that some particular naming convention is used
by the naming authority. Another possibility is the notation
used by Grass and Arms (GA1994), which resembles that
for URLs, and proceeds that handle with the prefix “hdl://”
(to denote that a handle follows), or just “//” (if it is impor-
tant to distinguish a global root for the handle), e.g.:

hdl://berkeley.cs/csd-93-712
//berkeley.cs/1994.12.05.23.42.12;7

The user of this notation is cautioned to avoid confusion
with URLs, which name services, while handles name digi-
tal objects, not network services.

Various services might exploit semantic conventions to
locate an object given its handle, without consulting a handle
server. For example, a naming authority may have its own
repository and reference server associated with it; the latter
might be looked up (perhaps via an additional service), and
queried for the location(s) of this particular report.

Users may, of course, attempt to incorporate all manners
of semantic or system content in handles. Also, it is plau-
sible that imposing any content in handles per se could be
troublesome. Instead, handles per se could be declared to be



A framework for distributed digital object services 123

uninterpreted, and an additional level of indirection be in-
troduced to interpret them. Additional name services could
be created to translate user-oriented nicknames to system-
oriented handles, as are done for file systems today. We
stop short of advocating such a system here, however, as-
suming that a semantically-motivated convention, such as
that which has served for URLs, will continue to be use-
ful at some level, and does not require an additional level of
mediation.

5 Conclusion and summary

This paper provides a method for naming, identifying,
and/or invoking digital objects in a system of distributed
repositories that provides great flexibility and is well-suited
to a national-level enterprise. It allows the possibility of
locating digital objects without making any presumptions
about the object or its locations(s). It also admits value-
added conventions that various users may use to their own
advantage. For example, a reference server might internally
refer to an object by its global handle, and, additionally,
keep track of repositories in which this object is believed
or known to reside. If a user requests this object, the refer-
ence server might look up the repository name or address,
determine the repository service, and ask that repository to
deliver a version of the object to the user. Alternatively, the
server might instead use the object’s handle at run time to
query syntactically a handle server for the name of reposito-
ries or services that house the object.

This system also allows for public and private naming
authorities. Many naming authorities will be private, and
only assign identifiers to their chosen clientele (e.g., de-
partment members eligible to produce technical reports);
however, public naming authorities could provide a service
whereby they generate an identifier to anyone who requests
one. Individual citizens not associated with any official body
might use a public naming authority to generate identifiers
for objects they wish to store for private purposes or for pub-
lic dissemination on their own (this is an example of a sit-
uation in which the originator does not control the naming
authority.)

In the CS-TR project, CNRI is providing the global nam-
ing authority plus a handle management service that accepts
handles with and without semantics. This service does not
make use of handle semantics; however participants are able
to take advantage of handle semantics, if any, to access ob-
jects directly. Each participating institution would be free to
propose or request names of its own choice. Each of these
names may also have associated with them a nonsemantic
identifier (such as a date-time-stamp), which is not other-
wise specified in this document.

Acknowledgements This research was supported by the Advanced
Research Projects Agency under Grant No. MDA-972-92-J-1029 with
the Office of Naval Research. We would like to thank Jerry Saltzer,
Michael Stonebraker, Jim Davis, Carl Lagoze, Bill Arms, Hector
Garcia-Molina, Jim Gray, Patrice Lyons, David Ely, Judy Grass, Barry
Leiner, John Garrett, and all the members of the CS-TR project for
their many helpful comments on and insights into this work.


