
IEEE/ACM TRANSACTION ON NETWORKING 1

Flow Wars: Systemizing the Attack Surface and
Defenses in Software-Defined Networks
Changhoon Yoon, Seungsoo Lee, Heedo Kang, Taejune Park, Student Member, IEEE,
Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu, Member, IEEE

Abstract—Emerging Software Defined Network (SDN) stacks
have introduced an entirely new attack surface that is exploitable
from a wide range of launch points. Through an analysis of the
various attack strategies reported in prior work, and through
our own efforts to enumerate new and variant attack strategies,
we have gained two insights. First, we observe that different
SDN controller implementations, developed independently by
different groups, seem to manifest common sets of pitfalls and
design weakness that enable the extensive set of attacks compiled
in this paper. Second, through a principled exploration of the
underlying design and implementation weaknesses that enables
these attacks, we introduce a taxonomy to offer insight into
the common pitfalls that enable SDN stacks to be broken or
destabilized when fielded within hostile computing environments.
This paper first captures our understanding of the SDN attack
surface through a comprehensive survey of existing SDN attack
studies, which we extend by enumerating 12 new vectors for SDN
abuse. We then organize these vulnerabilities within the well-
known CIA (confidentiality, integrity, availability) model, assess
the severity of these attacks by replicating them in a physical
SDN testbed, and evaluate them against three popular SDN
controllers. We also evaluate the impact of these attacks against
published SDN defense solutions. Finally, we abstract our findings
to offer the research and development communities with a deeper
understanding of the common design and implementation pitfalls
that are enabling the abuse of SDN networks.

Index Terms—Software defined network security, SDN secu-
rity, network security

I. INTRODUCTION

Software-defined networking has steadfastly emerged as the
flagship technology for enabling dynamism and elasticity in
next-generation networks. SDNs offer a pathway for cloud
network orchestration and many enterprise networks have
already deployed or plan to deploy such technology in the
near future. While some are motivated by reduced operational
cost, others make the switch to improve the flexibility of
their network architectures and enable exciting new network
functionality (e.g., Google data centers [62], [26]). As the
popularity of SDNs increase, it is likely that legacy network
elements will be steadily replaced with SDN applications and
white-box network elements.

Manuscript received January 22, 2016; revised February 1, 2017; accepted
August 15, 2017;

C. Yoon, S. Lee, H. Kang, and T. Park are with KAIST, Daejeon, South
Korea (e-mail: {chyoon87, lss365, kangheedo, taejune.park}@kaist.ac.kr).

S. Shin is the corresponding author and he is also with KAIST, Daejeon,
South Korea (e-mail: claude@kaist.ac.kr)

V. Yegneswaran and P. Porras are with SRI International, Menlo Park, CA
94025 USA (e-mail: {vinod, porras}@csl.sri.com)

G. Gu is with Texas A&M University, TX 77843 USA (e-mail:
guofei@cse.tamu.edu)

However, among the impediments to large-scale migration
of legacy production networks are concerns about the security
implications of such changes. On the one hand, SDNs offer
an agility in software-controlled network flow and topology
management that is well suited to address the increasing
needs of today’s dynamic networks. On the other hand, this
same new agility in dynamic flow and topology management
also introduces new challenges in maintaining well-defined
and consistent network perimeter controls. For example, can
one or more network applications inadvertently manipulate
flows in a manner that bypasses security devices or security
policies? [45] Can one network application produce unex-
pected interference with the operation of other peer network
applications and impact the network’s robustness? [53] In
contrast to legacy networks, which are typically constrained
by tight-knit topologies and restricted operations, the security
of SDNs is highly dependent on the trustworthiness of the
network applications and the integrity of the forwarding plane.

In this paper, we adopt a more systematic and pragmatic
approach to evaluating the vulnerabilities that arise throughout
SDN stacks. We first conduct a comprehensive survey of
possible methods for abuse or exploit of an example SDN stack
that is implemented in OpenFlow. We utilize these examples
to develop a taxonomy for such attacks, that is based on
the CIA model. Informed by the results of our study, we
suggest architectural improvements to detect or mitigate the
impacts of such abuses. We begin by first surveying example
vectors for abuse or direct attack reported in current SDN
literature, including many SDN-related research projects [43],
SDN research papers [34], [35], and technical blog articles
[12], [11] from both the network and security communities.
We extend this work by discovering 12 additional novel abuse
or attack cases through a thorough examination of well-
known SDN elements and their use cases. For example, we
explore various security-related abuses that may arise from
network applications running on real-world open-source SDN
controllers, such as OpenDayLight [1] and FloodLight [15].

For each identified vulnerability, we conduct a systematic
evaluation of the attack surface with real-world experiments.
The objective of these experiments is to underscore the fea-
sibility, effectiveness, and significance of such attacks and
API misuses in practice. We implement and reproduce the
attacks in a realistic SDN testbed consisting of real-world
SDN controllers and OpenFlow network devices, including: (i)
three different well-known SDN controllers, FloodLight [15],
OpenDaylight [1], and POX [46]; and (ii) three OpenFlow
network devices supporting SDN functions from two different

IEEE/ACM TRANSACTION ON NETWORKING 2

vendors, HP and Pica8.
Finally, we distil the lessons learned from our analysis into

a set of development and operational best practices that serve
to mitigate the effects of such vulnerabilities. We do so while
acknowledging the inherent difficulties in designing bug-free
applications and the benefits of an open-source community-
driven software development process. If SDN developers and
administrators carefully design network applications and oper-
ate SDN elements with such rigorous assessments, we believe
that the attack surface of a deployed SDN can be greatly
reduced.

In summary, the key contributions of this paper include
the following. First, we conduct a comprehensive examination
of SDN attacks and security-relevant abuses, including a
presentation of 12 previously unreported SDN attack vectors.
We classify each vector analyzed in the form of an SDN attack
taxonomy that offers a systematic categorization of the design
or implementation weakness that enables each of our reported
cases. Second, we implement and test 22 of these attack and
abuse strategies using real-world SDN devices to validate
their feasibility and prevalence, and to assess their impact.
We summarize our test-case findings in Table II, and observe
that indeed many of our cases occur across independently-
developed control-layer implementations. Third, we provide
an in-depth analysis of each attack or abuse strategy, and
discuss possible methods to harden an SDN in a manner
that prevents or reduces the impact of each test case. In
addition, we introduce guidelines for SDN application design
and development that is specifically tailored to avoid similar
misuse attacks. We hope that this focused assessment and
attack taxonomy will bring greater awareness to the design and
implementation pitfalls that render today’s software-defined
networks vulnerable to a wide range of abuse.

II. BACKGROUND

A. What is Software Defined Networking (SDN)?

A fundamental issue with legacy network devices is their
functional rigidity. Specifically, a legacy network device (e.g.,
network switch) consists of two main components: (i) control
plane and (ii) data plane. The control plane conducts com-
plicated network functions such as creating routing tables to
determine network flow control policies. The data plane is
tightly coupled with the control plane, and it handles hardware-
level network packet forwarding based on the policies from the
control plane. If one desires to add a new network function or
protocol, the legacy device must be removed and a redesigned
device must be implemented and re-deployed in its place.
This prospect has seriously hindered the ability to rapidly
innovate, test, and deploy new or advanced network functions
and protocols.

Emerging programmable network architectures, such as
Software Defined Networks (SDNs), seek to address this limi-
tation by separating the control plane from the data plane [57]
[21] [38]. An SDN simplifies the data plane to provide basic
and efficient packet forwarding, and separates the complex and
dynamic control plane functions into software applications,
which are hosted on commodity hardware platforms, referred
to as the controller. This architectural separation of the data

and control planes enables one to easily program new network
control functions as applications.

The Open Networking Foundation [40] conceptualizes SDN
architectures into three-layers, as shown in Figure 1. Here,
the infrastructure layer denotes the data plane. To add more
programmability to the control plane, the control plane is
separated into the control layer and the application layer. The
role of the control layer is analogous to that of a traditional
operating system running application programs, it manages
SDN applications and provides developers with an interface
for writing network flow management applications that control
the packet handling operations of the data plane.

Infrastructure
Layer

Control
Layer

Application
Layer

network device network device network device

network device network device

Control Data Plane I/F

API API API

SDN control S/W

services services

application
application

application

Fig. 1. Conceptual Architecture of Software Defined Networking (SDN) from
Open Networking Foundation [41]

B. What is OpenFlow?

The OpenFlow [38] open standard protocol represents one
popular embodiment of an SDN. It specifies functions of
network devices (e.g., switch) and defines the communica-
tion protocol between the data plane and the control plane.
OpenFlow-enabled network devices (i.e., data plane) are man-
aged by OpenFlow controllers (i.e., control plane) such as
NOX [18], Floodlight [15], and POX [46].

III. SECURITY REQUIREMENTS FOR SDN

As the first step of our study, we explore the unique security
requirements that must be fulfilled in order for a software-
defined network to provide a reliable and secure networking
environment. We identify the critical assets that must be
secured for each layer of the SDN architecture, and apply the
classic CIA (Confidentiality, Integrity and Availability) triad
model to derive the security requirements. Table I summarizes
the unique critical assets that must be protected in each layer of
SDN, and the assets are classified according to the respective
CIA attributes.

A. Control plane assets

One of the most critical assets in the control plane would
be the controller instance itself. The controller instance, which
is usually a single process, should be available at all times.
Whenever the control plane becomes unavailable, the entire

IEEE/ACM TRANSACTION ON NETWORKING 3

TABLE I
CRITICAL ASSETS IN SDN

Location Potential risk (CIA) Critical assets

Control
Plane

Confidentiality Controller configuration
Network service configurations
Global network-view

Integrity Controller configuration
Network service configurations
Active network services
Global network-view
Network behavior

Availability Controller instance
Network services
Global network-view

Control
Channel

Confidentiality Control messages
Integrity Control messages
Availability Control-data plane connections

Data
Plane

Confidentiality Network information
Flow table (entries)

Integrity Flow table (entries)
Availability SDN-specific services

network goes out of control. Furthermore, loss of confidential-
ity and integrity of controller configuration imposes risk. The
controller configuration usually contains extremely sensitive
information, such as the administrator login credentials, REST
API access URLs etc., and adversaries can simply use such
information to take over the entire network or manipulate the
information to cause configuration errors.

Another critical asset is the network service (or SDN
application). Network services usually perform useful and
important network functions, ranging from simple forwarding
to advanced load balancing. Such services should always be
available to the network; failure to continuously provide the
services will affect the network behavior. The integrity of
the active network service list also must be preserved for
the same reason. Moreover, these network services are also
configurable, and the configuration of the services should never
be disclosed or manipulated. For example, the configuration
information may include the ACL rules for firewall service,
and disclosure or manipulation of such information may put
the entire network at risk.

When these network services make network control de-
cisions, a global network-view is often referenced. A sim-
ple forwarding service, for instance, will calculate the path
based on the global network-view and install flow-rules to
the devices on the paths. Hence, inaccurate or manipulated
global network-view will cause various network problems, and
the information should always be available to the network
services. In addition, a complete network topology information
is sensitive and thus should be kept confidential.

Finally, the network behavior should never be intentionally
manipulated by the entities other than the authorized SDN
controller and network services activated by the network
administrator.

B. Control channel assets
An SDN controller establishes connections with multiple

network devices and exchanges control messages, mostly to
control the network. These control messages contain sensitive
network information and important control decisions, and
therefore, the confidentiality and integrity of such messages

must be preserved. Obviously, the connections between the
controller and devices should remain available at all times.

C. Data plane assets

The data plane components (or SDN switches) establish
connections with a centralized SDN controller and commu-
nicate with the controller via exchanging control messages.
An SDN switch should always be able to accept/send control
messages and install flow rules as instructed. Such basic SDN-
specific services should be available under any consequences.

In an SDN, an SDN controller dynamically programs the
network by installing flow rules to the underlying SDN
switches, and the flow rules installed to each switch (flow
table entries) should never be manipulated by unauthorized
entities as any modifications made to the flow table will
directly change the network behavior. Moreover, since the flow
table entries intuitively and directly express network control
policies, the entries must remain confidential. For example, by
looking at the flow table entries, it is possible to infer the ACL
policy enforced to the network.

Best practices and security requirements (e.g., controlled
and secure CLI access, secure SNMP) applied in the man-
agement of traditional network switches also apply to SDN
switches. In addition, since there exist SDN-specific vul-
nerabilities that adversaries may exploit to compromise the
network, the SDN switches should be indistinguishable from
any other network switches.

IV. ATTACK OVERVIEW

In the next few sections, we introduce various attack sce-
narios and test each scenario against real SDN components to
verify that the components satisfy the security requirements
discussed in the prior section.

An SDN typically consists of three primary layers: an
application layer, a control layer, and a data plane (or infras-
tructure layer). There is also a control to data plane interface,
which may be embodied as a standardized protocol, such as
OpenFlow. Here, we normally consider the combination of the
application layer and the control layer as the control plane;
for our purposes, the terms infrastructure layer or data plane
may be used interchangeably. Given this generalized layered
architecture, our goal is to enumerate and classify vectors
(or opportunities) for misuse or attack across the SDN stack.
Our work surveys both vectors that have been identified in
prior academic work, and newly identified scenarios, which
we then organize into three categories. (1) Control-plane-
specific, which includes abuse and attack vectors against the
control and application layers. (2) Control-channel-specific
scenarios involve the abuse of OpenFlow protocol. (3) Data-
plane-specific attacks refer to interface attacks that involve the
crafting of flow data that are input to the network devices,
where an adversary may live within or outside the SDN
managed network. We will refer to each class of attack by
the following terms: CP for attacks that directly target the
control plane, CC for attacks that seek to abuse the control
channel, and DP for attacks targeting the data plane. We will
use the notation CP-x to refer to attack scenarios involving
the control plane, where x is a number starting from 1.

IEEE/ACM TRANSACTION ON NETWORKING 4

All of these attacks, summarized in Table II, will be pre-
sented in the following sections with their working scenarios,
real test cases, and in-depth analysis. Specifically, we describe
8 categories of control plane attacks and 16 attack examples.
In the case of the control channel specific attacks, we describe
two categories, and in each category we present one example
case. Finally, we describe four categories of data plane attacks
each with one example attack scenario. In Table II, the 10
known examples are marked with the (†) notation (the rest are
new). We highlight the target location of each attack on the
SDN stack in Figure 2.
Assumption: We acknowledge that there may be several dif-
ferent manifestations of an SDN. For example, an architecture
separating the control plane from the data plane may be
considered a form of SDN [17], as could a software router
(e.g., XORP [21]). However, as OpenFlow is the most widely
deployed instance of SDNs [38], we frame our study around
such environments. Therefore, all attacks presented in this
paper are centered around SDN components using the Open-
Flow protocol and our primary focus is on attacks affecting
SDN components (e.g., the SDN controller). Some attacks that
destroy network configurations (e.g., dynamic flow tunneling
and flow rule conflicts [45], [30]) are beyond our scope.
However, we believe that they are well represented in previous
studies [45], [7], [30]. In addition, several studies have been
proposed that attempt to guarantee network correctness in an
SDN environment [28], [3], [19], [16], [20]. While they offer
promise in mitigating network failures, they are not focused on
detecting adversarial components specifically targeting SDN
components. Hence, we have not included these approaches
in our attack taxonomy.
Test Environment: We have conducted an empirical study of
vectors for abuse or direct attack across an SDN stack, specif-
ically OpenFlow, through real experiments against a range
of switches and well-known controllers. The environment
consists of one controller machine, three physical OpenFlow-
enabled switches (HP-3500yl, HP-3800, and Pica8-P3290) and
three physical host machines. We have selected three well-
known controllers for our test; POX (v. dart), FloodLight (v.
0.9) and OpenDaylight (v. hydrogen).

V. REMOTE ATTACKS ON CONTROL PLANE

In theory, the SDN design principle should ensure the
security of the control plane by isolating the control network
(e.g. OpenFlow network) from the data network; however,
there exist several attack scenarios that can harm a software-
defined network implementation. In this section, we explore
scenarios in which an adversary could remotely affect the
network availability. We also introduce new attack scenarios,
and demonstrate their effectiveness by launching them against
three representative SDN controllers: POX, Floodlight, and
OpenDaylight. For brevity, we will focus the presentation of
our attack demonstrations using the Floodlight controller.

A. Denial-of-Service (DoS) [CP-R-1]
In software-defined networks, successful DoS against SDN

controllers is a serious security threat as it may result in the
loss of availability or the instability of the victim network. We

describe two feasible remote DoS attacks against the control
plane.

1) Packet-In flooding: An SDN switch notifies an SDN
controller of each unseen flow (or for each flow table mis-
match) as an event, and such events are transferred to the
control plane via the Southbound API (i.e., OpenFlow).

In the case of OpenFlow, each unseen flow generates a
packet in event. Here, we consider a denial-of-service attack
scenario that floods the SDN control plane with packet in
messages.

Such excessive number of packet ins may cause a central-
ized SDN controller to end up in an unpredictable state [52],
[54], [33]. For example, an SDN controller may use up all
available system resources to process the flood of packet ins
and thus become unreachable.

2) Switch table flooding: According to Dover et al., [12],
it is possible to fill up the switch table of Floodlight and
cause switch disconnections by persistently sending forged
OpenFlow messages. Floodlight adds one switch table entry
when it receives OpenFlow’s features reply message with new
DPID value; therefore, the switch table can be potentially filled
up by continuous generation of such messages with different
DPID values. This attack causes the switch table to use up
all the memory resource available in the controller, and the
attack eventually causes the controller to disconnect the linked
switches from itself.

3) Switch identification spoofing: This attack, also intro-
duced by Dover [11], modifies the OpenFlow control message
to spoof its identity as if it is the target switch. The authors
identify that Floodlight checks the DPID and the name of a
switch to distinguish between switch devices. Furthermore, if
Floodlight receives, from a compromised switch, a connection
request in which its DPID and name are modified to have
the same values as that of another switch connected to the
controller, it disconnects the connection with the existing
switch to establish a new connection with the compromised
one. Leveraging such findings, Dover showed that it is possible
to send forged OpenFlow messages to disconnect legitimate
switches from a Floodlight controller.

4) Malformed control message injection: Prior work has
also demonstrated attacks on the control plane with malformed
OpenFlow control messages. Shalimov et al. [51] modified the
message length field of the OpenFlow header to an incorrect
value, and sent such malformed messages to various SDN
controllers, such as POX and Floodlight. They claimed that
POX and Floodlight disconnected the switches that were
assumed to have sent such malformed messages.

5) System time manipulation: SDN controllers and appli-
cations often refer to system variables for various purposes.
For instance, an SDN controller may refer to the system
time variables for carrying out time-sensitive tasks, such as
calculating packet timeouts. We expect that the behavior of
SDN controllers can be affected by manipulating such system
variables. Here, we modify the system time variable to confuse
the controller.

As shown in Figure 3, Floodlight allows an application
to modify the current time as much as desired, and such
modification eventually causes the controller to disconnect
the connection between the switch and the controller, as it

IEEE/ACM TRANSACTION ON NETWORKING 5

TABLE II
AN OVERVIEW OF SDN ATTACKS AND VULNERABILITIES

Attack Vulnerability Examples and Description

[CP-R] Control Plane Remote attacks

[CP-R-1] Denial-of-Service

[V-3] Architectural
bottleneck

i) Packet-In flooding†: The network hosts participating in an software-defined
network may intentionally generate a large number of distinct network flows
to exploit the bottleneck that exist in the SDN architecture [63], [10], [54],
[33], [59], [60].

[V-2] Weak authentication ii) Switch table flooding†: Crafted control messages may be continuously
injected to the control plane, and it may eventually fill up the switch table
maintained on an SDN controller [12].
iii) Switch identification spoofing†: Weak switch authentication mechanism
may be exploited to remotely drop the legitimate switch connections [11].

[V-6] Improper
exception handling

iv) Malformed control message injection: Malformed control messages may
be injected to the control plane to drop the legitimate switch connections.

[V-8] Dependence on
external variable

v) System time manipulation: Arbitrary modification of system time may
affect the behavior of SDN controllers.

[CP-R-2] Network-view
manipulation [V-2] Weak authentication i) Host location hijacking†: Weak host authentication mechanism may be

exploited to manipulate the host information [22].
ii) Link fabrication†: Weak link discovery mechanism may be abused to
manipulate the link information [22].

[CP-L] Control Plane Local attacks

[CP-L-1] Arbitrary system
termination † [V-1]

[V-4]
Lack of authorization
Monolithic
controller design

An SDN application may execute a system exit command to terminate the
controller instance [53].

[CP-L-2] System resource
exhaustion †

[V-4]

[V-5]

Monolithic
controller design
Lack of
resource management

Poorly designed or malicious SDN components(or applications) may use up
the system resources, and ultimately affect the network availability [53].

[CP-L-3] Network service
neutralization

[V-1] Lack of authorization i) Control message delivery obstruction I: A control message subscription
list may be manipulated to obstruct arbitrary SDN applications from receiving
control messages.

[V-7] Naı̈ve service chaining
mechanism

ii) Control message delivery obstruction II: An SDN application may
participate in a service chain and drop control messages before the other
applications awaiting for them.
iii) Service chain jamming: An SDN application may participate in a service
chain and freeze (or hold) the sequential execution of services.

[CP-L-4] Unauthorized
application
management

[V-1] Lack of authorization Unauthorized SDN controller components(or applications) may arbitrarily
manipulate the state of the target application.

[CP-L-5] Unauthorized
network control

[V-1] Lack of authorization i) Flow-rule modification: An SDN application may issue a flow rule to
overwrite the existing rule in the flow table of a switch to cause unexpected
network behavior.
ii) Flow table flushing: An SDN application may flush the flow table entries
of a switch to disallow all the communication.

[CP-L-6] Unauthorized
network-view
manipulation†

[V-1] Lack of authorization Unauthorized SDN controller components(or applications) may arbitrarily
manipulate the global network view maintained within the control plane [53].

[CC] Control Channel attacks
[CC-1] Eavesdropping [V-9] Lack of

practical encryption
An adversary may sniff the control channel to steal sensitive information:
For example, an adversary may sniff the ongoing control messages on the
control channel to learn the network topology.

[CC-2] Man-In-The-Middle [V-10] Lack of
integrity checks

An adversary may actively intervene in the control channel.
For example, an adversary modify the flow rule message that is being
transferred, and corrupt the behavior of a network.

[DP] Data Plane attacks
[DP-1] Flow-rule flooding† [V-3] Architectural

bottleneck
Numerous flow rules may lead a data plane to be in an unpredictable state[63],
[10], [52].
An adversary may intervene in the control channel and install a number of
flow rules to the target switch to fill up the flow table.

[DP-2] Switch firmware
abuse

[V-11] Hardware abuse The characteristics or traits of a certain switch model may be abused.
For example, an adversary may install the crafted flow rules that cannot be
processed in the hardware table of a certain switch model.

[DP-3] Malformed control
message injection

[V-6] Improper
exception handling

A malformed control message may put the data plane in an unpredictable
state.
An adversary may inject a malformed control message to the data plane to
interrupt the connection between the control plane and the data plane.

[DP-4] Data leakage† [V-12] Architectural weakness An adversary may retrieve sensitive network information of an SDN [52].
†Previously known/documented attacks (10 out of 22 attacks)

IEEE/ACM TRANSACTION ON NETWORKING 6

Control Layer

Application Layer

Infrastructure Layer
SDN Switch SDN Switch

SDN Controller

Switch Firmware

HardwareSoftware
Flow Table

Network Operating System

App

Southbound API

Northbound API

App

[CP-L-1] Arbitrary code execution

Control Channel

Control Channel

[CP-L-3] Network service neutralization

[CC-1] Eavesdrop

[CC-2] Man-In-The-Middle

[DP-1] Flow rule flooding

[DP-2] Firmware abuse

[DP-3] Control message manipulation

[CP-L-2] System resource exhaustion

[CP-L-5] Unauthorized network control
[CP-L-6] Unauthorized network-view manipulation[CP-L-4] Unauthorized app management

[CP-R-2] Network-view manipulation

[CP-R-1] Denial-of-Service

[DP-4] Data leakage

Fig. 2. Overview of the SDN attack surface: Presented attack scenarios cover all three layers of the SDN architecture and specific vulnerability locations
targeted by each attack are highlighted.

Floodlight Console

Floodlight Console

System time modification

Switch disconnected

Fig. 3. Result: [CP-R-1-v] System Time Modification causing switch discon-
nection

does will receive a response from the switch to its heartbeat
message within a proper time window. As in the Floodlight
case, similar switch disconnections are observed when the time
modification attack is launched against OpenDaylight. Unlike
FloodLight and OpenDaylight, this attack does not affect POX
because this controller does not refer to the system time.
Given that this attack is feasible as long as adversaries can
manipulate the system clock, it can be inferred that adversaries
can also cause switch disconnections by launching network
time protocol attacks from remote locations [37].

B. Network-view manipulation [CP-R-2]
In order to handle dynamically changing locations of the

network nodes and hosts in modern networks, many SDN
controllers often implement Host Tracking Services (HTS)
and Link Discovery Services (LDS). Hong et al. [22] have
demonstrated that such services are prone to topology poison-
ing attacks1. They have shown that it is possible to deceive
the HTS of most currently available controllers by forging
some network packets, since most HTS implementations only
use simple identifiers to distinguish among the hosts. They
have demonstrated this attack against a Floodlight managed
network to show the effectiveness. They mention that POX
and OpenDaylight are also susceptible to this attack.

1Please refer to the cited paper for additional details on the Link fabrication
attack.

The HTS, in modern controllers, automatically tracks each
host across migrations using specific identifiers. Hong et al.
have analyzed the source code of most currently available SDN
controllers and discovered that they only use simple identifiers
to distinguish among the hosts. Based on their findings, they
introduced one possible attack scenario that leverages their
findings on HTS to poison the network topology as shown in
Figure 4.

Controller Host Tracking Service

3
10.0.0.1bb:bb:bb:bb:bb

10.0.0.200cc:cc:cc:cc:cc

10.0.0.100

MAC

2

Port

aa:aa:aa:aa:aa1

IP

Attacker A

Host C

App App App

OpenFlow
Switch

Web Server B

App

(3) Web Server B
moved to port 1

(2) Manipulated
Packet-In

1

2
3

(1) Forged traffic

(4)

Fig. 4. Scenario: [CP-R-2-i] Host Location Hijacking.

As illustrated in Figure 4, WebServer B (at port 2) and Host
C (at port 3) are the benign participants of the network, and
Attacker A (at port 1) is malicious. When Host C attempts
to access WebServer B, a packet in message is generated and
the controller issues flow rules that forward all traffic coming
from port 3 to port 2 and vice versa. This is called ingress
port-based forwarding, and in such instances, it is possible for
the attacker to manipulate the network topology.

It is possible for (1) Attacker A to impersonate WebServer
B by forging some network packets to deceive the HTS of
the controller. Specifically, Attacker A can spoof packets to
have the source MAC and IP addresses of WebServer B,
and consequently, the switch issues (2) packet in based on
such manipulated traffic information. The packet in, which is
passed to the controller, is then processed by the HTS, and (3)

IEEE/ACM TRANSACTION ON NETWORKING 7

the HTS believes that WebServer B has migrated and newly
linked to port 1. Hence, the HTS updates its table and (4)
all traffic destined to WebServer B is directed to Attacker A
according to the manipulated network topology information.

VI. LOCAL ATTACKS ON CONTROL PLANE

In addition to the remote attack scenarios introduced in the
previous section, attacks could also be launched locally, within
an SDN controller. SDN controller implementations are also
general software applications hosted on computing machines.
One should not assume that the security of the control plane
is ensured entirely through its network isolation.

In particular, similar to the mobile application ecosystems
(e.g. Google Play or Apple App Store), one aspect of the SDN
application ecosystem is its potential to offer rapid innovation
through third-party application integration. Indeed, Hewlett
Packard constructed an SDN App Store [25], and many other
SDN controller vendors have published Northbound APIs to
encourage the open development of SDN applications. In such
an environment, various intrusion scenarios are possible as
illustrated in previous work [48].

A. Arbitrary system termination [CP-L-1]

As most SDN controllers are designed to run SDN applica-
tions within the controller instance, a system call misuse sce-
nario is possible. If (1) an SDN application invokes the system
exit command, (2) it terminates not only the application itself
but also the controller instance. As Shin et al. demonstrated,
such (3) loss of the control plane is clearly undesirable and
devastating to the data plane [53].

B. System resource exhaustion [CP-R-2]

Current SDN controller implementations are end-host user-
level applications, and their performance is limited by the ca-
pabilities of the hosting machine. Shin et al. [53] demonstrate
that it is possible to consume the system resources of the
hosting machine with a simple SDN application and cause
system failures.

C. Network service neutralization [CP-L-3]

1) Control message delivery obstruction I: Current SDN
controllers often employ the Observer pattern, which is a
software design pattern for handling distributed events, to effi-
ciently and automatically notify subscribing SDN applications
of newly generated control events. In such SDN controllers,
an SDN application registers its listener to the list of listeners
awaiting control events. When a packet in arrives at the SDN
controller, it is automatically delivered to all the subscribers.
We demonstrate that it is possible to unsubscribe an arbitrary
SDN application from the listener list. Figure 5 (top) illustrates
such a misuse scenario. Here, (1) an SDN application accesses
the list of packet in subscribers to (2) forcibly unsubscribe
App4. As a result, (3) packet ins are no longer delivered
to App4. (See Algorithm 1 for the detailed operation of the
application.)

Algorithm 1 Control message delivery obstruction I
1: procedure PKTINUNSUBSCRIPTION
2: pktInAppList← list of packet-in subscribers
3: targetApp← name of target application
4: i← 1
5: len← length of pktInAppList
6: while i 6= len do
7: name← pktInAppList[i].name
8: if name = targetApp.name then
9: pktInAppList.remove(name)

10: i← i + 1

OpenFlow
SwitchHost A Host C

Controller

App 1 App 2 App 3 App 4

App 2
App 4

Packet-In Subscribers
(1)

(2)

Flow
Packet

Packet-In

Packet-In Packet-In(3)

Floodlight Console

Floodlight ConsoleFloodlight Console

Before After

App. Test1 unsubscribed
Floodlight Console

App. Test1 no longer receives Packet-Ins

Fig. 5. Scenario (top) and Result (bottom):
[CP-L-3-i] packet in Unsubscription

We find that we can remove arbitrary Floodlight applications
from the packet in subscription list. We deploy three SDN ap-
plications to the controller: two test applications that subscribe
themselves to the packet in subscription list and one malicious
application that unsubscribes one of the test applications
from the list. As shown in Figure 5 (bottom), the malicious
application successfully unsubscribes one test application from
the list. As a result, the unsubscribed application is unable
to receive any packet ins. We find that such an attack is
also possible with OpenDaylight. POX does not employ the
Observer pattern to deliver control events to its applications,
and is therefore not susceptible to the API misuse attack.

2) Control message delivery obstruction II: Applications
deployed to an SDN controller are usually executed in a spe-
cific order. Such a series of application handlers is referred to
as a Service Chain, and below we demonstrate how malicious
applications may interfere with the chained packet handling
of other SDN applications.

An example API misuse scenario that may cause service
chain interference is illustrated in Figure 6 (top). In this
scenario, the FWD app is responsible for forwarding a packet
depending on a packet in event. When Host A sends a packet
to Host C, a packet in is sent to the controller. Then, (1) the
controller passes the packet in to App1, App2 and App3 as a
pre-defined order. (2) App3 (which happens to be malicious)

IEEE/ACM TRANSACTION ON NETWORKING 8

OpenFlow
SwitchHost A Host C

Controller

(1)
Flow
Packet

App 1 App 2 App 3 Firewall
A -> C : Drop

 A -> C : Forward
Flow Table

(2)

(3)

A -> C : Forward

(3)

Floodlight Console

After

Before

Fig. 6. Scenario (top) and Result (bottom):
[CP-L-3-ii] Control Message Drop causing packet in cut-off

intentionally drops the packet in without passing it to the
FWD application. Accordingly, the FWD application can-
not receive packet in messages because App 3 intentionally
dropped the messages. (3) The FWD application does not reply
to the packet in message; consequently, (4) the OF switch does
not have any installed flow entries corresponding to the request
from Host A. Thus, (5) Host A is unable to communicate with
Host C.

To test this API misuse case, we deploy a malicious
SDN application that selectively drops particular incoming
packet ins to the three SDN controllers, and Figure 6 (bottom)
shows the outcome observed in the case of testing with Flood-
light. The message of TEST APP in this Figure represents
an SDN application that is part of the service chain, and it
can receive any packet ins before the interference (see Figure
6: Before). However, once a malicious application, which is
scheduled to execute right before the TEST APP, starts to drop
particular packet ins, the TEST APP no longer receives such
packet ins (see Figure 6: After; only one packet in has been
observed).

We confirm that this attack is also effective in the OpenDay-
light controller. However, POX passes the control messages
to each POX application as function arguments, and the
arguments are passed by value. In other words, each POX
application takes a different copy of each control message,
and therefore, POX is resilient to this API misuse attack.

3) Service chain jamming: A second service chain inter-
ference attack involves intentional insertion of infinite loops
into the application. Similar to the previous API misuse case,
App3 can be intentionally programmed to fall in an infinite
loop, thus causing the entire controller instance to freeze for
an indefinite time. We demonstrate the feasibility of this API
misuse by evaluating it against the three SDN controllers under
the same experimental condition as the previous API misuse
attack, except for the fact that the malicious service chain
application now includes an infinite loop. As shown in Figure
7, this application causes the entire Floodlight instance to
be stuck in an infinite loop as the malicious application is
executed reactively upon the arrival of a packet in event. The

same behavior was also observed when such applications were
deployed on POX and OpenDaylight.

Floodlight Console

Before

After

Fig. 7. Result: [CP-L-3-iii] Infinite Loop Insertion

D. Unauthorized application management [CP-L-4]
SDN applications with unrestricted authority may offer

maximal network programmability. However, such uncon-
strained power may also introduce new security threats. We
present a scenario that illustrates how an SDN application can
misuse Northbound APIs to evict other legitimate applications.

Host A Host C

Controller

App 1 App 2 App 3 App 4

(1)

(2)

Kill App 3 !

OK !

OpenFlow
Switch

(3)

OpenDaylight Console

OpenDaylight Console
LoadBalancer Application Evicted

After

Before

Fig. 8. Scenario (top) and Result (bottom):
[CP-L-4] Application Eviction unloading LoadBalancer app

As shown in Figure 8 (top), (1) a malicious SDN applica-
tion may legitimately call the function that terminates other
application via the Northbound API. In response, (2) (3) the
controller terminates the innocent application as requested.
This misuse case may directly compromise the managed
network as it may terminate the basic networking applications,
such as forwarding or routing applications. In addition, it may
also lead to termination of security critical applications like
firewalls or IDSs.

Of the three SDN controllers that we considered in this
paper, the aforementioned API misuse is only effective against
OpenDaylight, because it is the only controller that allows for
dynamic loading and unloading of SDN applications. Figure 8
(bottom) shows how a malicious OpenDaylight application can
dynamically force the unloading of other deployed applica-
tions.

E. Unauthorized network control [CP-L-5]
The packet in control message in OpenFlow notifies an

SDN controller of a newly incoming network flow. Simi-
larly, there are other types of control messages that support
various other networking features (e.g., flow mod, port mod,
table mod). However, most SDN controller implementations

IEEE/ACM TRANSACTION ON NETWORKING 9

do not manage or restrict the use of such control messages;
therefore, we assert that it is possible to manipulate the control
plane by abusing such messages. Below, we discuss two such
control message misuse scenarios.

1) Flow-rule modification: Since there is no restriction
on issuing control messages, an SDN application can issue
any control messages at any time. In the scenario illustrated
in Figure 9 (top), (1) a malicious application issues the
crafted flow rule to (2) override one of the flow table entries;
consequently, (3) the existing network connection between A
and C is disallowed.

OpenFlow
SwitchHost A Host C

Controller

Flow
Packet

App App App App

(1)

A -> C : Forward
Flow Table

A -> C : Drop
Flow Table(2)

(3)

Before
Googlehttp://localhost:8080/switch/

Floodlight

After

Action field
removed

Googlehttp://localhost:8080/switch/

Floodlight

Fig. 9. Scenario (top) and Result(bottom):
[CP-L-5-i] Flow Rule Modification

We deploy a malicious Floodlight application that imple-
ments this attack and evaluate its viability by verifying that
the application can indeed override the existing flow table
entry. Figure 9 (bottom) illustrates the state of the flow table
before and after this attack. As shown in the figure, a flow
table entry that instructs the switch to forward flows to port
17 existed in the flow table before the API misuse attack.
After the attack, we see that the flow table entry has been
overridden with a different flow rule that does not take any
action on the same flow. As this attack can override any flow
rules issued by benign SDN applications, it has the ability to
arbitrarily control the behavior of the network or to neutralize
any security policies. Furthermore, we confirm that both POX
and OpenDaylight are also vulnerable to this attack.

2) Flow table flushing: Next, we evaluate another API
misuse scenario as shown in Figure 10 (top). In this case, (1)
a malicious application continuously sends a control message
that (2) clears all flow table entries. This scenario can cause
flow entry mismatch for all incoming network flows and (3)
degrade the network performance.

Figure 10 (bottom) illustrates the impact of this attack on
our Floodlight testbed. We deployed a malicious application
that persistently clears the flow entries installed in the flow
table of a switch. The initial ping time before the attack is
around 5 ms as the flow was uninitialized2. Once the flow

2The first packet of an unseen flow incurs extra latency as it incurs the
controller communication cost

OpenFlow
SwitchHost A Host C

Controller

(1)

(2) A -> C: Forward
C -> A: Forward

Flow Table
Flow
Packet

App App App App

Clear Flow Table

(3)

Host Console

~ 5x Latency added

Floodlight Console

Persistent flow table clearance
Host Console

After

Before

Fig. 10. Scenario (top) and Result (bottom):
[CP-L-5-ii] Continuous Flow table flush degrading network performance

is initialized, the ping time drops to 1 ms. However, during
the attack, the flow table of the switch is consistently cleared;
therefore, both the first and subsequent pings incur the flow
initialization latency (Figure 10:After). The impact of such an
attack in production environments can be severe, as it not only
adds the flow initialization cost to every packet transferred on
the network, but also eventually causes the packet in Flooding
attack. In the case of POX and OpenDaylight, such API misuse
produces the same outcome as with Floodlight.

F. Unauthorized network-view manipulation [CP-L-6]
An advantage of the centralized SDN architecture is that

it offers network-wide topology information to the control
plane. For example, a routing application may leverage such
information to efficiently calculate and offer the best routing
path. Contemporary SDN controller implementations typically
include a shared internal database for storage and management
of a variety of network information that applications use for
decision-making.

As has been demonstrated, most SDN controllers do not
restrict access or modifications to such internal storage [53].
This misuse scenario is depicted in Figure 11 (left).

OpenFlow
SwitchHost A Host C

Controller

Flow
Packet

App App App App

A -> C : Forward
C -> A : Forward

Flow Table

Internal Storage
(1) (2)

Fig. 11. Scenarios: [CP-L-6] Internal Data Storage Modification

As illustrated in the figure, (1) a malicious application
makes unrestricted modification to data stored in internal stor-
age. If the malicious application modifies the link information

IEEE/ACM TRANSACTION ON NETWORKING 10

stored in the internal storage, (2) all other applications that
make decisions based on such information are affected, and
may lead the network to an unpredictable state.

G. Summary of the Results

We summarize below our results of all discussed attacks
launched against the SDN CP in Table III. Successful and
unsuccessful attacks against POX, Floodlight (FL) and Open-
Daylight (ODL) are marked by (O) and (X) respectively in the
three columns.

TABLE III
SUMMARY OF CONTROL PLANE ATTACK RESULTS

POX FL ODL
[CP-R-1-i] Packet-In flooding O O O
[CP-R-1-ii] Switch table flooding N/Aa O X
[CP-R-1-iii] Switch ID spoofing N/Aa O X
[CP-R-1-iv] Malformed control message

injection
O O O

[CP-R-1-v] System time manipulation X O O
[CP-R-2-i] Host location hijacking O O O
[CP-R-2-ii] Link fabrication O O O
[CP-L-1] Arbitrary system termination O O O
[CP-L-2] System resource exhaustion O O O
[CP-L-3-i] Control message delivery

obstruction I
N/Ab O X

[CP-L-3-ii] Control message delivery
obstruction II

N/Ac O 4

[CP-L-3-iii] Service chain jamming N/Ac O O
[CP-L-4] Application eviction N/Ad N/Ad O
[CP-L-5-i] Flow-rule modification O O O
[CP-L-5-ii] Flow table flushing O O O
[CP-L-6] Unauthorized network-view

manipulation
N/Ae O O

aPOX does not maintain switch table.
bPOX does not use observer pattern to deliver control messages.

cPOX does not employ service chaining mechanism.
dPOX and FL do not support dynamic application loading/unloading.

ePOX does not maintain global network-view.

VII. ATTACKS ON CONTROL CHANNEL

In this section, we introduce two attacks that could be
launched against the SDN control channel, specifically in the
OpenFlow protocol. We observe that although control channel
communication in OpenFlow can be adequately secured using
the SSL/TLS protocol, the use of such encrypted channel is
not widely adopted [4]. Below, we describe attacks against the
OpenFlow control communication channel and demonstrate
their effectiveness on our testbeds.

A. Eavesdropping [CC-1]

Due to the absence of encryption in the control channel,
it is possible to eavesdrop on the connection between the
control plane and data plane. The scenario is that an adversary
may sniff the ongoing OpenFlow messages to exfiltrate the
topology information of the managed network.

To demonstrate the attack on our testbed, we wrote a small
program that passively captures ongoing OpenFlow messages
and parses the messages to extract the network topology
information.

B. Man-In-The-Middle [CC-2]

Figure 12 (top) illustrates the MITM attack scenario that
actively intervenes in the communication between the control
plane and data plane to manipulate the ongoing OpenFlow
messages on the control channel. If (1) the controller sends
a flow rule that instructs the switch to forward a set of flows
from host A to C, (2) the adversary can actively modify the
action field of the rule to be “drop”. As a result, (3) the flow
rule that has been manipulated is installed to the switch, and
ultimately (4) the flow from host A to C is dropped at the
switch.

A -> C : Forward

A -> C : Drop

OpenFlow
SwitchHost A Host C

Controller

(1) Flow
Packet

App App App App

(2)

 A -> C: Drop
Flow Table

(3)

(4)

Attacker

Googlehttp://localhost:8080/switch/

Floodlight

The actual flow rule issued

Different flow rule installed

Fig. 12. Scenario (top) and Result (bottom):
[CC-2] Man-In-The-Middle - Flow Rule Forgery

As shown in Figure 12 (bottom), we attempted to modify
the action field of the flow rule to have a different switch port
number. We demonstrate the successful flow rule modification
using both Wireshark capture of the OpenFlow flow mod3

message at the network interface of the controller and also
by listing the inserted flow rule via the Floodlight Web UI.

VIII. ATTACKS ON DATA PLANE

In this section, we introduce three attacks that can be
launched against the SDN data plane. We evaluate these
attacks on the testbeds with three different switch models; (i)
HP 3500yl, (ii) HP 3800, and (iii) Pica8 P-3290. We provide
detailed results of attacks launched against the HP 3500yl
switch model (the results are similar to other models unless
otherwise noted).

3flow mod is a type of OpenFlow message that installs a flow rule to an
OpenFlow enabled switch.

IEEE/ACM TRANSACTION ON NETWORKING 11

A. Flow-rule flooding [DP-1]

Since there is no restriction on issuing control messages,
an SDN application can issue any control messages at any
time. In this scenario, (1) a malicious application continuously
generates flow rules to (2) consistently fill up the flow table
of the switch, and finally, (3) the switch cannot handle more
flow rules [52].

Figure 13 illustrates the dramatic change in the network
latencies before and after this attack on HP 3500yl. Before
the attack, the first ping time of a new flow was about 5 ms.
When the flow table of the switch was filled with more than
30K flow rules, the same task took about 787 ms. This implies
that this switch will delay any new flow by approximately 800
ms. We found that the other two forwarding devices are also
vulnerable to this attack.

Googlehttp://localhost:8080/switch/
Floodlight

Number of Flow Rules Installed

Host Console

Host Console

150x < performance
degradation

Before

After

Fig. 13. Result: [DP-1] Switch Flow Table Flooding

B. Switch firmware abuse [DP-2]

Most OpenFlow-enabled switch models run custom and
independent switch firmware implementations with varying
capabilities. For example, the HP 3500yl and 3800 switch
models [23], [24], do not support all of the OpenFlow specified
12-tuple match fields in the hardware (TCAM) flow table. To
be more specific, if the source and destination MAC addresses
are specified in the flow rules, that particular flow is forced to
be processed in a software table, which is significantly slower
than in-hardware processing.

This behavior of the switch firmware may be misused to
degrade the overall network performance. In the scenario
illustrated in Figure 14 (top), the malicious application (1)
installs crafted flow rules that override the existing flow rules
(IP matching) with hardware-unsupported match fields (MAC
matching) specified. Consequently, (2) the network flow from
host A to C is no longer processed in the hardware table,
but rather in the software table resulting in (3) network
performance degradation.

To verify the impact of this vulnerability on network perfor-
mance, we launched this resource attack against our test-beds.
Figure 14 (bottom) shows the ping times measured before
and after the attack, and as shown, overall increase in ping
time was observed. Meanwhile, Pica8’s P-3290 switch model
supported hardware-matching of all 12-tuple fields. Hence, the
misuse was observed to be ineffective against this particular
switch model.

Host A Host C

Controller

(1)

(2)

(3)

IP.A -> IP.C: Forward
IP.C -> IP.A: Forward

Hardware Match Table

Flow
Packet

App App App App

MAC.A -> MAC.C: Forward
MAC.C -> MAC.A: Forward

Software Match Table

Forged flow rule

OpenFlow
Switch

Googlehttp://localhost:8080/switch/
Floodlight

Googlehttp://localhost:8080/switch/
Floodlight

Host Console

Host Console

Match Field
modification

After

Before

Performance
degradation

Fig. 14. Scenario (top) and Result (bottom):[DP-2] Switch Firmware abuse

C. Malformed control message injection [DP-3]

Manipulated control messages may be sent to the data plane
with malicious intent, and it may cause the switch to end up
in an unpredictable state.

Floodlight Console

Fig. 15. Result: [DP-3] Malformed control message injection

We modified the length field of the OpenFlow message
header to have an incorrect value, sent such malformed mes-
sages to the target switch, and observed the logs of the SDN
controller to verify the impact of the attack. As shown in
Figure 15, the attack resulted in a switch disconnection.

D. Data leakage [DP-4]

OpenFlow-enabled switches query SDN controllers for each
flow table miss, and this significantly delays the flow pro-
cessing. Such an architecturally inevitable delay is known
as control path delay, and Shin et al. have shown that it is
possible to fingerprint if the target network is an SDN or not
by leveraging the control path delay as a distinguishing factor
[52]. Moreover, Sonchack et al. have further developed the
fingerprinting attack and shown that it is even possible to infer
extremely sensitive information, such as ACL policies and host

IEEE/ACM TRANSACTION ON NETWORKING 12

communication patterns, by scanning the target network [55].
Both of the attacks scan the target network to measure the RTT
(Round-Trip Time) for different network packets and analyze
the collected data to infer the sensitive network information
(and thus known as the side-channel attacks).

IX. VULNERABILITIES AND DEFENSE MECHANISMS

As discussed in prior sections, various attack vectors are
effective against contemporary SDN components. While we
attempt to comprehensively evaluate the SDN attack surface
and present a diverse set of attack scenarios, we believe
that additional new and variant attack vectors will emerge
in the future. Hence, it is important to track down the root
cause of various SDN vulnerabilities. To that end, we abstract
each attack to fundamental weaknesses (or vulnerabilities)
of underlying SDN components and analyze them in greater
detail.

In this section, we present the vulnerabilities (Table IV)
extracted from the attack scenarios and discuss several pro-
posed defense mechanisms that aim to mitigate or minimize
the effects of aforementioned attacks (Table V).

A. Control Plane Security

1) Assuring Confidentiality: Current control plane imple-
mentations lack capability to authenticate applications (V-1),
and allow applications to execute arbitrary system commands
(e.g., system termination) (CP-L-1). As demonstrated in Sec-
tion VI-A, the SDN controllers allowed SDN applications to
execute sensitive commands; however, these are just a small
set of all possible attacks that may leverage this vulnerability.
Other attacks could also impact the confidentiality of the
control plane and allow for exfiltration of sensitive information
(e.g., controller configuration, global network-view, remote
login credentials).
In order to prevent SDN applications from executing sensitive
system commands on ONOS, a security extension has been
recently added to ONOS. Their security feature revokes all the
permissions granted to applications, and only grant minimum
required permissions based on the security policy file. For
example, recent security extension to ONOS [42] successfully
mitigates the arbitrary system termination attack (CP-L-1) by
revoking the permission to execute sensitive commands by
default.

2) Assuring Integrity: Due to various vulnerabilities exist-
ing in the control plane, the integrity and confidentiality of
the control plane cannot be guaranteed. Vulnerabilities that
lead to the integrity issues include the following: Lack of
authorization (V-1) and Weak authentication (V-2).
[V-1] Lack of authorization: Arbitrary system termination
attack (CP-L-1) has demonstrated that applications can execute
any sensitive system commands to mount any attack against
the control plane, and thus it is possible to manipulate sensitive
information stored in not just the controller process but also
the host machine running the controller. For example, current
SDN controllers often locally store configuration files on the
file system, and it is possible to easily manipulate such files
thus breaking the integrity of the control plane.

Another important asset that should never be manipulated
is list of active network services, and as demonstrated in
Section VI-D, unauthorized application management (CP-L-
4) attack breaks the integrity of the list by arbitrarily activat-
ing/deactivating SDN applications. We observe that SDN con-
trollers tend to grant excessive authority to SDN applications
via the flexible Northbound API. This allows the applications
to exploit the API and perform malicious actions against peer
applications. To restrict such unintended capabilities of SDN
applications, the APIs must be carefully vetted and retrofitted.
In a similar fashion, the global network-view can be unre-
strictedly manipulated by any SDN application (CP-L-6), and
such attacks may put the network in an unpredictable state,
as all the network services make network control decisions
based on the network-view. The security extension of ONOS
also allows restriction of such capabilities by specifying and
enforcing a security policy for each application.
Finally, all the applications are also capable of directly con-
trolling the managed network by either directly issuing control
messages or leveraging the related Northbound APIs (CP-L-
5). Rosemary [53] and SE-Floodlight [44] employ an appli-
cation permission model as a security enhancement, and its
permission model constrains application interactions with the
data plane to maintain the integrity of the network behavior.
In contrast, the security extensions in ONOS allow for fine-
grained API-level permissions that explicitly allow or deny
applications’ access to the network control APIs. PANE [14]
provides mechanisms for delegating network authority which
can be used for policy enforcement of untrusted network
applications.
[V-2] Weak authentication: When SDN controllers establish
connections with network devices and detect network hosts,
each SDN controller authenticates the devices and hosts using
different authentication mechanisms. However, Dover et al.
[12], [11] and Hong et al. [22] have reported that Floodlight
and OpenDaylight employ weak network element authenti-
cation mechanisms. Their attack scenarios (CP-R-1-ii,iii and
CP-R-2) exploit the weaknesses in network device or host
authentication mechanisms to manipulate the global network-
view, thus breaking the integrity.
In response to this problem, Hong et al. have proposed a new
security extension called TopoGuard [22], which provides en-
hanced network element authentication. TopoGuard is capable
of verifying the legitimacy of host migrations, integrity of
LLDP packets and switch port property upon each topology
update.
[V-8] Dependence on external variable: As demonstrated
in CP-R-1-v, the behavior of SDN controllers that reference
system time was affected by the attack. The lesson that
could be learned from this attack example is that referencing
untrusted external variables could widen the attack surface
of SDN controllers as well as any other systems. Hence, the
use such untrusted and unpredictable external variables should
be avoided in designing and implementing SDN controllers.
Furthermore, this principle also applies to the network services
(or SDN applications) that are hosted by SDN controllers. If an
SDN application that directly controls the network uses system
time to make routing decisions, the entire network could be
affected by time manipulation attacks (e.g., NTP attack [37]).

IEEE/ACM TRANSACTION ON NETWORKING 13

TABLE IV
MAPPING SDN VULNERABILITIES AND ATTACKS USING THE CIA MODEL

Location Potential
risk (CIA)

Vulnerability Attack examples Affected assets

Control
Plane

Confidentiality [V-1] Lack of authorization [CP-L-1] Arbitrary code execution *
Integrity

[V-1] Lack of authorization

[CP-L-1] Arbitrary system termination *
[CP-L-4] Unauthorized application management Network behavior
[CP-L-5] Unauthorized network control Network behavior
[CP-L-6] Unauthorized network-view manipulation Global network-view

[V-2] Weak authentication [CP-R-1] Denial-of-Service Global network-view
[CP-R-2] Network-view manipulation Global network-view

[V-8] Dependence on external variable [CP-R-1] Denial-of-Service *
Availability

[V-1] Lack of authorization

[CP-L-1] Arbitrary code execution *
[CP-L-4] Unauthorized application management Network behavior
[CP-L-5] Unauthorized network control Network behavior
[CP-L-6] Unauthorized network-view manipulation Global network-view

[V-2] Weak authentication [CP-R-1] Denial-of-Service Global network-view
[CP-R-2] Network-view manipulation Global network-view

[V-3] Architectural bottleneck [CP-R-1] Denial-of-Service Global network-view

[V-4] Monolithic controller design [CP-L-1] Arbitrary code execution *
[CP-L-2] Resource exhaustion Network service

[V-5] Lack of resource management [CP-L-2] Resource exhaustion Network service
[V-6] Improper exception handling [CP-R-1] Denial-of-Service Network connectivity
[V-7] Naı̈ve service chaining mechanism [CP-L-3] Network service neutralization Network service
[V-8] Dependence on external variable [CP-R-1] Denial-of-Service *

Control
Channel

Confidentiality [V-9] Lack of practical encryption [CC-1] Eavesdropping Control messages
Integrity [V-10] Lack of integrity checks [CC-2] Man-in-the-middle Control messages
Availability - - -

Data
Plane

Confidentiality [V-12] Architectural weakness [DP-4] Data leakage *
Integrity - - -
Availability [V-3] Architectural bottleneck [DP-1] Flow-rule flooding *

[V-6] Improper exception handling [DP-3] Control message manipulation *
[V-11] Hardware abuse [DP-2] Switch firmware abuse *

* denotes that the attack can potentially affect all the critical assets mentioned in Section III-A.

TABLE V
VULNERABILITIES AND DEFENSES

Vulnerability Defenses

Control plane security
[V-1] Lack of authorization PANE [14]

Rosemary [53]
SE-Floodlight [44]
ONOS security extensions
[42]

[V-2] Weak authentication TopoGuard [22]
[V-3] Architectural bottleneck ONIX [32]

ONOS [5]
DIFANE [63]
DevoFlow [10]
AVANT-GUARD [54]
Kotani et al. [33]
Scotch [59]
FloodGuard [60]

[V-4] Monolithic controller design Rosemary [53]
[V-5] Lack of resource management Rosemary [53]
[V-6] Improper exception handling
[V-7] Naı̈ve service chaining mechanism
[V-8] Dependence on external variables

Control channel security
[V-9] Lack of practical encryption
[V-10] Lack of integrity checks

Data plane security
[V-3] Architectural bottleneck DIFANE [63]

DevoFlow [10]
[V-5] Improper exception handling
[V-11] Hardware abuse
[V-12] Architectural weakness Sonchack et al. [55]

3) Assuring Availability: SDN controllers often manage
and control many (if not all) network devices operating in the
network. Hence, when availability issues arise in the control
plane, it invariably affects the entire network. We discuss
various vulnerabilities that jeopardize the availability of the
control plane assets and the network itself. Furthermore, we
introduce and discuss defense mechanisms relating to each
vulnerability.
[V-1, 2, 8] Integrity issues and availability: Failure to protect
the integrity of the control plane assets also compromises the
availability of the control plane. As demonstrated in the previ-
ous section (Section VI), unrestricted application deactivation
can cause arbitrary network services to be unavailable (CP-
L-4), and the manipulated global network-view and network
behavior (CP-L-4,5,6) can disrupt network connectivity. We
believe that it is possible to eliminate many of these availability
issues by properly protecting the integrity of the control plane.
In addition, the use of untrusted external variables should be
avoided as it could affect network availability. System time
manipulation attack (CP-R-1-v) caused switch disconnections
in the networks managed by Floodlight and OpenDaylight.
In the case of the arbitrary code execution (CP-L-1-ii), ap-
plications may execute system commands to terminate the
controller instance to make the entire control plane unavailable
[53]. Systems such as Rosemary and defense mechanisms,
such as ONOS’ security extension and TopoGuard, introduced
earlier for the confidentiality and integrity protection, provide
resilience against these availability issues.
[V-3] Architectural bottleneck: This vulnerability naturally
exist in the SDN architecture as the control plane manages the

IEEE/ACM TRANSACTION ON NETWORKING 14

network in a centralized manner, and it is possible to remotely
exploit such weakness to affect the network availability (CP-
R-1-i). Unlike the other vulnerabilities, this issue has been
studied by many researchers as shown in Table V.
One approach to significantly reducing the impact of such
attack is improving the scalability of the control plane, and
ONIX [32] and ONOS [5] employ distributed SDN controller
architecture to this end. Other approaches that take advantage
of the data plane to reduce the burden on the control plane
have been proposed as well [63], [10], [54], [33], [59],
[60]. However, they have not been integrated into commodity
controllers.
[V-4] Monolithic controller design: Most of the SDN con-
troller implementations available today are, in fact, monolithic
software applications. For example, Floodlight and OpenDay-
light are Java applications that run on a single Java Virtual
Machine (JVM), and the SDN applications also run on the
same JVM. Shin et al. [53] have shown the risk of such mono-
lithic architecture of SDN controllers by demonstrating system
command execution (CP-L-1-ii) and resource exhaustion (CP-
L-2) attacks, which ultimately crash the controller instances.
Rosemary employs a micro-kernel architecture to enable ap-
plication containment and eliminate this vulnerability.
[V-5] Lack of resource management: Even if an SDN
controller has employed a micro-kernel architecture, the con-
troller may still be susceptible to resource exhaustion attacks
because different core modules of the controller and SDN
applications are sharing the system resources. Although Shin
et al.[53] has demonstrated a simple attack scenario, more
sophisticated and critical attack scenarios could be effective
against SDN controllers without resource management (e.g.,
exhaustive exploitation of network service/control plane APIs).
In response to this problem, Rosemary [53] employs a resource
monitor that dynamically monitors and constrains the resource
usage of various SDN controller components.
[V-6] Improper exception handling: The capability to handle
exceptions that might be raised during the execution of an SDN
application is crucial to guarantee controller robustness. SDN
controllers that we evaluated seemed to lack such capability
as the manipulated control messages (CP-R-1-iv) induced
unexpected behaviors at the SDN controllers. To efficiently
discover and deal with such exceptions, formal techniques and
traditional fuzz testing approaches may be adopted.
It is important that such exceptions must be properly handled
as the unexpected behaviors of SDN controllers directly affect
the managed network. Interestingly, the OpenFlow protocol
provides no mechanisms to inform the control plane when
it receives a malformed or illegitimate OpenFlow messages.
For example, if there was an OpenFlow message for notifying
the data plane of the reception of such messages, the SDN
controller could have reacted more flexibly rather than simply
disconnecting the switch from the network.
[V-7] Naı̈ve service chaining mechanism: We found that
the Floodlight and OpenDaylight controllers employed Service
Chain mechanism for SDN applications to systematically con-
trol and manage the network. However, such Service Chains
are susceptible to the possible interferences (CP-L-3-ii, iii),
and the fundamental vulnerabilities lie in both the application
and control layer of the SDN architecture. CP-L-3-ii and iii

inform two separate design concerns that the control layer
must consider; the former demonstrates the importance of
control message delivery guarantees, and the latter illustrates
the necessity of a fail-safe service chaining mechanism (e.g.,
network application time-out mechanism). In order to assure
the network service availability, SDN controllers must deliver
control message to all network applications in any circum-
stances and deal with possible network application failures.
In case of the application layer, there is no restriction on what
SDN applications might be deployed. To date, no standards
have been proposed to analyze and verify the behavior of SDN
applications prior to deployment. Since SDN applications are
commonly written in common programming languages, such
as Java and Python, traditional methods for software profiling
or analysis would be a good starting point of developing a
method to effectively review or verify SDN applications.

B. Control Channel Security
1) Assuring Confidentiality: Current SSL/TLS protection

adds noticeable performance penalty to the control channel (V-
9) [13]. Although OpenFlow optionally offers such protection,
it is rarely used; even worse, some of the switch models
or SDN controllers do not support it for this reason [4].
Therefore, an alternative encryption mechanism that is both
lightweight and reliable is desirable in the future.

2) Assuring Integrity: As we demonstrated, OpenFlow al-
lowed active flow-rule modification during the man-in-the-
middle attack (CC-2), and this is possible because OpenFlow
does not implement the control message integrity check-
ing mechanism (V-10). Such mechanism is unnecessary if
SSL/TLS protection is enabled; however, as mentioned, cur-
rent SSL/TLS is not suitable for protecting large SDN net-
works.

3) Assuring Availability: In the case of OpenFlow, we are
unaware of specific vulnerabilities or attack scenarios that
affect southbound OpenFlow communications; however, it is
prudent to rigorously test and verify the protocol with formal
protocol verification techniques to guarantee the availability
of the control-data plane connections.

C. Data Plane Security
1) Assuring Confidentiality: Due to the separation of the

control plane and the data plane, SDNs are naturally prone
to the timing-based side-channel attacks (V-12) [52], [55],
and Sonchack et al. have proposed a timeout proxy that
could be deployed to SDN switches as a countermeasure
[55]. This timeout proxy normalizes the overall amount of
packet processing time by directly participating in the flow
rule installation process. It keeps track of every packet that is
forwarded to the controller, and if the controller responds too
soon or too late, the proxy installs the flow rule instead of the
controller.

2) Assuring Availability: We have identified three SDN-
specific vulnerabilities that compromise the availability of the
data plane.
[V-1] Architectural bottleneck: Architectural bottleneck at-
tacks have been discussed in prior papers[63], [10], and there
are some approaches to mitigate the effect of this attack. For

IEEE/ACM TRANSACTION ON NETWORKING 15

example, DIFANE [63] tries to merge some related flow rules
to save the space of the flow table in a switch, and DevoFlow
proposes a way of reducing the number of flow rules with
an extended OpenFlow message [10]. All these approaches
assume that some flow rules are related and could be merged
into a single (or a few) wildcard rules. However, if SDN
applications want to handle each flow with a different method,
then the proposed methods may not be applicable. A com-
mercial switch (e.g., Arista 7050T [2]) addresses this problem
by simply dropping requests from the control plane when it
receives many flow rule requests in a short time. This approach
is easy to realize, but it is not an ideal solution, because
SDN applications often need to process many flow requests
simultaneously to handle routine network traffic surges.
[V-6] Improper exception handling: As discussed in the
previous section, switch firmware should be able to handle
exceptional inputs. Again, SDN control protocols (e.g., Open-
Flow) need to implement features for handling exceptions to
minimize the impact of such attack.
[V-11] Hardware abuse: Just like traditional networking
devices, OpenFlow enabled switch models also employ TCAM
to perform fast hardware table lookups. However, such hard-
ware TCAM is too costly, and accordingly, only a small por-
tion of the forwarding table is often implemented on TCAM.
Due to the limited capacity of the TCAM table, the switch
firmware restricts the use of the hardware table, and we have
shown how such vulnerabilities can be abused to affect the
network performance. As demonstrated in Section VIII-B, the
Pica8 switch model supports all 12-tuple OpenFlow (version
1.0) match fields and thus avoided such an attack. In order
to cope with such a flow table availability problem, different
approaches [63], [10] to efficiently use flow tables have been
proposed. However, such methods are rather temporary and
limited as they cannot keep up with constantly evolving SDN
protocols. For example, a recent version (1.4) of OpenFlow
has become even more complicated than version 1.0; it has
41 fields to be matched [6]. Hence, SDN switches should
be reconfigurable; the switches should be flexible enough to
support new match fields that may appear in the future, and
P4 [6] proposes an effective approach to this problem.

X. RESEARCH CHALLENGES IN SDN SECURITY

In this section, we will discuss key research problems that
warrant additional research attention as well as promising
approaches to addressing these problems.

A. Control Plane: Challenges and Research Horizons

Our survey finds that the area of SDN control plane security
remains understudied and narrowly focused despite the grow-
ing popularity and industrial adoption of SDN. Our systematic
security evaluation of current SDN controller implementations
highlight several areas that warrant additional research.

The architecture of modern network operating systems
(NOSs) is growing in feature and complexity, much like tra-
ditional operating systems. For example, contemporary NOSs,
such as ONOS and ODL, have a rich library set and allow for
dynamic loading and unloading of applications. We believe it
makes sense to extend security mechanisms from traditional

OSes to NOSes as well. For example, SE-Linux [47] could
be an excellent reference model to design an authorization
model for NOSes. Porras et al. [44] have implemented role-
based access control mechanism to constrain applications’ the
control-data plane interactions, which partially solves ’lack of
authorization’ (V-1) problem.

Our study also demonstrates that there exist architectural
vulnerabilities, and hence, a fundamental rethinking of NOS
architectures should be considered. Here, the architecture of
the traditional OS could be used as a reference in designing
a more robust NOS. For example, Shin et al. adopt a micro-
kernel OS approach for securing the controller from buggy
and malicious co-resident applications. However, their system
is not resilient to control-flow saturation attacks or to rootkits
that infect the NOS without crashing.

Furthermore, the security of the SDN application ecosys-
tem should also be seriously considered. While the SDN
community is encouraging open development and distribu-
tion of SDN applications for rapid evolution the technology,
security problem associated with such environments is not
new. In the case of the mobile application ecosystem, third-
party distribution sites have been widely abused as attack
vectors to compromise millions of end-users. We believe
that SDNs should incorporate proactive security measures to
address the potential of such attacks. For example, the Android
operating system includes diverse mechanisms (e.g., sandbox-
ing, application manifest) to protect itself and other benign
applications from a compromised or malicious application.
Inspired by Android’s application security system, ONOS,
in security mode, enforces security policy to applications
and thus protects the core operating system from potentially
untrusted applications. ONOS further extends Android’s con-
cept of application security mechanism to support large scale
SDNs; it employs its own permission model that works in
distributed settings, efficient permission checking mechanism
that minimizes network performance impact, and additional
network header space access control mechanism. However,
there still remains several research questions that should be
answered: How do we construct a safe application distribution
environment for SDNs? How do we ensure the authenticity of
applications? How can we detect malicious SDN applications?
How can guarantee the integrity of applications? We believe
that formal techniques like NICE [7] provide a good starting
point toward answering these questions.

B. Control Channel: Challenges and Research Horizons

A simple means to defend against certain attacks introduced
in Section VII is encrypting the communication between the
control and data plane, using SSL/TLS, as recommended
by the OpenFlow specification. However, such encryption
is invariably turned off in large enterprise and datacenter
networks, due to the associated performance overhead. The
centralized architecture of an SDN implies that the controller
in a modern datacenter typically needs to respond to mil-
lions of flow requests made by hundreds of switches[58]).
For this reason, network administrators often tend to simply
disable encrypted channels, which represents a classic tradeoff
(dilemma) between performance and security.

IEEE/ACM TRANSACTION ON NETWORKING 16

Therefore, the key research question is, how can we achieve
the best tradeoff between performance and security? We
believe that the simplest and most effective way to handle this
problem is exploring alternative encryption techniques that are
lightweight, secure and scalable. This objective could also be
realized by employing custom high-performance encryption
hardware (e.g., secure co-processors).

C. Data Plane: Challenges and Research Horizons
SDN data planes are designed to be simple and efficient

by implementing just the basic hardware logic for forwarding
packets with high performance. This design choice implies that
that critical attack vectors are less likely to exist in the data
plane. However, we argue that the firmware in the data plane
can be abused for attacking SDNs. For example, firmware
in wireless routers are notorious for various security holes.
To the best of our knowledge, there is no study that has
considered security problems associated with SDN data planes.
We note that the firmware of such SDN devices are different
from that of existing network devices. Hence, these differences
should be well understood and new methods to detect (switch)
firmware defects in terms of security or reliability should be
investigated.

Also, SDN switches and an SDN controller communicate
with each other, and thus can affect each other. Hence,
the following questions should be answered: How to ensure
the trustworthiness of forwarding devices? How to securely
deploy and install devices (registration, authentication, and
authorization) in a network infrastructure?

Other potential threats, beyond attacks demonstrated in this
paper, also make the case for a more robust data plane.
For example, a recent study revealed that a large number of
commodity routers on the Internet could be simply scanned
and accessed using default passwords [9]. In the case of an
SDN network, the impact of such an attack is much more
detrimental than in a legacy network, because one or more
compromised SDN devices may leak sensitive information
(e.g., network topology) or even directly attack the linked
SDN controller. Such problems argue for the development of
resilient data planes and new countermeasures to protect an
SDN network from compromised data planes.

XI. RELATED WORK

Scott-Hayward et al. and Kreutz et al. have recently pub-
lished a broad survey of security in SDN [49], [34]. These
surveys include studies of various SDN-specific security vul-
nerabilities [56], [29], [35]. In particular, Kreutz et al. divided
SDN attacks into seven different categories [35]. Other studies
have identified specific security deficiencies that arise in both
SDN architectures and implementations. For example, [61],
[52], [45], [4], [53] have critically examined the lack of
isolation, access control, and the protection mechanism within
the control layer. Chandrasekaran et al. [8] have presented
vulnerabilities in the control plane that arise from software
errors that exist within SDN applications, and Jarraya et al.
[27] have explored deficiencies in the security of the north-
bound interface. Kloti et al. proposed various forwarding rule
guessing and controller fingerprinting strategies via spoofing

attacks [31]. Another survey paper, [50], has suggested a pos-
sible denial of service attack scenario that exploits limitations
between then the centralized controller and the flow-table.

These early studies motivate our work, and we incorporate
all described attack cases in our taxonomy. Furthermore,
while these studies have generally hypothesized these attack
scenarios, they do not present implementation studies of these
attacks within a real test environment, which leaves open the
following question: which attacks are theoretical, and which
are reducible to practice on real SDN implementations? In
addition, some studies propose a narrow attack scenario; here,
we explore broad variants of the attack strategy. The result
of our efforts have produced 12 new attack scenarios, whose
feasibility have all been validated, through practical imple-
mentations, on a physical SDN test network. Furthermore, a
security assessment framework for SDN, called DELTA [36],
has been recently proposed, and it leverages the attack cases
in our taxonomy to evaluate the security of various SDN
components. DELTA is a practical use case of our attack
taxonomy, and this work provides the detailed descriptions and
in-depth analysis of the attack cases that appear in DELTA.

XII. CONCLUSION

The paper presents a comprehensive analysis of the vectors
for potential abuse or attack that arise in OpenFlow network
stacks. We provide a generalized categorization of 22 separate
vectors for abuse or direct attack, which arise from diverse
interaction avenues that are supported by popular OpenFlow
network implementations. Furthermore, we validate the feasi-
bility and impact of these abuse and attack scenarios through
implementation and testing. We believe that 12 of these threat
scenarios are novel and unpublished.

Like prior attack taxonomy efforts [39], the proposed orga-
nization of vulnerabilities, attacks, and defenses is not intended
to be all-encompassing. However, we believe that it lays a
good touchstone for classifying future threats in this area. Our
intent is to offer a survey of concrete interface points upon
which both security and stability of SDNs depend. Where
such attacks or abuses are identified, we argue for either the
application of security services or an acknowledged effort to
establish trust among those components with access to these
interfaces. We hope that the insights provided by our work will
inspire a more principled and systematic approach to designing
the next generation of resilient SDNs.

REFERENCES

[1] A Linux Foundation Collaborative Project. OpenDaylight SDN Con-
troller. http://www.opendaylight.org.

[2] Arista. Arista 7050 series. http://www.arista.com/en/products/
7050-series/articletabs.

[3] R. Beckett, X. K. Zou, S. Zhang, S. Malik, J. Rexford, and D. Walker.
An assertion language for debugging sdn applications. In Proceedings
of the Third Workshop on Hot Topics in Software Defined Networking,
2014.

[4] K. Benton, L. J. Camp, and C. Small. Openflow vulnerability assess-
ment. In Proceedings of the second ACM SIGCOMM workshop on Hot
topics in software defined networking, pages 151–152. ACM, 2013.

[5] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, et al. Onos: towards
an open, distributed sdn os. In Proceedings of the third workshop on
Hot topics in software defined networking, pages 1–6. ACM, 2014.

IEEE/ACM TRANSACTION ON NETWORKING 17

[6] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al. P4:
Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review, 44(3):87–95, 2014.

[7] M. Canini, D. Venzano, P. Pereŝı́ni, D. Kostić, and J. Rexford. A
NICE Way to Test OpenFlow Applications. In Usenix Symposium on
Networked Systems Design and Implementation, April 2012.

[8] B. Chandrasekaran and T. Benson. Tolerating sdn application failures
with legosdn. In Proceedings of the third workshop on Hot topics in
software defined networking, pages 235–236. ACM, 2014.

[9] A. Cui and S. J. Stolfo. A quantitative analysis of the insecurity of
embedded network devices: results of a wide-area scan. In Proceedings
of the 26th Annual Computer Security Applications Conference, pages
97–106. ACM, 2010.

[10] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee. Devoflow: scaling flow management for high-performance
networks. In ACM SIGCOMM Computer Communication Review,
volume 41, pages 254–265. ACM, 2011.

[11] J. M. Dover. A denial of service attack against the open floodlight
sdn controller. http://dovernetworks.com/wp-content/uploads/2013/12/
OpenFloodlight-12302013.pdf.

[12] J. M. Dover. A switch table vulnerability in the open floodlight
sdn controller. http://dovernetworks.com/wp-content/uploads/2014/03/
OpenFloodlight-03052014.pdf.

[13] R. Durner and W. Kellerer. The cost of security in the sdn control plane.
[14] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi.

Participatory Networking: An API for application control of SDNs. In
ACM SIGCOMM, 2013.

[15] FloodLight. Open sdn controller. http://floodlight.openflowhub.org/.
[16] N. Foster, M. J. Freedman, R. Harrison, J. Rexford, M. L. Meola, and

D. Walker. Frenetic: a high-level language for openflow networks. In
Proceedings of the Workshop on Programmable Routers for Extensible
Services of Tomorrow, 2010.

[17] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang. A Clean Slate 4D Approach to
Network Control and Management. In Proceedings of ACM Computer
Communications Review, 2005.

[18] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker. NOX: Towards an Operating System for Networks.
In Proceedings of ACM SIGCOMM Computer Communication Review,
July 2008.

[19] A. Guha, M. Reitblatt, and N. Foster. Machine-verified network
controllers. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2013.

[20] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown.
Where is the debugger for my software-defined network? In Proceedings
of the First Workshop on Hot Topics in Software Defined Networks, 2012.

[21] M. Handley, O. Hodson, and E. Kohler. Xorp: an open platform for
network research. In SIGCOMM Comput. Commun. Review, 2003.

[22] K. Hong, L. Xu, H. Wang, and G. Gu. Poisoning network visibility in
software-defined networks: New attacks and countermeasures. In Pro-
ceedings of the 22nd Annual Network and Distributed System Security
Symposium (NDSS15), February 2015.

[23] HP. Hp 3500 and 3500yl switch. http://h17007.www1.hp.com/us/en/
networking/products/switches/HP 3500 and 3500 yl Switch Series/
index.aspx.

[24] HP. Hp 3800 switch. http://h17007.www1.hp.com/us/en/networking/
products/switches/HP 3800 Switch Series/index.aspx.

[25] HP. Hp sdn dev center: Sdn app store. http://www.hp.com/go/
sdndevcenter.

[26] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat. B4: Experience with a globally-deployed software
defined wan. In Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM, 2013.

[27] Y. Jarraya, T. Madi, and M. Debbabi. A survey and a layered taxonomy
of software-defined networking. 2014.

[28] N. Katta, H. Zhang, M. Freedman, and J. Rexford. Ravana: Controller
fault-tolerance in software-defined networking. In Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Networking Research,
2015.

[29] S. M. Kerner. Is sdn secure? http://www.enterprisenetworkingplanet.
com/netsecur/is-sdn-secure.html.

[30] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow:
verifying network-wide invariants in real time. In Proceedings of the
first workshop on Hot topics in software defined networks, HotSDN ’12,
2012.

[31] R. Klöti. Openflow: A security analysis. Proc. Wkshp on Secure Network
Protocols (NPSec). IEEE, 2013.

[32] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix:
A Distributed Control Platform for Large-scale Production Networks.
In The Symposium on Operating Systems Design and Implementation
(OSDI), 2010.

[33] D. Kotani and Y. Okabe. A packet-in message filtering mechanism
for protection of control plane in openflow networks. In Proceedings
of the Tenth ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, ANCS ’14, pages 29–40, New York, NY,
USA, 2014. ACM.

[34] D. Kreutz, F. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig. Software-defined networking: A comprehensive survey.
arXiv preprint arXiv:1406.0440, 2014.

[35] D. Kreutz, F. M. V. Ramos, and P. Verissimo. Towards secure and de-
pendable software-defined networks. In Proceedings of ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking (HotSDN’13),
August 2013.

[36] S. Lee, C. Yoon, C. Lee, S. Shin, V. Yegneswaran, and P. Porras. Delta:
A security assessment framework for software-defined networks. In
Proceedings of NDSS, volume 17, 2017.

[37] A. Malhotra, I. E. Cohen, E. Brakke, and S. Goldberg. Attacking the
network time protocol. In Network and Distributed System Security
Symposium, 2016.

[38] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: enabling innovation in
campus networks. SIGCOMM Comput. Commun. Rev., 38, March 2008.

[39] J. Mirkovic and P. Reiher. A taxonomy of ddos attack and ddos defense
mechanisms. SIGCOMM Computer Communication Review, 2004.

[40] Open Networking Foundation. https://www.opennetworking.org/.
[41] Open Networking Foundation. Software-defined networking: The new

norm for networks. https://www.opennetworking.org/images/stories/
downloads/white-papers/wp-sdn-newnorm.pdf.

[42] Open Networking Laboratory. Recent security extensions to onos. https:
//wiki.onosproject.org/display/ONOS/Security-Mode+ONOS.

[43] OpenFlow Security Analysis Project. OpenFlowSec.org. http://www.
openflowsec.org.

[44] OpenFlowSec.org. Se-floodlight. http://www.openflowsec.org/
Technologies.html.

[45] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu. A
security enforcement kernel for openflow networks. In Proceedings of
the first workshop on Hot topics in software defined networks, HotSDN
’12, 2012.

[46] POX. Python network controller. http://www.noxrepo.org/pox/
about-pox/.

[47] S. Project. Selinux. http://selinuxproject.org/page/Main Page.
[48] C. Röpke and T. Holz. Sdn rootkits: Subverting network operating sys-

tems of software-defined networks. In Research in Attacks, Intrusions,
and Defenses, pages 339–356. Springer, 2015.

[49] S. Scott-Hayward, S. Natarajan, and S. Sezer. A survey of security in
software defined networks. IEEE Communications Surveys & Tutorials,
18(1):623–654, 2015.

[50] S. Scott-Hayward, G. O’Callaghan, and S. Sezer. Sdn security: A survey.
In Future Networks and Services (SDN4FNS), 2013 IEEE SDN for,
pages 1–7. IEEE, 2013.

[51] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky.
Advanced study of sdn/openflow controllers. In Proceedings of the
9th Central & Eastern European Software Engineering Conference in
Russia, CEE-SECR ’13, pages 1:1–1:6, New York, NY, USA, 2013.
ACM.

[52] S. Shin and G. Gu. Attacking software-defined networks: A first
feasibility study (short paper). In Proceedings of ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking (HotSDN’13),
August 2013.

[53] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang. Rosemary: A robust, secure, and high-
performance network operating system. In Proceedings of the 21th
ACM Conference on Computer and Communications Security (CCS14),
November 2014.

[54] S. Shin, V. Yegneswaran, P. Porras, and G. Gu. Avant-guard: Scalable
and vigilant switch flow management in software-defined networks. In
Proceedings of the 20th ACM Conference on Computer and Communi-
cations Security (CCS13), November 2013.

[55] J. Sonchack, A. Dubey, A. J. Aviv, J. M. Smith, and E. Keller. Timing-
based reconnaissance and defense in software-defined networks. In
Proceedings of the 32nd Annual Conference on Computer Security
Applications, pages 89–100. ACM, 2016.

IEEE/ACM TRANSACTION ON NETWORKING 18

[56] S. Sorensen. Security implications of software-
defined networks. http://www.fiercetelecom.com/story/
security-implications-software-defined-networks/2012-05-14.

[57] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. Building a robust
software-based router using network processors. In Proceedings of the
eighteenth ACM symposium on Operating systems principles, SOSP ’01,
2001.

[58] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood.
On controller performance in software-defined networks. In Proceedings
of the 2nd USENIX conference on Hot Topics in Management of Internet,
Cloud, and Enterprise Networks and Services, 2012.

[59] A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen. Scotch: Elastically
scaling up sdn control-plane using vswitch based overlay. In Proceedings
of the 10th ACM International on Conference on emerging Networking
Experiments and Technologies, pages 403–414. ACM, 2014.

[60] H. Wang, L. Xu, and G. Gu. Floodguard: A dos attack prevention
extension in software-defined networks. In Dependable Systems and
Networks (DSN), 2015 45th Annual IEEE/IFIP International Conference
on, pages 239–250. IEEE, 2015.

[61] M. Wasserman and S. Hartman. Security analysis of the open networking
foundation (onf) openflow switch specification. 2013.

[62] Wired. Going With the Flow: Googles Secret Switch to the Next
Wave of Networking. http://www.wired.com/wiredenterprise/2012/04/
going-with-the-flow-google/.

[63] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable flow-based
networking with difane. ACM SIGCOMM Computer Communication
Review, 40(4):351–362, 2010.

