A Security-Mode for Carrier-Grade SDN Controllers

Changhoon Yoon Seungwon Shin Phillip Porras
KAIST KAIST SRI International
chyoon87@kaist.ac.kr claude@kaist.ac.kr porras@csl.sri.com
Vinod Yegneswaran Heedo Kang Martin Fong
SRI International KAIST SRI International
vinod@csl.sri.com kangheedo@kaist.ac.kr mwfong@csl.sri.com

Brian O’Connor
Open Networking Laboratory
bocon@onlab.us

ABSTRACT

Management approaches to modern networks are increasingly in-
fluenced by software-defined networks (SDNs), and this increased
influence is reflected in the growth of commercially available inno-
vative SDN-based switches, controllers and applications. To date,
there have been a number of commercial and open-source SDN
operating systems (NOS) introduced for various purposes, includ-
ing distributed controller frameworks targeting large, carrier-grade
networks such as the Open Network Operating System (ONOS) and
OpenDayLight (ODL). These frameworks are distinguished by their
(i) elastic cluster controller architecture, (ii) network virtualization
support, and (iii) modular design. Given their flexible design, grow-
ing list of supported features, and collaborative community support,
these are attractive hosting platforms for a wide range of third-party
distributed network management applications. This paper identifies
the common security requirements for policy enforcement in such
distributed controller environments. We present the design of a
network application permission-enforcement model and an inte-
grated security subsystem (SM-ONOS) for managing distributed
applications running on an ONOS controller. We discuss the under-
lying motivations of its security extensions and their implications
for improving our understanding of how to securely manage large-
scale SDNs. Our performance assessments demonstrate that the
security-mode extension imposed reasonable overheads (ranging
from 5 to 20% for 1-7 node clusters).

ACM Reference Format:

Changhoon Yoon, Seungwon Shin, Phillip Porras, Vinod Yegneswaran,
Heedo Kang, Martin Fong, Brian O’Connor, and Thomas Vachuska. 2017. A
Security-Mode for Carrier-Grade SDN Controllers. In Proceedings of ACSAC
2017. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3134600.
3134603

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACSAC 2017, December 4-8, 2017, Orlando, FL, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5345-8/17/12...$15.00
https://doi.org/10.1145/3134600.3134603

Thomas Vachuska
Open Networking Laboratory
tom@onlab.us

1 INTRODUCTION

The advent of the software-defined Network Operation System
(NOS) began with the appearance of the first OpenFlow controller,
NOX [10]. Since NOX, many different NOSs were proposed and
implemented in order to overcome the limitations of the predeces-
sors. For example, Beacon [7] has eliminated several limitations
of NOX; it was written in Java to improve the developer produc-
tivity while achieving high-performance, and enabled the ability
to (de)activate SDN applications at runtime. The ONIX [14] con-
troller mitigated the fundamental scalability problems experienced
in SDNs by proposing a distributed NOS architecture. Today, by
extending and improving upon their predecessors, Open Network
Operating System (ONOS) [4] and OpenDaylight (ODL) [2] now
represent two of the most popular and advanced open-source NOS
projects aspiring for high scalability, reliability and extensibility.

In this paper, we introduce a new security subsystem designed
to improve distributed, carrier-grade NOSs, such as ONOS and
ODL. These security extensions introduce an administrative per-
mission enforcement service for imposing access constraints on
each distributed SDN application hosted on the NOS. Prior efforts
to guarantee non-interference in SDNs include network-slicing ap-
proaches [3, 25] and application compartmentalization [12, 23, 24]
strategies. Unlike these efforts, our work is focused on large-scale
SDNs with hundreds of switches, where a single logical controller
is instantiated across many virtual instances. Here, we tackle this
challenge by adopting a fundamentally different approach which
we validate can be scalably enforced in a modern, large-scale, dis-
tributed SDN control framework.

Specifically, our proposed security extensions enable the NOSs
to enforce two types of access control policies: developer-specified
policies and NOS operator-specified policies. Developer-specified
policies enumerate the bundle authority type, application services,
and the per-service APIs that are required by the application at
runtime. These permissions are specified within the application
configuration manifest, and allow the operator to evaluate exactly
which services and API an application may use when deployed.

Operator-specified policies allow a network administrator to
compartmentalize an SDN application’s access to certain segments
of the network topology or to impose network header criteria con-
straints to limit the type of traffic the application can manage.
For operator-specified policies, we introduce two new permission

https://doi.org/10.1145/3134600.3134603
https://doi.org/10.1145/3134600.3134603
https://doi.org/10.1145/3134600.3134603

ACSAC 2017, December 4-8, 2017, Orlando, FL, USA

mechanisms: topology permissions and header-space permissions.
Topology permissions impose constraints on which portions of the
global network topology graph (i.e., which network devices) an
application may access at runtime. This permission enables the
NOS operator to partition the authority of applications into virtual
subnetworks. Header-space permissions enable the operator to con-
strain applications to a subset of traffic that match header-space
criteria.

In order to evaluate the effectiveness of our security subsys-
tem, we implement Security-Mode ONOS (SM-ONOS). Section 5
discusses the implementation solutions to overcome the challenges
in extending ONOS to support application permission enforcement.
Specifically, we propose a scheme for security policy expression
of SDN applications. The specification is designed to be both intu-
itive, such that NOS operators can use it to evaluate the privilege
requirements of an SDN application, as well as highly inclusive to
fully constrain the application behavior. We further introduce an
SDN application vetting mechanism that ensures NOS operators
have reviewed and approved the security policy prior to the actual
activation of the SDN application in a distributed NOS environment.
Finally, we introduce a new capability for per-app network access
control in a distributed NOS environment. Finally, in Section 7 we
assess the effectiveness of SM-ONOS by presenting three practical
use-cases, and by measuring key performance characteristics, such
as its impact on flow mod installation throughput.

This paper provides several research contributions:

o We present the design of several application-layer security exten-
sions to the emerging class of distributed (carrier-grade) OpenFlow-
based NOSs, such as ONOS and ODL. While SDN application
security mediation has been explored in prior work on smaller-
scale networks, here we propose pragmatic privilege enforcement
mechanisms that target networks with hundreds of switches and
physically distributed topologies.

e We introduce the notion of the SDN application security man-
ifest, addressing two fundamental challenges in administering
networks in which third-party SDN applications are hosted: 1)
existing NOSs offer no mechanisms to compare SDN applications
against their privilege requirements, 2) NOS administrators have
no current methods to restrain application privilege usage within
a target deployment.

o We present an implementation of our security extensions within
one of the top distributed, carrier-grade, OpenFlow NOSs: ONOS.
We refer to our implementation as SM-ONOS, which is now
integrated as a new opensource subsystem within the ONOS dis-
tribution package. We describe various use cases and deployment
scenarios for SM-ONOS.

o We examine the performance overhead of SM-ONOS, including
its performance characteristics in distributed WAN topologies
with up to seven distributed network locations. We also explore
optimizations such as permission-check caching to further en-
hance the scalability of our security extensions.

2 BACKGROUND

In this section, we discuss some key aspects of SDN and the most
popular open-source network operating systems (NOS) available

C. Yoon et al.

today; ONOS (Open Network Operating System) and ODL (Open-
Daylight), which both employ the OSGi (Open Services Gateway
initiative) framework.

2.1 Open SDN

Since its emergence, SDN has steadily matured to become an effec-
tive and viable networking technology that is gradually supplanting
legacy network infrastructures. The success of SDN could be at-
tributed to academic papers, open-source community development
efforts and industry partnerships. These have stimulated the de-
velopment of protocol standards like OpenFlow [18] and a suite of
SDN controllers [2, 4].

Furthermore, SDN controllers are now publishing Northbound
APIs, which allow independent developers to write useful SDN
applications. Such open APIs accelerate innovation and encour-
age wider adoption of SDN technology. In the case of ONOS and
ODL, many developers from the open-source community and part-
ner companies have already contributed a number of useful SDN
applications. These cutting-edge SDN controllers support hot de-
ployment of applications to assure continuous and flexible network
service provisioning. While these novel and advanced capabilities
invigorate the SDN application ecosystem, they also introduce new
security issues, as we will discuss in Section 3.

2.2 OSGi and open-source NOS projects

ONOS and ODL are two popular open-source NOSs, and both are
built on the OSGi framework, which is often referred to as a dy-
namic module system. OSGi [21] allows one to dynamically install,
uninstall, start and stop modules (or OSGi bundles) without shut-
ting down the entire system, thus providing a reliable infrastruc-
ture for NOSs. In addition to the dynamic configurability, OSGi
also allows open-source NOS projects to easily establish a modular
architecture, which increases architectural coherence, testability,
and maintainability. Wielding significant influence, the industry
is also participating in ONOS and ODL projects, and major NOS
vendors (e.g., Brocade, Cisco, Ericsson, HP and etc.) have already
built commercial NOS products based on both ONOS and ODL.

OSGi includes an optional security layer based on the Java 2
security architecture. Within the OSGi service platform, a code
unit can be authenticated based on the (download) location of the
OSGi bundle. Since OSGi manages its special protection domain, or
bundle location, it provides a dedicated services for managing those
permissions that are associated with the authenticated unit of code.
For example, the Permission Admin service allows management of
security policies by granting permissions to OSGi bundles based
on their full location strings. Although the framework security is
an optional layer, the Felix OSGi framework project implements
the security layer as a subproject of the Felix project [27].

3 MOTIVATING CHALLENGES

A vital adoption incentive for any NOS among the increasingly
competitive SDN landscape involves the extent to which the NOS
hosts a diverse range of active network application projects. How-
ever, a wide selection of third-party network applications also raises
an interesting vetting challenge to a NOS operator: how to select
an effective combination of network applications that can coexist

A Security-Mode for Carrier-Grade SDN Controllers

together in a secure and stable manner? The central goal of this
paper is to offer one exemplar distributed NOS security service that
addresses this concern. Here, we break down this challenge into
the following concerns:

How to compare SDN application privilege requirements?
An SDN ecosystem with a diverse set of third-party applications
increases the need for efficient application vetting with respect to
the services and functions that each candidate application requires.
One obvious approach to application vetting is for the NOS opera-
tor to conduct a pre-deployment source-code review, to evaluate
whether the services and functions that an application perform is
reasonable, given the target object. Unfortunately, conducting a
code review is not only a daunting task, but is itself prone to human
error and may be hindered by code that is obfuscated to avoid IP
theft. Thus, we desire a mechanism that will allow SDN application
developers to express which services and API permissions are nec-
essary for the application to function. Such an application manifest
should provide an efficient means for administrative review, and an
ability for the administrator to adjust the manifest to disable those
functions deemed unnecessary.

However, even when an SDN application is thoroughly inspected
and deployed to the network, this inspection does not eliminate the
possibility that an application unexpectedly executes functions that
were not part of the inspected manifest. If the specification of the
manifest is incomplete, then those accesses that are not explicitly
granted at deployment time should be denied.

How to avoid application conflicts in large network topolo-
gies? SDN applications have the potential to conflict and interfere
with other applications as they each work to manage their global
network topology. ONOS, for example, employs a distributed ar-
chitecture that instantiates both the ONOS stack and applications
across multiple physically distributed servers, allowing it to scale
across wide area networks or other segmented topologies. Each
ONOS instance, referred to as a node, operates an instance of each
deployed SDN application, and all applications share a common
access to the global network topology. Currently, NOSs lack mech-
anisms to constrain applications to specific sub-portions of the
global topology (i.e., each application instance within each node
has the ability to fully access the global topology). Even if an SDN
application is designed specifically to provide management for a
target subnetwork, it operates unconstrained in order to alter other
portions of the topology.

The ONOS project will soon introduce a virtual network ab-
straction, enabling the global topology to be segmented into sub-
topologies that are composed of subsets of switches. We seek a new
form of topology permissions that can constrain applications to
operate within a NOS’s virtual network abstraction. Doing so will
enable operators to target applications to manage only those de-
vices within the virtual network they are assigned, while also main-
taining their global view of the entire topology. When applicable
for a given deployment scenario, employing topology permissions
within our security extension could reduce instabilities that may
arise from unexpected interactions among deployed applications
that would otherwise fail to coordinate in the management of a
common device.

How to partition traffic authority among applications? An-
other highly desirable capability for managing applications is that

ACSAC 2017, December 4-8, 2017, Orlando, FL, USA

of partitioning which IP address range or network service flows
each SDN application may manage. This form of access permission
requires an understanding of the parameters that an application
submits within a flow mod. As with topology permissions, a NOS
operator may wish to deploy an application to manage only a sub-
set of addresses within the global network or a subset of network
services. For example, today a NOS operator who deploys an ap-
plication to efficiently manage a subset of traffic, such as an HTTP
load balancer, cannot constrain the application from managing
other flows unrelated to web services. Header-space permissions
would enable the operator to grant the load balancing application
an ability to submit flow mods and intent policies pertaining to
80,443/TCP, while preventing it from issuing flow management re-
quests for other non-HTTP flows. Such a service would enable the
NOS operator to deploy applications as lead authority for a subset
of network traffic, offering a further means to minimize conflicts
among peer SDN applications.

4 PERMISSION MODEL

Our objective is design an optional security extension to existing
distributed controller frameworks to address the challenges raised
in the previous section. To do this, we design a critical enhancement
to the NOS application management facilities, introducing an op-
tional security extension (security-mode). Here, we will discuss the
security extension in the context of its integration into the ONOS
platform. However, the features discussed here are applicable to
other comparable distributed controllers, such as ODL.

This extension allows operators to enable or constrain each ap-
plication’s use of Northbound APIs, services, and to constrain its
access to subsets of the network’s topology and traffic. Application
permissions are expressed in two forms: those that are (initially)
developer-specified and then either granted or rejected by the net-
work operator, and those that are entirely operator-specified and
assigned to each application at installation.

There are three forms of developer-specified application permis-
sions: (i) the Bundle-level role, (ii) the application-level role, and
(iii) the set of API-level permissions used by the application. These
permissions are enumerated and bundled with the application, us-
ing the application’s app.xml configuration file, as discussed later.
There are two forms of operator-specified application permission
that are (optionally) defined by the operator: (i) topology access con-
straints, and (ii) header-space access constraints. Here, we discuss
each permission and its effect on the application.

4.1 Bundle-level RBAC

One of the major design goal of the open-source NOSs, such as
ONOS or ODL, is code modularity. To increase architectural co-
herence, testability, and maintainability, the NOSs are designed
as distributed layered architecture, with crisply defined bound-
aries and responsibilities; and hence, the typical implementation
is composed of various modules (or code packages) with different
functions. In particular, ONOS and ODL leverages OSGi framework,
and such modules are referred to as OSGi bundles [21].
Bundle-level Role-Based Access Control (RBAC) is the most
coarse-grained level of control that is specified for an application.
This developer-specified role determines whether the code package

ACSAC 2017, December 4-8, 2017, Orlando, FL, USA

New bundle
is application bundle ?
YES

Revoke all permissions,
and grant application
default permissions

YES

Grant administrative
service permissions

L

has API-permissions
specified ?

is system bundle ?

YES

Grant
all permissions

Revoke
all permissions

Bundle-level RBAC

Grant non-administrative
service permissions

Application-level RBAC

NO

API-level PBAC

Grant API-permissions

l

as network-permissions’
specified ?

(network-operator specified)

Grant network-permissions END

Network-level PBAC

Figure 1: The permission model for a distributed controller
framework is illustrated in this flowchart. In security-mode,
the behavior of each NOS component bundle is controlled
by granting or revoking permissions.

should be run either as a “non-app” or as an “app” OSGi bundle. This
selection is either then affirmed by the network operator or rejected.
As its name implies, the bundle-level role-based access control is
enforced at the OSGi bundle-level. As discussed previously, ONOS is
a modular project that runs on the OSGi framework using Apache
Karaf, and is comprised of OSGi bundles with different functionali-
ties. Likewise, SDN applications are also OSGi bundles, and thus
SDN applications can be easily instantiated. When specified as an
“app” bundle, our security extension will force the application to
run in a constrained environment.

In security mode, the non-app role designation is assigned to
bundles that are intended to be part of the ONOS trusted security
boundary. Operators should only accept “non-app” bundles that are
intended to be part of the trusted ONOS code base. The behavior of
the bundles with the “non-app” role is not controlled, because they
are either a component bundle of the ONOS-kernel or the represent
ONOS-internal utility bundle. Hence, all permissions are granted
to these type of bundles, as shown in Figure 1.

OSGi bundles that are assigned the “app” role (i.e., ONOS/ODL
application bundle) represent different types of permissions are

C. Yoon et al.

cumulatively granted to each SDN application by each access con-
trol mechanism. At the bundle level of access control, only the
minimum permissions required to access the Northbound API bun-
dles and other necessary utility bundles are selectively granted to
application bundles.

4.2 Application-level RBAC

In OSGi-based NOSs, each Northbound service comprises a set of
Northbound APIs performing similar operations. There are two
types of Northbound services: Admin services and regular Services.
Admin services include administrative APIs that perform sensitive
network and system operations. For example, in ONOS, DeviceAd-
minService provides an API for removing a selected infrastructure
device from the device inventory. Hence, the use of such services
at application-level is controlled by enforcing a second form of role
assignment (RBAC) that must be specified by the developer and
then accepted by the NOS operator.

Application-level RBAC provides a coarse-grained mechanism,
where the role of “admin” or “user” is assigned to each SDN ap-
plication bundle, and the service-level permissions are selectively
granted to each bundle according to its role, as shown in Figure 1.
Applications that operate with the “admin” role are granted per-
mission to access both the admin and regular services, while “user”
applications are limited to regular services only.

4.3 API-level PBAC

As each SDN application has the capability to directly affect the
network behavior through the injection of flow rules, it must be
carefully analyzed before the actual deployment. When an appli-
cation is deployed after the auditing process, the application must
perform only the operations that were audited, because any unex-
pected operation may both directly and indirectly affect the network
behavior. For example, an SDN application may modify the shared
network resources, which may produce unexpected network behav-
ior when other SDN applications implement flow routing decisions
based upon unexpectedly altered resource.

In security-mode, NOSs employ an API-level Permission-Based
Access Control (PBAC) mechanism to solve the problem stated
above. PBAC employs a deny-by-default policy: it allows an SDN
application to use a given API only if it has the necessary permission,
and a set of such permissions are granted to each application by
the application developer. PBAC offers the network operator with
a powerful fine-grained management control using a rich range
of permission types. The permission types utilized in this level of
access control are well-defined and intuitive for operator review.

The permission types must cover all the Northbound APIs, and
each permission type should effectively and intuitively represent
each type of SDN application operation. Accordingly, for ONOS,
we have derived several types of SDN application permissions from
the ONOS Northbound APIs based on which ONOS/network re-
source each API is accessing and which type of action (e.g. READ,
WRITE, and EVENT) it takes against the resource (see Appendix
A). Note that we do not take the administrative Northbound APIs
into account at this level of access control mechanism, because the
access to those APIs is already controlled in the previous access
control mechanism.

A Security-Mode for Carrier-Grade SDN Controllers

As illustrated in Figure 1, each SDN application is granted a set of
NOS operating permissions, and simply possessing each permission
allows the application to use a certain set of APIs. For example, if
an ONOS application is given FLOWRULE_WRITE permission in
security-mode, the application can call a specific set of the North-
bound APIs that issue/dispatch/generate/install flow mods.

4.4 Network-level PBAC

Unlike the previous access control policies, Network-level permis-
sions are optionally defined by the network operator at deployment
time, and may provide custom access partitioning for each applica-
tion over the target network. Operators can use these access control
mechanisms to reduce undesired overlap among applications that
operate in parallel over the same NOS cluster. Network-level per-
missions are defined using two distinct schemes: Header-space
permissions and topology-based permissions.

As discussed previously, while NOS instances are widely dis-
tributed to manage large networks, SDN applications can manipu-
late any portion of the managed network. SDN applications may
issue packet outs to forward network packets or issue flow mods to
forward particular network traffic to any destinations as desired.
Thus, we introduce network-level permission-based access controls,
which enable the NOS operator to constrain applications based on
header-space criteria: IP address ranges, ports, and protocols. When
defined, the security subsystem will reject all flow mods whose
parameters contain header-space criteria that do not match the
header-space constraints assigned by the NOS operator.

It is also possible to assign topology permissions to an applica-
tion. Here, the topology designates to which virtual networks the
application is granted read and write access. As discussed previ-
ously, ONOS defines virtual networks as subgraphs of the global
topology graph of network devices. Thus, in security-mode, assign-
ing the application to a set of virtual networks effectively filters all
flow mod and intent requests to all devices that fall outside those
virtual networks.

5 SYSTEM DESIGN

In order to verify the feasibility and effectiveness of the security
extension for the advanced NOSs, we implement Security-mode for
ONOS (SM-ONOS), and this section introduces the system design of
the extension. We identify the key insertion points where security
extensions are added and describe their functions. We then discuss
how SM-ONOS enforces the access-control policies introduced in
Section 4 and how it addresses the challenges mentioned in Section
3.

5.1 SM-ONOS overview

We have designed the architecture of SM-ONOS to effectively sand-
box applications by logically separating the underlying Network-OS
layer of ONOS from unexpected or unwanted interactions from
host applications. In addition to mediating application accesses
through the ONOS core and layers below, SM-ONOS isolates the
Java Virtual Machine that hosts ONOS itself from the application
layer. We do this by leveraging both Felix OSGi security extension
implementation [27] and JavaSE 1.2 security [9].

ACSAC 2017, December 4-8, 2017, Orlando, FL, USA

The OSGi security layer performs both monitoring and control
of OSGi-related activities, such as acquiring services, and manip-
ulating the metadata or behavior of other bundles. Of particular
interest, SM-ONOS uses the OSGi security layer to enforce both
Bundle-level RBAC and Application-level RBAC. The Java secu-
rity layer employs standard Java permissions to both manage each
application’s Northbound API access as well as Java’s native sys-
tem activities that requires FilePermission, SocketPermission, Run-
timePermission and etc.

Next, we describe how each feature enforces the access control
policies. We also discuss how we address the challenges introduced
in Section 3, including how the policy-enforcement service handles
the distributed nature of ONOS applications. This includes a discus-
sion of the mechanism used to address the issue of what to do when
developer-assigned application permissions are in conflict with the
expectations of what the ONOS operator is willing to deploy.

5.2 Policy expression

In security-mode, each application must have a security policy file
incorporated into its package at distribution time. If an application
is missing the application policy file or the file does not specify
all the information required, it cannot later be activated into the
ONOS runtime. Once distributed with policy file, the end-user of the
application (i.e., the ONOS operator) will then view and approve or
adjust this file prior to installation. Figure 2 illustrates the extension
to application preparation required for loading applications when
security-mode is enabled in ONOS.

®®® - policy violation notification

80 8,5_' - application auditing

ONOS network

1
1
| operator
i deploy 1
) distribute) !
Istribut

_ o ONOS |
) Securty-mode compatible | ! Securty-mode compatible ~ Securty-Mode ONOS:
ONOS Application | ONOS Application cluster I
ONOS Application | \ I

policy .
file T~ Vol

Figure 2: SM-ONOS overview. When deploying applications
compatible with security mode, the developer must include
the application policy file within the application package be-
fore distribution, and the ONOS operator (the application’s
end-user) may optionally supply a network security policy
file to enable network-level access control feature.

The policy file must explicitly define the role of the application
and all the permissions that the application requires. During the
application installation phase, this policy file is extracted from the
package, parsed, and the extracted security policy is stored within
ONOS. We extended the application subsystem to perform the policy
load task, and once loaded the security policy is accessible within
the ONOS cluster as long as the application is installed. Figure 3
illustrates the developer-specified security policy file template.

The end-user may also supply an optional network policy file
(Figure 4) to enable network-level access control features. This file
is deployment specific, and used by the operator to restrict the
application’s ability to read, write, or alter flows from specified
portions of the managed network.

ACSAC 2017, December 4-8, 2017, Orlando, FL, USA

1 <security>
<role>USER</role>
<permissions>
1 <app-perm>DEVICE_READ</app-perm>
<app-perm>TOPOLOGY_READ</app-perm>
6 <app-perm>FLOWRULE_WRITE</app-perm>
<osgi-perm>
<classname>ServicePermission</classname>
9 <name>org.onosproject.demo.DemoAPI</name>
10 <actions>get,register</actions>
1 </osgi-perm>
12 <java-perm>
13 <classname>RuntimePermission</classname>
14 <name>ModifyThread</name>
15 </java-perm>
16 </permissions>
17 </security>

Figure 3: The developer-specified application policy must in-
clude the application role and a list of required permissions.

1 <app name="org.onosproject.appl">
2 <HeaderSpacePermissions>
<hsp ipv4_dst="10.0.0.0/24" tcp_dst="22" actions="read
,write"/>
4
5 </HeaderSpacePermissions>
6 <TopologyPermissions>
7 <topo vnets="vnetl, vnet2"/>
9 </TopologyPermissions>
0 </app>

Figure 4: An optional application network policy file is used
to specify the HeaderSpacePermissions or TopologyPermis-
sions, which constrain an application’s network access capa-
bility.

To enforce the application network policy, the ONOS operator
places the application network policy file into the ONOS config-
uration folder. The file must use a name that matches the name
of its corresponding application. During the application installa-
tion phase, the application subsystem uses this common filename
to augment the application’s security policy with these additional
network security constraints.

5.3 Extensions to application loading

In ONOS, the application subsystem allows hot deployment of ONOS
applications to an ONOS cluster. When an ONOS operator installs
an application onto one of any ONOS nodes within a cluster, the
application subsystem will replicate the application to every ONOS
node in the cluster. That is, ONOS applications can be installed to
an ONOS cluster from anywhere as if the whole cluster was one
single monolithic system.

To enable this feature, the application subsystem maintains a
global state, or an application state, which can either be INSTALLED
or ACTIVE, as shown in Figure 5(top). application states allow the
application subsystem to deploy and manage applications across all

C. Yoon et al.

Application State Machine (ONOS)

START .
activate

uninstall

uninstall

END

Security State Machine (ONOS in Security Mode)

START review accept policy
k’ deactivate
activate
uninstall O uninstall policy

violation
uninstall

Application State Machine (ONOS in Security Mode)
activate
(SecurityState != SECURED) activate

START (SecurityState == SECURED)

deactivate

<

ACTIVE

INSTALLED

uninstall

END

Figure 5: A comparison of the standard ONOS application
loading state diagram versus the security-mode application
loading state diagram. The additional Review Pending and
Reviewed states track whether the application has been re-
viewed and explicitly approved by the ONOS operator prior
to loading.

ONOS nodes in a cluster. These states are maintained via a gossip-
based [15] eventually consistent distributed store, and hence, the
application state may transition from an inconsistent to a consistent
state. Application state transition is triggered by a user input event
via the CLI interface.

The lower panels of Figure 5 illustrate the application state tran-
sition when ONOS is operating in security-mode. There are three
objectives to the security-mode extensions to application activation:
(i) to ensure the ONOS operator reviews the policy prior to activa-
tion, (ii) to verify positive acceptance, and (iii) to ensure that the
application and policy are associated during runtime. The appli-
cation subsystem is modified to manage applications based on the
state diagram shown in Figure 5 (bottom). When security-mode is
enabled, the application subsystem refers to the security state of the
application to make all application state transition decisions.

We have integrated a security subsystem into ONOS, which en-
forces the application security state during runtime, as shown in
Figure 5 (middle). Like the application subsystem, the security sub-
system operates based on the security state of each application.

When the ONOS operator attempts to activate an application
with application state being INSTALLED, the security subsystem
captures the this event ahead of the application subsystem, and
changes the application’s security state to INSTALLED. When the
application subsystem subsequently receives this event (the applica-
tion’s Security State is SECURED), the application will remain in
the INSTALLED state, and the application is not activated. At this
moment, the ONOS operator must choose to either uninstall the
application or review the application.

A Security-Mode for Carrier-Grade SDN Controllers

If the operator chooses to review the application, the security
subsystem transitions the application to the REVIEWED state. This
accomplishes our first objective. While in the REVIEWED state,
the operator cannot activate the application, as it is not yet in the
SECURED state. Here, the operator must accept the policy to tran-
sition the application to a SECURED state, from which activation
may commence. This transition completes our second objective.
Finally, when the policy is accepted and the application transitions
to SECURED state, this triggers the security system to enforce
our third objective, the runtime association of the application to
its security policy. Application transitions to the REJECTED state,
when triggered by a policy violation (excludes network policy vio-
lation), results in the immediate deactivation and deinstallation of
the application.

5.4 The security service distributed store

While the application subsystem employs a gossip-based (eventu-
ally consistent) distributed store to maintain the application state
throughout an ONOS cluster, the security subsystem must also em-
ploy a distributed store to maintain security policies. However,
the security states and security policies must maintain strong con-
sistency within an ONOS cluster. Figure 6 illustrates one of the
problems that may arise when the security states of an application
are synchronized using an eventually consistent distributed store.

X i . application
policy violation can be re-activated
at Node 1 @ Node 2

POLICY_ POLICY_
VIOLATED VIOLATED

Application State

(
!

Node 1
Security State

Application State
Node 2
Security State

i

3 logical term —»

Figure 6: An illustration of the problem that may arise
when Security States were synchronized using a gossip-
based eventually consistent distributed store. Inconsistent
security state could lead to an ONOS node activating an ap-
plication that must not be activated.

In order to avoid such problems, we employ a strongly consistent
distributed store, which is implemented using the RAFT consensus
algorithm [20]. Briefly, RAFT’s consensus algorithm ensures that
if a state machine applies set x to 3 as the nth command, no other
state machine will ever apply a different nth command. As a result,
each state machine processes the same series of commands and
thus produces the same series of results and arrives at the same
series of states.

Figure 7 illustrates the use of the consistent distributed store by
the policy building services previously described and the runtime
permission enforcement services that inserted by the API dispatch
service. It is through this mechanism that transition-consistency
is ensured between the policy builder and the policy enforcement
services.

When an ONOS operator attempts to review the security policy
of an application, the security state of the application changes to
REVIEWED state. This state transition is done within the security

ACSAC 2017, December 4-8, 2017, Orlando, FL, USA

distributed store. Accordingly, the store generates the StateUpdat-
edEvent to notify the Manager module of the change in the security
state of the application to REVIEWED.

Manager

Policy builder

RAFT-based strongly consistent distributed store

StateUpdated

Permissions
Event

Gossip-based eventually consistent distributed store
Security Distributed Store

PolicyViolated StateUpcéatec: ‘ - Permissions
Event ven Policy enforcer

Felix Security-enabled OSGi Framework
Figure 7: An illustration of the security subsystem design.
Permissions are defined per application within the Pol-
icy builder, distributed to all application instances using a
strongly consistent distributed store, and enforced by the
policy enforcement module within the security subsystem.

In response to the StateUpdatedEvent flagged as REVIEWED, the

Policy builder module in the Manager builds a set of permissions
that are granted to the application. This permission-set building
process is one of the key features of SM-ONOS as all the access
control mechanisms introduced in Section 4 are applied. We next
elaborate on how the Policy builder module applies each of the
access control mechanisms.
Policy Building. The Policy builder cumulatively collects a set
of required permissions based on the access control mechanisms
and security policies for the given application. In order to build the
bundle-level RBAC policy, the Policy builder takes advantage of the
property of the PermissionAdmin service [21]. On the Karaf [17]
platform, where OSGi security is enabled and all permissions are
granted to all the OSGi bundles, it is possible to impose a least priv-
ileged access policy to a desired OSGi bundle using the Permission
Admin Service.

If at least one permission is granted to an OSGi bundle via the
Permission Admin Service, all the other permissions are taken away
from that bundle. This is to ensure that the Policy builder provides
the ONOS application with the minimum permissions to run as on
an ONOS instance to its local permission set. The least permissions
required to ONOS application to properly operate includes basic
OSGi PackagePermission and AdaptPermission. In fact, the appli-
cation permission set acquired from the bundle-level RBAC stage
is the base set of permissions that must be granted to any ONOS
applications by default. Furthermore, at this level, the Builder not
only adds permissions but also removes permissions from the policy
file. It is possible to specify known Java permissions and OSGi per-
missions on the policy file using ’Java-perm’ as shown in Figure 3.
The Builder makes sure that these explicitly granted permissions
do not include permissions that should never be granted to ONOS
applications. For example, the Builder removes FilePermission to
read or access the ONOS configuration folder and the files in it, and
also removes RuntimePermission that allows executing the ’exitVM’
command, which shuts down the entire Java Virtual Machine.

At the application-level RBAC policy building stage, the Policy
builder selectively adds the predefined set of permissions based
on the application’s role specified in the policy file. If the given
application has admin role, OSGi ServicePermissions to access all

ACSAC 2017, December 4-8, 2017, Orlando, FL, USA

the ONOS Northbound Services are added to the application per-
mission set. For an application that is assigned the user role, the
permissions to access all Northbound Services except for Admin-
istrative Northbound Services are added to its permission sets. In
order to enable API-level PBAC policy enforcement, a custom type
of permission, called AppPermission, is implemented by extending
Java’s BasicPermission class. At this level, all the permissions that
are listed as "app-perm’ in the policy file (Figure 3) added to the
application permission set.

The network-level PBAC also requires custom types of permis-
sion, and HeaderSpacePermission and TopologyPermission are im-
plemented by extending Java’s Permission class. HeaderSpacePer-
mission instances are created using the various header field values
specified in the network policy file (e.g. ipv4_dst, tcp_dst, and ac-
tions values; see Figure 4), and TopologyPermission instances are
created using the virtual network names specified in the policy
file (the network permission is template is shown in Figure 4). The
permissions created at this level are also added to the application
permission set.

The final task of the security subsystem is to print out all per-

missions that the Policy builder has process when the application’s
security state transitions to the REVIEWED state. This step allows
the ONOS operator to evaluate the permissions that will be granted
to the application upon acceptance.
Policy Acceptance and Enforcement. If the set of permissions
that were printed on the console are found acceptable, the operator
may accept the policy by entering the accept command via CLI
interface. Upon the acceptance, the Manager pushes the permission
set and the security state SECURED to the distributed store. Once
the entry is pushed, the Manager module on every ONOS instance
forming a cluster receives the StateUpdatedEvent flagged as SE-
CURED with the application identifier. The event triggers the Policy
enforcer module to grant the permission set to the application via
OSGi’s Permission Admin service.

5.5 Runtime security policy violation detection
and response

Once the ONOS operator accepts the policy, the permissions are im-
mediately granted to each OSGi bundles comprising the ONOS ap-
plication at each ONOS instance. The permission checking is rather
simple, because the Felix framework sets its security extension to
the Java Virtual Machine’s (JVM) default security provider. There-
fore, Java’s System.getSecurityManager.checkPermission method is
used to check if the application has the required permission. That is,
the permissions granted to enforce the bundle and application-level
RBAC policy are checked without any modification of system code,
as these permissions include the permissions to access Java APIs
and to perform OSGi-related tasks.

In order to monitor ONOS Northbound API access, we inserted
software extensions to check permission using the checkPermis-
sion at the beginning of each Northbound API implementation.
This enables the security subsystem to monitor and detect unautho-
rized Northbound API calls, and to short circuit attempts when a
permission violation occurs.

C. Yoon et al.

Permission checking for network-level access control is also
done in SM-ONOS using the checkPermission method. This exten-
sion checks whether the caller is attempting to invoke an API that
includes a parameter that references network header space. All such
header space parameter references are then evaluated against the
operator defined header space criteria, and if these match then the
APT is filtered without execution. The software extensions that eval-
uate API parameters, include the use of HeaderSpacePermissions,
and are inserted into those parts of the ONOS API implementations
that issue flow mods, or generate network packets.

The TopologyPermission checks will be released with the API
implementations of the virtual network service when the service
is officially released. This virtual network feature is inspired from
the virtual network model of OpenVirtex[3], where we construct
a virtual network as a collection of virtual devices and virtual
links into a topology. Virtual devices are slices and splices of other
devices by virtue of their ports mapping to other device ports. In
this approach, there is no implied connectivity. Rather, the network
graph can be traversed just as one would traverse the underlying
physical network graph and connectivity can be programmed using
intents and flow objectives. In this approach, the mechanism for
isolation is completely independent from the model.

When the checkPermission method throws an AccessControlEx-
ception for an OSGi bundle that is designated as an ONOS applica-
tion, it considers this as an application policy violation. The security
subsystem leverages the log listener within the Felix framework,
which provides logging and notification services to report the excep-
tion. When the Security Manager detects that an ONOS application
is lacking any of the Java API, OSGi or ONOS Northbound API
permission, it immediately deactivates the application to avoid pos-
sible odd application behavior that may harm ONOS or manipulate
the managed network.

5.6 Performance considerations

Unlike bundle-level and application-level RBAC policies, the API-
level PBAC policy is evaluated and enforced at runtime. Accordingly,
this mechanism necessarily performs a permission check for each
API call via Java’s native security manager, and since applications
frequently make API calls, this may significantly affect the overall
performance of the system. Indeed, we observe that although there
are only a few types of application permissions to be checked at
runtime, the performance penalty is significant. For example, if an
application calls a Northbound API that requires PACKET_READ
permission for the first time, SM-ONOS should perform a permis-
sion check. Once verified, the application should be able to call any
APIs that require PACKET_READ permission without additional
permission checks. We therefore employ a checked-permission
cache mechanism to help accelerate permissions enforcement on
repeated operations.

The challenge of implementing this cache is determining a key
value that SM-ONOS can compute and obtain a unique and consis-
tent value for the same type of permission checks (or API calls). In
SM-ONOS, the key value is calculated based on the hash values of
all the OSGi bundle instances involved in the calling context and
required permission instance. To be more specific, if the forwarding
application, for example, calls an API that issues a flow rule for the

A Security-Mode for Carrier-Grade SDN Controllers

first time, the context of the call may include onos-app-fwd, onos-
api, onos-core-net, and onos-of OSGi bundles, and SM-ONOS will
leverage OSGi’s security manager to verify if these bundles have
FLOWRULE_WRITE permission or not. In our caching mechanism,
SM-ONOS obtains and combines the hash values of these bundle
and permission instances and uses the combined value as a key
value for the cache. On each cache-miss, this key value and the
permission check result is stored to avoid any duplicate permission
checks.

6 IMPLEMENTATION

In response to the demand of a usable, practical and effective secu-
rity feature for ONOS, this SM-ONOS project was collaboratively
initiated since its initial proposal stage. As the security feature for
the Cardinal release of ONOS, the design and the progress of this
project has been open to the public domain via the community
sessions hosted by ON.Lab just like any other official ONOS fea-
tures. At the time of writing, this project is under its development
stage and the complete source code is available as a part of the Emu
release.

7 EVALUATION

In this section, we evaluate our work by introducing use case scenar-
ios and measuring the performance impact of our security extension
to ONOS.

7.1 Use case scenarios

In Section 3, we examined the underlying motivations for defining
SM-ONOS’s access control mechanisms. Using these security ex-
tensions, one can now conduct ONOS application vetting with a
full understanding of each app’s service and API usage needs, and
deny-by-default any usage attempts that have not been explicitly re-
viewed and granted by the operator. One can also use network-level
access controls to configure each ONOS application in a manner
that minimizes interference that may arise among peer apps. SM-
ONOS introduces several key security functions that we believe
will be useful for a wide range of scenarios, offering to improve
the stability and the security posture of its hosted networks. The
following are examples of several of these potential usage scenarios.

Scenario 1: Access-aware ONOS application selection. An
obvious usage scenario arises when an ONOS operator considers
selection of a flow management function that is available from more
than one candidate ONOS application. For example, the application
may be consistent in both bundle type and application role. Further-
more, each application’s manifest enumerates those services and
API calls required to perform their traffic management function.
As each ONOS app’s manifest is open to inspection, the operator
can compare manifests to determine which is most consistent with
their own privilege expectations. For example, some API usage,
such as the switch disconnect function discussed in Section 3, may
provide enough concerns to cause the selection of one application
over another.

Scenario 2: Deploying traffic management authorities. Con-
sider applications that are designed to provide specialized manage-
ment of certain forms of network traffic, such as UDP multime-
dia streams, load balancing for specific network services, or flow

ACSAC 2017, December 4-8, 2017, Orlando, FL, USA

management for proxy services. While such applications may be
deployed in parallel, it may be desirable to limit their ability to
impose flow mods to those flows for which other peer ONOS appli-
cations are specialized. SM-ONOS’s header space permissions may
be employed to grant each application targeted access to certain
protocol and port combinations, while restricting each app’s control
over other non-matching flows. In this way, applications can be
granted authority over their peers for handling certain application
traffic, while granted no access to manipulate flows outside their
designated authority.

Scenario 3: Partitioning application responsibilities in data-
flow sensitive environments. While ONOS currently grants
each application access to the global network topology, it may be
desirable to partition applications into virtual networks or into a
subsets of the network’s IP range. Let us consider an example where
partitioning applications may arise.

Web
Services

Server Server Server | __ _ _[Server
Web Instance Instance Instance Instance ONOS App

Tier Load Balance
‘ Data Form Processing ‘

\Il

ONOS App
Flow Mngmt
Fault Recovery

App | Form Parser || Content Generator |

Tier licati
Application DB Query Service
Server

v

Database Server e ONOS App
Data Recovery Sensitive Flow Mngmt
Tier Storage Management Data Store Security

Figure 8: Example sensitive data-processing scenario using
application partitioning. Three data processing tiers are
shown (Web, App, and DB), with tight data-flow restrictions
between each tier. ONOS applications are constrained by
network-level permission-based access controls to isolate
flow management authority at each tier.

Figure 8 illustrates a common three-tiered network configura-
tion in which the network is composed of a web tier, an application
tier, and the data tier. The web tier services access requests from
remote clients, translates these requests to application-tier queries,
then formats and returns the application-tier response to the re-
mote client. The application tier is responsible for processing client
requests by interacting with the database tier, which it must query
to fulfill the external client’s request. Finally, the database tier man-
ages the sensitive data store and operates a SQL interface to respond
to each application-tier request. This tiered scheme requires strict
separation between each tier, and disallows any flow that does not
follow the above request-handling procedure. Figure 8 also shows
several ONOS applications to the right, which are designed to man-
age the flows at each tier. As a final usage scenario, SM-ONOS may
be used to isolate the function of each ONOS application, such that
it is granted full management control overall all flows received or

ACSAC 2017, December 4-8, 2017, Orlando, FL, USA

initiated from its tier. One approach is to segment each tier into
an ONOS virtual network, and employ topology permissions to
restrict each application to its respective tier. Alternatively, each
tier of the network may be assigned a distinct IP range, such that its
corresponding ONOS application(s) can be deployed with header
space permissions that limit modify-access to the IP range matching
their tiers.

7.2 Performance

An important aspect of evaluating the addition of a new security
mechanism to a network system, is understanding its performance
overhead. For a network operating system such as ONOS, the im-
pact on flow latency and throughput are critical factors. In this
section, we describe the test environment as well as the methods
and metrics that we use to effectively measure the performance
overhead incurred by enabling security-mode on ONOS and discuss
the implications in detail.

Test Environment. Our test environment involves two phys-
ical machines, as shown in Appendix A-Figure 9. One is a server
machine that hosts seven virtual machines, each running an in-
stance of ONOS on Ubuntu 14.04 LTS and forming a cluster. Each
virtual machine was allocated four processor cores and 8 GB of
memory. The second machine is a desktop with Ubuntu 14.04 LTS
that connects to the virtual machines, builds and deploys ONOS,
and runs ONOS system test suite (ONOS-Test) [1], which is an
automatic ONOS performance testing tool.

ONOS System Test platform (TestON)
Core i7-2630QM 2GHz 4-Core / 16GB RAM

VM1 VM2 VM3 VM4 VM5 VM6 VM7

7-node ONOS cluster
Xeon E5-2650 2GHz 8-Core / 64G RAM

Figure 9: Test environment consists two physical machines,
the server machine hosts 7 virtual machines.

To quantitatively assess the performance penalty incurred by
SM-ONOS, we measure the flow mod installation throughput and
latency, that an application achieves, on two different platforms:
unmodified ONOS and SM-ONOS. These performance metrics are
critically important for evaluating the performance of network op-
erating systems, and hence, comparing the values measured across
the two different platforms provides a basis for understanding the
performance overhead of SM-ONOS. Specifically, we use ONOS-
Test to measure the flow mod installation latencies and throughputs.
ONOS-Test uses a demo application, which is an ONOS application
that comes with ONOS project distribution, and ONOS-Test is ca-
pable of remotely commanding the demo application to install a
certain number of flow mods as well as querying for the overall time
taken to install the requested number of flow mods. It also uses the
null provider bundle to emulate logical network topology within an
ONOS node, verify how many flow mods were successfully installed
and how long it took to complete the task.

We pulled two copies of ONOS (v1.4.0) and added security-mode
features to one of them for head-to-head performance comparison.
For the SM-ONOS performance test, we grant the permissions that
are required: (total of 24 permissions are granted, including 14

C. Yoon et al.

AppPermissions, 3 OSGi permissions, 6 Java native permissions).
Using ONOS-Test, we instantiated a linear topology with 30 logical
switches and requested the demo application to install 2,333 flow
mods to each switch for a total 69,990 flow mods per ONOS cluster.
We also evaluated the impact of cluster size on performance by
running this test against varying number of ONOS nodes (1, 3,
5 and 7 nodes). This test was executed against both original and
SM-ONOS, and each test was repeated five times to mitigate outlier
effects.

Test Results. The results, illustrated in Figure 10 and Figure
11, demonstrate that enabling SM-ONOS incurs a perceptible but
reasonable overhead as a trade-off.

200 T T T

I SM-ONOS
— C_—1ONOS

100 - 1

N I

Number of ONOS nodes

—_

o

o
T

a
o
T

Flow installation latency (ms)

o

Figure 10: Average flow mod installation latencies measured
in various sizes of ONOS cluster. Yellow bars illustrate the
latencies measured on the original ONOS, while blue bars
shows the latencies measured on SM-ONOS.

@2400 r

22200 [EEEESM-ONOS
C_1ONOS

pu

-

(9]

o

o
T

400
o J ﬂ
0 n n n n
1 3 5
Number of ONOS nodes

Figure 11: Average flow mod installation throughputs mea-
sured in various sizes of ONOS cluster. Yellow bars illustrate
the average throughputs measured on the original ONOS,
while blue bars shows the average throughputs measured on
SM-ONOS.

In 1, 3, 5, and 7 node clusters, SM-ONOS recorded 409, 1084,
1346, and 1822 KFlow mods per second, and ONOS recorded 429,
1346, 1558, and 2287 KFlow mods per second, respectively. In other
words, SM-ONOS in a single-node cluster incurred a throughput
penalty of only five percent; however, in multi-node cluster, the
penalty varied from 14 to 20 percent.

We note that since most of the applications invoke the same APIs
repeatedly and a large number of APIs are classified into only a few
types of permissions, the caching mechanism to reduce redundant

A Security-Mode for Carrier-Grade SDN Controllers

permission checks provided significant performance enhancement.
The demo application, which we use in our latency and throughput
test, invokes different APIs that cause permission checks to be
performed against 14 different AppPermissions immediately after
the activation, and accordingly, the cache hit rate remained 100
percent during most of the test run. Our caching mechanism also
allowed SM-ONOS to avoid critical performance impact due to
bursty simultaneous permission checks by ensuring that every
ONOS application may only incur a certain number of simultaneous
permission checks (i.e., number of permission types).

Although the result indicates that SM-ONOS incurs acceptable
performance overhead, we have further analyzed the test environ-
ment and the result to examine why SM-ONOS specifically causes
more performance penalty in a multi-node cluster environment.
In a multi-node cluster, when an application attempts to install
flow mods by calling a Northbound API from one of the ONOS
nodes, the API access incurs the overhead. Then, the flow mods are
replicated via distributed store, and the other ONOS nodes attempt
to install the flow mods to the switches by calling the API once
again. Hence, the additional performance overhead incurred in a
multi-node cluster environment is simply due to the extra North-
bound API calls caused by distributed flow mod installation. We
believe this cost is unavoidable in a distributed environment.

8 RELATED WORK

The movement of modern networking toward software-defined
flow management is evidenced by its adoption by major network
infrastructure companies. This interest is in turn stimulating the
development of novel, robust and scalable open-source efforts to
meet these adoption opportunities. However, the notion of a cen-
tralized network controller [7, 8, 10] fundamentally limits scaling
in first-generation SDN networks. Realizing this, the SDN research
community has embarked on a serious effort into the design and
development of distributed control planes such as ONIX [14], Open-
Daylight [2], Maestro [5] and ONOS [4]. However, the security
implications of such distributed management of dynamic software-
defined networks remain largely unexplored.

The design of SM-ONOS is inspired by Security Enhanced Linux
(SELinux) [22], which is a security module for Linux kernel. SELinux
is capable of enforcing security polices including RBAC, and we
partially apply such effective security mechanism for traditional
operating system to a different domain. There have been multiple
efforts to enable non-interference through network slicing in SDN
environments. FlowVisor [25] and OpenVirtex [3] are network hy-
pervisors placed in between the control and data plane to logically
isolate the physical network infrastructure into multiple virtual
networks on a per-NOS basis. In contrast, our approach extends the
SDN controller to implement network access control on per-app
basis. Our header space permission checking technique is inspired
by the header space analysis method to detect network failures [11].
It is similar to our work in that it checks header space of network
flows to partition and constrain the traffic authority. We implement
a specialized version of such analysis that specifically partitions
traffic authority among applications.

There are some previous studies on hardening network operat-
ing systems. SE-Floodlight is similar to our work in that it employs

ACSAC 2017, December 4-8, 2017, Orlando, FL, USA

an application permission model as a security enhancement [23].
However, the permission model constrains application interactions
with the data plane, while SM-ONOS covers all the possible appli-
cation behaviors in a distributed environment. The Rosemary [26]
controller employs a micro-kernel approach to enhancing network
operating system security and also employs an access control mech-
anism to constrain application behavior. However, it is limited to
a uni-controller environments and does not support the range of
permission models that we have considered in this work. Monaco et
al. [19], enabled file I/O-based network administration by exposing
both the network state and configuration as a file system; however,
their primary focus is not the security of network operating sys-
tem. LegoSDN [6] proposes a new network operating system that
is resilient to SDN application failures. Its approach can provide
some security services to a network operating system, but it does
not consider practical permission models that we have focused
in this paper. Wen et al. [28] also proposed the idea of enforcing
a fine-grained permission-based security policy to constrain the
application behaviors; however, unlike our work, they did not con-
sider distributed SDN control plane architectures. Klaedtke et al.,
[13] describe an access control scheme for managing resources in
a network operating system. However, they provide limited im-
plementation details and do not consider the diverse permission
models discussed in this paper.

9 CONCLUSION

This paper presents an approach to addressing the existing ab-
sence of security policy expression and enforcement over SDN
applications within the latest breed of distributed, carrier-grade,
NOS architectures. This work is motivated by the need to assist
NOS operators in vetting the privilege requirements of third-party
applications and then imposing novel constraints on these appli-
cations. We introduce developer specified policies that define API
requirements, which are expressed in an SDN-application mani-
fest, and operator-specified policies that can reduce deployment-
specific runtime conflicts among peer applications. We then present
our ongoing efforts to integrate the first distributed NOS security
subsystem, using ONOS as a reference platform. We refer to our
security-mode extensions to ONOS as SM-ONOS. We discuss the
design and implementation of SM-ONOS, and present an evalu-
ation of its performance. Our results indicate that security-mode
imposes a reasonably moderate performance impact. In evaluations
that exercise the policy enforcement mechanisms from 1 to 7 NOS
clusters, we observe a 5 to 20% performance overhead. The full
implementation of the SM-ONOS project was made available in the
ONOS Emu release.

ACKNOWLEDGMENTS

This research was supported by Software R&D Center, Samsung
Electronics Co., Ltd.

This material is based upon work supported by the National Science
Foundation under Grant No. 1446426. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

ACSAC 2017, December 4-8, 2017, Orlando, FL, USA

A ONOS APPLICATION PERMISSIONS

Permission type

Description

C. Yoon et al.

Associated services

APP_READ Permission to read information about applications Application Service
Core Service

APP_WRITE Permission to register new application Core Service

APP_EVENT Permission to receive application lifecycle events Application Service

CONFIG_READ

Permission to read configuration properties

ComponentConfig Service
NetworkConfig Service

CONFIG_WRITE

Permission to write configuration properties

ComponentConfig Service
NetworkConfig Service

CLUSTER_READ

Permission to read cluster information

Leadership Service
Cluster(Metadata) Service
Mastership(Term) Service

CLUSTER_WRITE

Permission to modify the cluster

Leadership Service
Mastership Service

CLUSTER_EVENT

Permission receive cluster events

Leadership Service
Cluster Service
Mastership Service

DEVICE_READ

Permission to read device information

Device (Clock) Service

DEVICE_EVENT

Permission receive device events

Device Service

FLOWRULE_READ

Permission to read flow rule information

Flow Rule Service

FLOWRULE_WRITE

Permission to add/remove flow rules

Flow Rule Service
Flow Objective Service

FLOWRULE_EVENT

Permission receive flow rule events

Flow Rule Service

GROUP_READ

Permission to read group information

Group Service

GROUP_WRITE

Permission to modify groups

Group Service

GROUP_EVENT

Permission to receive group events

Group Service

HOST_READ Permission to read host information Host (Clock) Service
HOST_WRITE Permission to modify host Host Service
HOST_EVENT Permission receive host events Host Service

INTENT_READ

Permission to read intent information

Intent (Extention,Partition,Clock)
Service
Partition Service

INTENT_WRITE

Permission to issue/remove intents

Intent (Extention) Service

INTENT_EVENT

Permission handle intent events

Intent (Partition) Service

LINK_READ Permission to read link information Link (Resource) Service
Label Resource Service

LINK_WRITE Permission to modify link information Link Resource Service
Label Resource Service

LINK_EVENT Permission to handle link events Link (Resource) Service

Label Resource Service

PACKET_READ

Permission to read packet information

Packet Context
Proxy Arp Service
Packet Service

PACKET_WRITE

Permission to send/block packet

Packet Context
Packet Service
Proxy Arp Service
Edge Port Service

PACKET_EVENT

Permission to handle packet events

Packet Service

PARTITION_READ

Permission to read partition properties

Partition Service

PARTITION_EVENT

Permission to handle partition events

Partition Service

REGION_READ

Permission to read region of devices

Region Service

RESOURCE_READ

Permission to read resource information

Resource Service

RESOURCE_WRITE

Permission to allocate/release resource

Resource Service

RESOURCE_EVENT

Permission to handle resource events

Resource Service

STATISTIC_READ

Permission to access flow statistic information

Statistic Service
Flow Statistics Service

TOPOLOGY_READ

Permission to read path and topology information

Path Service
Topology Service
Edge Port Service

TOPOLOGY_EVENT

Permission to handle topology events

Topology Service

TUNNEL_READ

Permission to read tunnel information

Tunnel Service

TUNNEL_WRITE

Permission to modify tunnel properties

Tunnel Service

TUNNEL_EVENT

Permission to handle tunnel events

Tunnel Service

STORAGE_WRITE

Permission to modify storage

Storage Service

Table 1: ONOS Application Permissions (A complete list of the application permissions can be found on [16]).

A Security-Mode for Carrier-Grade SDN Controllers

REFERENCES

(1]
(2]

[3

=

[10]

[11]

[12

[13]

[14]

[15]

[16]

ey
ot

[19]

[20]

[21
[22]

[23

[24

[25]

[26

S
)

[28]

Onos system test. https://wiki.onosproject.org/display/ONOS/System+Tests.

A Linux Foundation Collaborative Project. OpenDaylight SDN Controller. http:
//www.opendaylight.org.

A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar, E. Salvadori,
and B. Snow. Openvirtex: Make your virtual sdns programmable. In Proceedings
of the Third Workshop on Hot Topics in Software Defined Networking, HotSDN °14,
pages 25-30, New York, NY, USA, 2014. ACM.

P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,
B. O’Connor, P. Radoslavov, W. Snow, et al. ONOS: towards an open, distributed
SDN OS. In Proceedings of the third workshop on Hot topics in software defined
networking, pages 1-6. ACM, 2014.

Z. Cai, A. L. Cox, and T. S. Eugene. Maestro-platform. https://code.google.com/
p/maestro-platform/.

B. Chandrasekaran and T. Benson. Tolerating sdn application failures with
legosdn. In Proceedings of the 13th ACM Workshop on Hot Topics in Networks,
HotNets-XIII, pages 22:1-22:7, New York, NY, USA, 2014. ACM.

D. Erickson. The beacon openflow controller. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking, pages 13-18.
ACM, 2013.

FloodLight. Open SDN Controller. http://floodlight.openflowhub.org/.

L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers. Going beyond the
sandbox: An overview of the new security architecture in the java development
kit 1.2. In USENIX Symposium on Internet Technologies and Systems, pages 103-112,
1997.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker.
NOX: Towards an Operating System for Networks. In Proceedings of ACM
SIGCOMM Computer Communication Review, July 2008.

P. Kazemian, G. Varghese, and N. McKeown. Header space analysis: Static
checking for networks. In Presented as part of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12), pages 113-126, 2012.
A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey. VeriFlow: verifying network-
wide invariants in real time. In Proceedings of the first workshop on Hot topics in
software defined networks, HotSDN ’12, 2012.

F.Klaedtke, G. O. Karame, R. Bifulco, and H. Cui. Access control for sdn controllers.
In Proceedings of the Third Workshop on Hot Topics in Software Defined Networking,
HotSDN ’14, pages 219-220, New York, NY, USA, 2014. ACM.

T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ra-
manathan, Y. Iwata, H. Inoue, T. Hama, et al. Onix: A Distributed Control
Platform for Large-scale Production Networks. In OSDI, volume 10, pages 1-6,
2010.

Open Networking Laboratory. Gossip Protocols. https://wiki.onosproject.org/
display/ONOS/Network+Topology+State.

Open Networking Laboratory. Security-Mode ONOS Wiki. https://wiki.
onosproject.org/display/ONOS/Security-Mode+ONOS.

The Apache Software Foundation. Apache Karaf. http://karaf.apache.org.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. OpenFlow: enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev., 38, March 2008.

M. Monaco, O. Michel, and E. Keller. Applying Operating System Principles to
SDN Controller Design. In Proceedings of the Twelfth ACM Workshop on Hot
Topics in Networks, HotNets-XII, pages 2:1-2:7, New York, NY, USA, 2013. ACM.
D. Ongaro and J. Ousterhout. In search of an understandable consensus algo-
rithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual Technical
Conference, USENIX ATC’14, pages 305-320, Berkeley, CA, USA, 2014. USENIX
Association.

OSGi Alliance. Osgi specification. http://www.osgi.org/Specifications.

N. Peter Loscocco. Integrating flexible support for security policies into the
Linux operating system. In Proceedings of the FREENIX Track:... USENIX Annual
Technical Conference, page 29. The Association, 2001.

P. Porras, S. Cheung, M. Fong, K. Skinner, and V. Yegneswaran. Securing the
Software-Defined Network Control Layer. In Proceedings of the 2015 Network
and Distributed System Security Symposium (NDSS), February 2015.

P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu. A security
enforcement kernel for OpenFlow networks. In Proceedings of the first workshop
on Hot topics in software defined networks, HotSDN 12, 2012.

R. Sherwood, G. Gibb, K. K. Yap, and G. Appenzeller. Can the production net-
work be the testbed. In Proceedings of USENIX Operating System Design and
Implementation, OSDI, 2010.

S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran, J. Noh,
and B. B. Kang. Rosemary: A robust, secure, and high-performance network
operating system. In Proceedings of the 21th ACM Conference on Computer and
Communications Security (CCS’14), November 2014.

The Apache Software Foundation. Apache felix framework security. http://felix.
apache.org/documentation/subprojects/apache-felix-framework-security.html.
X. Wen, B. Yang, Y. Chen, C. Hu, Y. Wang, B. Liu, and X. Chen. Sdnshield:
Reconciliating configurable application permissions for sdn app markets. In

ACSAC 2017, December 4-8, 2017, Orlando, FL, USA

Dependable Systems and Networks (DSN), 2016 46th Annual IEEE/IFIP International
Conference on, pages 121-132. IEEE, 2016.

https://wiki.onosproject.org/display/ONOS/System+Tests
http://www.opendaylight.org
http://www.opendaylight.org
https://code.google.com/p/maestro-platform/
https://code.google.com/p/maestro-platform/
http://floodlight.openflowhub.org/
https://wiki.onosproject.org/display/ONOS/Network+Topology+State
https://wiki.onosproject.org/display/ONOS/Network+Topology+State
https://wiki.onosproject.org/display/ONOS/Security-Mode+ONOS
https://wiki.onosproject.org/display/ONOS/Security-Mode+ONOS
http://karaf.apache.org
http://www.osgi.org/Specifications
http://felix.apache.org/documentation/subprojects/apache-felix-framework-security.html
http://felix.apache.org/documentation/subprojects/apache-felix-framework-security.html

	Abstract
	1 Introduction
	2 Background
	2.1 Open SDN
	2.2 OSGi and open-source NOS projects

	3 Motivating Challenges
	4 Permission Model
	4.1 Bundle-level RBAC
	4.2 Application-level RBAC
	4.3 API-level PBAC
	4.4 Network-level PBAC

	5 System Design
	5.1 SM-ONOS overview
	5.2 Policy expression
	5.3 Extensions to application loading
	5.4 The security service distributed store
	5.5 Runtime security policy violation detection and response
	5.6 Performance considerations

	6 Implementation
	7 Evaluation
	7.1 Use case scenarios
	7.2 Performance

	8 Related Work
	9 Conclusion
	Acknowledgments
	A ONOS Application Permissions
	References

