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ABSTRACT

The performance and operational characteristics of the piéS
tocol are of deep interest to the research and network apesat
community. In this paper, we present measurement resols &
unique dataset containing more than 26 billion DNS quespoase
pairs collected from more than 600 globally distributedursive
DNS resolvers. We use this dataset to reaffirm findings in pub-
lished work and notice some significant differences thatccbe
attributed both to the evolving nature of DNS traffic and ta ou
differing perspective. For example, we find that althougarah-
teristics of DNS traffic vary greatly across networks, th&oheers
within an organization tend to exhibit similar behavior. Y\Mether
find that more than 50% of DNS queries issued to root servers do
not return successful answers, and that the primary caueelafp
failures at root servers is malformed queries with invalidDE.
Furthermore, we propose a novel approach that detectsimalic
domain groups using temporal correlation in DNS queries.apu
proach requires no comprehensive labeled training seghadan

be difficult to build in practice. Instead, it uses a known igialis
domain as anchor, and identifies the set of previously unknoa-
licious domains that are related to the anchor domain. Hxyeer

tal results illustrate the viability of this approadke. , we attain

a true positive rate of more than 96%, and each maliciousanch
domain results in a malware domain group with more than 53 pre
viously unknown malicious domains on average.

Categories and Subject Descriptors

C.2.2[COMPUTER-COMMUNICATION NETWORKS ]: Net-
work Protocols

Keywords

DNS; Measurement; Malicious Domain Detection

1. INTRODUCTION

The Domain Name System (DNS) protocol plays a cardinal role
in the operation of the Internet by enabling the bi-diretgiicasso-
ciation of domain names with IP addresses. It is implemeated
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a hierarchical system with a few trusted root servers theitidute
the responsibility of updating the name-to-IP-address pimgpto
hundreds of millions of authoritative name servers thatespond
to each domain. DNS as a protocol has steadily evolved siace i
initial specification [28-31] as has the the mix of applicas that
find new and innovative ways of using it. Most applicationday
and future Internet architectures (such as Named Data Mieswo
and Software-Defined Networks) depend on DNS. It is alsemsr
ingly abused by malware authors, both as an effective retitre
mechanism for obfuscating location of their servers [14 as a
covert channel for command and control [15, 32].

Given its crucial importance for the Internet’s functiogyfbNS
has been the subject of many measurement studies duringsthe |
decade. Prior measurement studies have scrutinized ttaibeh
of DNS caches [20], characterized global DNS activity frdme t
perspective of root servers [12, 13] and evaluated the taféetress
of DNS in the context of content-delivery networks [35]. Tist
study of global DNS activity was by Danzig et al., which uncov
ered the prevalence of many bugs in popular DNS implementa-
tions [14]. More recently, this problem was revisited by Bne
lee et al., who measured the prevalence of bogus DNS traffieat
F-root nameserver finding that some of the same problemspers
60-85% of observed queries were repeated queries from the sa
host and more than 14% of requests involved queries thateidl
the DNS specification. Jung et al., measured that a signiffzamn
tion of DNS lookups (more than 23%) receive no answer and that
they account for more than half of all DNS packets in the wadea
due to persistent retransmissions.

Several of these studies were conducted more than a decade ag
and often from a small number of vantage points. Collabondte-
tween the Internet research and operations community fohgeev
significantly since these foundational studies and we nove ha-
cess to a new and unique data source, the Internet Systerssicon
tium (ISC)’'s Secure Information Exchange (SIE) [18], whi-
ables researchers to monitor DNS activity from hundredspefa-
tional networks in real-time. One of the driving forces mehsuch
data sharing has been its untapped potential for rapidlytiige
ing malware domains. In particular, domain registratioms BNS
access patterns could be an effective means for trackingrcyb
criminal behavior and several recent studies have explibredp-
plication of machine-learning techniques to automatjcaléntify
malicious domains [8, 11, 39].

In this paper we report on findings from a global and multidi-
mensional analysis of DNS activity, as observed from a lagj®f
widely distributed and operational DNS resolvers. Spedlifijcwe
analyze two weeks of data from more than 600 resolvers cempri
ing more than 26 bhillion queries and responses. First, wesys
atically dissect this data, present high-level charasties of ob-
served traffic behavior and identify invariant characterssacross
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resolvers. Second, we use this dataset to critically remeithe
validity of certain prior measurement studies, in the ceindé this

more global perspective and modern traffic characterisicslly,

we evaluate the feasibility of using this dataset to autaraby

extract malicious domain groups. We make the following kagi
ings:

e We find that resolvers from different /24 subnets have diffier
profiles, including query/response counts; unansweretyqates;
unsolicited response rates; query type distributions garealy success-
to-failure ratios.

e In comparison with prior measurement results, “A” queries-c
tinue to dominate, “AAAA’ queries have sharply increasedl an
other query types depict a decrease in popularity.

e We find that although root servers are always availabde, have

Canada

Figure 2: The geo-location of the DNS resolvers that contribte
to the data.

server for the IP address wfwv. exanpl e. com The root server
responds with a referral to thecomTLD server. The recursive
resolver then queries theeomTLD server, and in response is pro-
vided with a referral to the authoritative server éoranpl e. com
which hosts the name-to-address mapping. Finally, therseeu
resolver contacts the authoritative serveegfinpl e. comto ob-
tain the corresponding IP address.

Data. Our data is collected from a high-volume passive DNS
source at the Security Information Exchange (SIE) [18].sTro-
vides a near real-time data feed from multiple hundreds oSDN
recursive resolvers distributed over the Internet. Theselvers
represent large ISPs, universities, as well as public DN@icee
providers located in North America and Europe, suggestingla

no unanswered queries), more than 15.1% of the queries gent b diversity in the user population behind these resolversplethe

recursive DNS resolvers are unanswered.

e We explored the cause of DNS query with negative answer i@gier
that do not return “NOERROR"). We identify DNSBL as having a
much higher failure ratio than do other query types.

e We find that invalid TLD is the primary cause of query with neg-
ative answer at root servers, and that the percentage dicirizD
has increased in comparison with the results from prior oreas
ments. However, Aor-A queries have decreased in popularity,
and almost disappeared in our data.

e We find that 12.0% of traffic to root severs and 8.0% to other
servers ardruly repeated queries. We further identify the possi-
ble causes including concurrent query, CNAME chain saatitn,
premature retransmission.

o \We find that temporal correlation of domain queries is arotiife
means to detect correlated domain groups. Based on thisdindi
we develop a novel approach that detects previously unkmoamn
licious domains related to known anchor malicious domaiftse
approach achieves 96.4% detection precision and detect&3
malicious domains on average for each given anchor domain.

2. BACKGROUND AND DATASET

DNS Protocol. The Domain Name System (DNS) is a distributed,
hierarchical naming system that translates between donzaires
and IP addresses. Client end hosts (also called stub respsim-
ply contact a recursive resolver that implements the hibieal
resolution process of iterating through name servers téopar
the translation. In the example shown in Figure 1, the stub re
solver queries the local recursive resolver for the IP asklief
www. exanpl e. com The recursive resolver usually resides within
the local network of the client’s organization and is mambiggthe
organization’s administrator. However, clients can alsoose to
contact recursive resolvers located outside their locavork (e.g.,
OpenDNS resolvers and Google public DNS resolvers). Assgmi
an empty cache, the recursive resolver starts by querymgatbt

geo-locations of the DNS resolvers in Figure 2. We first ugerd t
party service [27] to convert the IP addresses into theatulde and
longitude, and then plot the locations in a Google map.

Due to privacy concerns, the data-collection sensor isayepl
“above” the recursive resolvers and records all DNS quenesre-
sponses between the recursive resolvers and the remotedd8s
The sensor does not collect traffic between client stubvesobnd
recursive resolvers. As a result, the identity of clienttessds that
sit behind the recursive resolvers are not available.

Previous SIE data analysis has shown that 93% of the domain la
bels immediately under the .edu TLD have a resource record in
the SIE data in a two-week observation period [40]. The DNS
servers that generate responses are dispersed in 70.7% (8 th
CIDR blocks and 69.2% routable ASes [40]. We collected allDN
traffic in the raw SIE channel for two weeks from December 9,
2012 to December 22, 2012. In total, our dataset containst&to
billion DNS queries and responses.

Local and Root Perspective.Since our data is collected from
local recursive DNS resolvers, it naturally enables stoglypNS
behavior from the perspective of the local resolvers. Onother
hand, 13 root servers of vital importance sit atop the DN$- hie
archy. Due to their importance, multiple prior works have an
alyzed DNS protocol behavior from the perspective of thet roo
servers [12, 13, 42].

We attempt to analyze our DNS data from the root perspecsive a
well. As described in Section 2, if a client-side nameserestarts
with empty cache, or the TTL expires for a TLD namesever entry
the recursive resolution process starts by querying thesewers
and obtaining a referral to an authoritative TLD nameservds
though our data is collected from local recursive DNS remaly
the availability of the response nameserver’s IP addressles us
to isolate the DNS traffic to and from root servers. Given tbe v
ume and diversity of our dataset, we believe that the suli$2\&
queries and responses is a representative sample of DNIS tinaf
root servers experience. In this paper, we analyze the Daffictr



10" Organization Resolver # | Traffic %
100} US ISP A (subnet 1)| 40 32.6%
US ISP A (subnet 2)| 34 22.7%
US ISP A (subnet 3)| 10 17.4%
10° Public DNS Service 11.7%
107 US ISP B 2.0%
o US ISP C (subnet 1), 1.6%
US ISP C (subnet 2), 1.5%
US ISP D (subnet 1) 1.1%
10 US ISP D (subnet 2) 1.0%
s US ISP E (subnet 1) 1.0%
IPs EUISP A 1.0%
24 US ISP C (subnet 3) 1.0%
/16 USISP F 0.8%
‘ ‘ ‘ ‘ ‘ /8 US ISP D (subnet 3) 0.7%
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Figure 3: Outgoing DNS queries generated by various re- us ISSSCE(SLLJaneM) 833;0

. 0
solvers, sorted by volume and aggregated by IP addresses,dn US ISP E (subnet 2) 0.4%
/24, /16 and /8 subnets. EU EDU (subnet 2) 0.2%

EUISP B 0.2%
Table 1: The percentage of traffic generated from the top 20 /2
subnets with IPv4 resolvers, and the aggregate traffic genated
by IPv6 resolvers.
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characteristics from both the local perspective.( using the full
dataset) and the root perspectie.(, using only traffic to and from
root servers), whenever applicable.

3. DNS TRAFFIC CHARACTERISTICS We identify the 20.t0p /24 subnets in our data.with the high.est
i ) . traffic volume. By usingyhoi s lookups to determine the organi-
In this section, we analyze the characteristics of the ctt® 440 of the /24 subnets, we identified six commercial USs|SP
DNS traffic from various perspectives.

one US educational institute; two commercial European ;| 8Rs
European educational institute; and a public DNS serviogiger.

3.1 H'Qh'level Characteristics Many organizations deploy DNS resolvers in multiple /24rseib
Figure 3 plots the number of outgoing DNS queries observed as shown in Table 1. Due to privacy concerns, we use the totati
from each resolver in log scale. We sort the resolvers acupitd (US or EU) and type (commercial, EDU or public) to denote the
their corresponding traffic volume. Our data includes trefffom organizations. The bulk of the data is collected from US ISP A
628 distinct DNS resolvers including 10 IPv6 resolvers. Biat which serves a large population and contributes a large euwib

prisingly, we find significant variance in the volume of DN&qes resolvers.

that they generate. The most active resolver generates timame

70M queries per day, which translates to an average of mare th  3.1.2 DNS Data Type

800 queries per second. In contrast, 407 resolvers gerfevaée In normal operation, each DNS query is associated with a re-

than 10,000 queries during the two week measurement period.  gponse. However, cases exist when a DNS query is not answered
This observed range shows that the query volume of DNS re- or 5 DNS response is received without a matching query, reithe

solvers has a heavily skewed distribution. A small fractbrle- due to misconfiguration, backscatter from attack traffic ackgt
ployed DNS resolvers are serving the majority of the DNSigser 555, Hence, we group DNS traffic in our data into three cate-
This observation is consistent with that of prior measurrgrseud- gories: query-response pairs, unanswered queries andicitesbo

ies by Pang et al. [35]in 2004 and Osterweil et al. [33]in 2012 responses. More than 83.3% of the entries in our data are-quer
Interestingly, the vast majority of inactive resolversdre] to a Eu- response pairs, 14.9% are unanswered queries and 1.8%-are un
ropean educational institution (354 resolvers) and a US$atthnal solicited responses. The percentage of abnormal casdsgd-inc
institution (49 resolvers). We subsequently learned tHaSzx- ing both unanswered queries and unsolicited responses, 1961
periments are conducted at these institutions, and spgectiat which seems anomalous and is worthy of deeper investigation

ongoing DNS experiments may be the reason behind the large nu gpyipus consideration is packet loss in the data colledtitras-

ber of inactive DNS resolvers. Nonetheless, the amountadfidr tructure.

generated by the inactive resolvers is negligible and shoot re- We note that the top 20 organizations have different profites

markably affect our measurement results. plot the respective percentage of query-response pairsiasa-
We further_agglomerate IP addresses into /2_4, /16 and /8 sub-gyered queries in Figure 4. We find that three subnets desigite

nets, respectively. We also put all resolvers with IPV6 esses  pjficantly from others with drastically lower percentageqofery-

into one group. Our monitored DNS resolvers span 71 distBitt response pairs and higher percentage of unanswered qUE®S

subnets, 33 distinct /16 subnets, and 22 distinct /8 submbtstraf- belong to two organizations— the public DNS service and the E
fic volume of each subnet is also plotted in Figure 3. Thishiert  yopean educational institute. In addition, the public DNSvice
validates that our data is collected from vantage pointsidiged is the only organization whose results are far off from tiee li
widely across the IPv4 address space. x+y=100. Recall that the percentage sum of query-respoaiss, p
L. unanswered queries and unsolicited answers equals to Hiel
3.1.1 Organizations the public DNS service is the only organization that suffess a
We use /24 subnets to group DNS resolvers into organizations high percentage of unsolicited answers (15.2%). As poiotedby
and bin all resolvers with IPv6 addresses into a specialmréi: Brownlee et al. in [12], unsolicited answers may be indicatof

though large organizations may have /16 or /8 subnets, wéZthd  targeted DoS attack, by flooding the target with answers &vigsi
subnets to be a good way to group DNS resolvers as it providesit does not issue. However, we can see that this network a@so h
sufficient abstraction and enables capturing the diffexdsetween a high ratio of unanswered queries (more than 40%), sugggesti
different subnets within large organizations. that there is a data collection issue at this provider. Thoting
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Figure 4: The scatter plot of the percentage of query/respose
pairs and unanswered queries for each organization identiéd
in Table 1. The public DNS service and the EU educational
institute stand out from other organizations.

Perspective | Year | A AAAA PTR MX
Local 2012 | 66.2% 13.4% | 11.1% 2.3%
Local 2001 | 60.4%-61.5%| N/A 24%-31% | 2.7% - 6.8%
Root 2012 | 57.5% 26.6% | 4.8% 0.2%
Root 2008 | 60% 15% 8.4% 3.5
Root 2002 | 55.5% 4.7% 19.9% 4.6%

Table 2: Distribution of DNS lookups by popular query types.
The table omits the percentage of other query types. The per-
centages for years 2001, 2002 and 2008 are from [20], [42]
and [13], respectively.

EU EDU also observes a high number of unanswered queries, thequeries for seen NS names by default.

volume of unsolicited responses observed in this netwotkss
than 5% of the overall query volume. We suspect that the high
unanswered-query ratio could be attributed to ongoing Dél&ed
experiments.

Finally, we recompute the numbers for the percentage ofyguer
response pairs, unanswered queries, and unsolicitednsspafter
excluding the two anomalous organizations. We find theseoeusn
to be 88.6%, 11.3%, and 0.03% respectively. The low pergenta
of unsolicited responses also indicates that packet logsnoiabe
a detrimental issue in the SIE data collection infrastriecutside
of these two providers.

3.2 Query Type Breakdown

The DNS protocol supports a variety of query types for differ
ent purposes. To summarize the most popular types, an “Ayque
translates a domain name into IPv4 addresses, a “AAAA’ query
translates a domain name into IPv6 addresses, an “MX” quang{
lates the name of a mail exchange server into IP addressgs an

Qtype Successful| Negative Answer | Unanswered
A 76.3% 14.1% 9.6%

AAAA 78.1% 6.2% 15.7%

PTR 30.4% 44.5% 25.1%

MX 48.3% 20.6 31.1%
Perspective | Successful| Negative Answer | Unanswered
Root 46.0% 54.0% 0%

Local 66.9% 18.0% 15.1%

Table 3: Percentage of queries with successful answers, reeg
tive answers and no answers.

10 years ago. Meanwhile, the percentage of PTR queries has de
creased from 24-31% to 11.1% and MX queries have decreased
from 2.7-6.8% to 2.3%. While the absolute number of queras h
also grown significantly in the past 10 years the growth ofpth
query types is not comparable to that of AAAA queries.

From the perspective of root DNS servers. We observe a simi-

lar trend with local perspective. The percentage of A quenyains
steadily high at root servers. The percentage of AAAA quexy h
increased with time, while the percentage of PTR and MX query
has decreased. However, the change is more drastic fronodhe r
perspective than from the local perspective. At root, theegma-

age of AAAA queries has increased by 466% from 2002 to 2012.
In contrast, the percentages of PTR query and MX queries have
shrunk by 76% and 94% respectively in the same time period.

AAAA Queries.  The significant increase in AAAA queries re-
flects wide adoption of IPv6 capable operating systems aowidars
which issue AAAA queries along with A queries for requested
names, as well as IPv6 capable resolvers which also issueAAAA
In particular, the top 3
domains that are looked up by AAAA queries arkamai.net,
amazonaws.com andakadns.net. We also observe an anti-virus
service,mca fee.com, and a DNS servicgjahoodns.net that are
among the top 10 most popular domains receiving AAAA queries

3.3 DNS Query Success Rates

Next, we study the question of how many modern DNS queries
return successful answers. We reuse the categorizatiohodhet
adopted by Jung et al. in [20]. In particular, DNS querieswitic-
cessful answers are those having “NOERROR” as the retura cod
in the response. We further divide the remaining queries tiwb
categories: queries without response, and queries raginmega-
tive answers. Our definition of negative answer broadlytideb
all responses whose return code@ “NOERROR”.

Table 3 presents the percentage of queries with successful a
swers, negative answers and no answers in our datasetwis she
numbers for the aggregated traffic from both the root anddbal |
perspective, and for specific query types. We exclude uritedi

“PTR” query translates an IP address back to domain names. WeDNS responses from the analysis in this section. As a rethalt,

examine how popular each query type is in the real world, asa-m
sure how this distribution has changed over time. Table @/stibe
distribution of the four popular types of DNS queries in realrld

ratio of unanswered queries in Table 3 is larger than the reuarimb
§ 3.1.2. Apparently, different types of DNS queries haveaaity
different success rates. A queries and AAAA queries haveé- sim

traffic. Because we do not have access to legacy DNS traffic, we larly high success rates. “Unsuccessful” A queries are giisn

quote the numbers reported by Jung et al. [20], Wessels §t2]l.

due to negative responses, whereas “unsuccessful” AAAAiegie

and Castro et al. [13] in the row of year 2001, 2002 and 2008, re frequently result from unanswered queries. PTR query and MX

spectively. Jung et al. collected their data from local he=g at

query have much lower success rates. In particular, mgjofit

MIT and Kaist. On the other hand, Wessels et al. and Castro et PTR queries result in negative answers, while almost omd dfi

al. reported the distribution observed from only root sesve

From the perspective of local DNS resolvers. After more than
ten years, the “A’ query remains the most dominant DNS query
type in US and Europe, accounting for about 66.2% of totatigae
This percentage remains stable with a slight increase Hitgears.
With wider deployment of IPv6 protocol, the volume of AAAA
queries (13.4%) has risen sharply. This query type did nist ex

the MX queries does not return any response.

Query Success Rate from the Local Perspective. The aggre-
gated ratio of DNS queries with successful answers is 66 36.
overall ratio of unanswered queries is 15.1%. The unradiadbP
protocol underlying the DNS protocol may be one of the causes
However, given the zero unanswered query ratio at root sgrve
the unavailability of other authoritative servers is likédb be the
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Figure 5: The breakdown of query with successful answer, neg
ative answer and no answer in different organizations. The a-
tio of unanswered query is implicitly represented by the dis
tance to the line x+y=1.

primary cause. The overall ratios are similar to the resamf
ten years ago, when Jung et al. reported that the percentdges
answers with successful, negative answer and unansweegisju
were 64.3%, 11.1% and 23.5% respectively in their MIT tr&a.[
This suggests that many of the contributors to DNS queriéls wi
negative answers and no answers, persist from a decade ago.

Query Success Rate from the Root Perspective. Noticeably,
the ratio of unanswered query is 0, meaning that every query i
sued to the root servers is answered. It implies that rooeser
were always available during the measurement period. Hexvev
the percentage of successful answers returned by rootrsefwe ,
referrals to nameservers that should know the queried aoss),

is significantly lower than that of other servers. More th@%5
of the queries issued to root servers return negative asswer
comparison, in 2000 only about 2% of lookups to root returgene
tive answers [20]. The sharply increased percentage ofyouigh
negative response at root servers may result from the htghat
invalid traffic reaching them, as reported by multiple poesd mea-
surement studies at root servers [12, 13]. We further ifyat the
cause of failed query in §3.4.

Query Success Rates in Different Organizations. Figure 5
illustrates the breakdown of queries with successful answezja-
tive answer and no answer in different organizations. Weinles
different organizational profiles:

Qtype A PTR DNSBL AAAA
Root perspective | 66.0% 9.1% 0.2% 5.8%
Local perspective| 50.9% 28.2% 7.2% 4.59

Table 4: Four query types causing the largest number of nega-
tive answers from the root and local perspective, respectaly.

Perspective | Invalid TLD | A-for-A
Root 53.5% 0.4%
Local 1.2% <0.1%

Table 5: The percentage ofnvalid TLD and A-for-A query from
the root and local perspective, respectively.

answers was the PTR query type [20]. Due to the shrinking per-
centage of PTR queries in our traffic, A queries have now becom
the dominant contributor to negative query responses. étalot
servers, negative answers caused by PTR queries and DN$BL ar
much less common when compared with the local perspective.

Different query types also have differing ratios of negatan-
swers. The ratio of DNSBL query with negative answers todke t
number of DNSBL queries is 73.9%, which is significantly legh
than any other query types due to the nature of blacklistupok
most of lookups do not hit the blacklist, in which case an ‘NxD
main’ response is returned. We further analyze DNSBL in 83.4
Among the other three types, the ratio of PTR query with nega-
tive answers to the total number of PTR queries is 46.5%, kwhic
is higher than corresponding ratios for the A (14.8%) and AAA
(6.5%) query types.

Independent from query types, prior research has identifielo-
lematic query names that evoke negative answers [12, 13220,
includinginvalid TLD and Afor-A query. We investigate these in
detail in 83.4.1, §3.4.2, and present their respectivegueages in
Table 5.

3.4.1 Invalid TLD

Invalid TLD denotes the case when the queried hostname does
not have a valid TLD. This may be caused by either user typos or
client-side application implementation bugs. Becauseqteried
names do not exist, such queries will result in NXDomain &s th
response. Table 5 presents that 1.2% of the traffic from the lo
cal perspective contains an invalid TLD. However, 53.5%hef t
queries seen by root servers contain invalid TLDs. This nlase
tion, although highly skewed, seems reasonable, becaws@su
with invalid TLDs terminate the recursive resolution presat root
servers, in the absence of valid TLD servers. Recall than filve
root perspective, the total percentage of queries with thegan-

1. High success rate, low negative answer rate and low unan- qwers is 54.0% (Table 3). It means thiatalid TLD has become

swered rate: The EU ISP A subnet and a US ISP D subnet

have more than a 95% success rate.

swered rate: As mentioned earlier in §3.1.2, both EU EDU

subnets and the public DNS service resolvers have excep-

tionally high ratio of unanswered queries. In addition, one

of the EU EDU subnets has a very low negative answer rate

(less than 1%).

. Low success rate, low negative answer rate, and high unan-

the primary contributor to negative answers at root servers
Multiple prior studies have investigated the prevalencielid
TLD domains at root servers [12, 13, 42]. The percentaga-of
valid TLD domains reported in 2001, 2003 and 2008 were 20%,
19.53% and 22.0%, respectively, which is stable. Surmgigint
has sharply increased to 53.5% in 2012, from the perspecfive
our dataset. In addition, the resolvers issuimgalid TLD queries
were wide spread in all the major organizations that we noonit
Note that the above comparison only applies to root servens.

3. High negative answer rate: Three subnets have over 50% percentage ofivalid TLDis low from the local perspective.

negative answer rate. They belong to US ISP E, the US EDU,
and EU ISP B, respectively.

3.4 Causes of Queries with Negative Answers

We first identify which query types cause the most negative an
swers. Table 4 shows the top four types with their respegtare
centages. We find that A queries cause the vast majority @itiveg
answers, in viewing from both the root and the local perspectn
comparison, in 2000 the dominant query type resulting iratieg

We summarize the most common invalid TLDs in Table 6. For
each TLD, the table shows its count in million as well as its pe
centage among all invalid TLDs. We observe that a large numbe
of invalid domains do not contain any dot. We put such domains
a special “no_dot” group, which is the second most populenfo
of invalid TLDs. Together with “local” and “belkin” these Itibe
invalid TLDs are far more popular than the other ones. “llbisa
a pseudo-TLD that a computer running Mac OS X uses to identify
itself if it is not assigned a domain name. Similarly, queneth



TLD Count (M) %

local 68.4 21.9%
no_dot 52.2 16.7%
belkin 51.2 16.4%
corp 9.6 3.1%
lan 2.9 0.96%
home 2.3 0.74%)
localdomain 1.7 0.54%
loc 1.5 0.48%
internal 1.4 0.45%,
pvt 1.2 0.39%

Table 6: List of 10 most frequently queried invalid TLDs with
counts in millions and percentage.

“lan,” “.home,” “.localdomain,” “.loc,” and “.internal"are likely
used by other programs under certain circumstances. Neless,
these queries are meant to stay local, and should not ledk the
Internet. “Belkin” is a famous brand that manufactures tetedc
device. We suspect that queries with “.belkin” are generbtethe
device under the same brand due to misconfiguration. These ar
likely good candidates to be suppressed by local implerntienta
Although we have identified several likely causes of fredjyeap-
pearing invalid TLDs, user typos can also result in invalldDB.

In our data, the count of invalid TLDs exhibit a long-taileigti-
bution. More than 500,000 other invalid TLDs are used musk le
frequently.

3.4.2 A-for-A Query

A-for-A query denotes the case that the queried “hostname” is
already an IP address. Because an IP address is also raprkasn
a dot-separated string, the IP address A.B.C.D will be jpmtted
as having the TLD “D". Thus, Aer-A queries are a special case
of invalid TLD queries.

In comparison with multiple prior works [12, 13, 42], we ob-
serve an interesting trend. The percentage d6AA seen by root

1.0 u T
— NS (root)
— NS (local)
0.8f| — A (local)
— AAAA (local)
3 0.6f
2
w
o
O 0.4r
0.2p
0losec I min Thr 1 day 1 wéek
TTL value

Figure 6: The cumulative distribution of TTLs of NS record
returned by root servers, and three record types, A, AAAA and
NS, returned by other servers.

cumulative distribution of TTL values of three distinct ced types

in our DNS data: A, AAAA and NS. Root servers very rarely an-
swer with A or AAAA records, so we only plot NS record TTLs
returned by root servers. In particular, A and AAAA recor@d-pr
vides a direct mapping from a hostname to an IPv4 address and
an IPv6 address, respectively and the NS record providetes re
ence to the authoritative nameserver that should know theegl
hostname when the nameserver being queried does not know the
IP address of the queried hostname. We observe that NS secord
have much larger TTL values than A and AAAA records. This re-
sult is consistent with the result reported by Jung et ainften
years ago [20], except that AAAA record did not exist backnthe
Given that AAAA and A records play a similar role, which is to
translate domain names to IP addresses, it is reasonaliseove

that AAAA records and “A’ records shares similar TTL distrib

servers reported in 2001, 2003 and 2008 was 12-18%, 7.03% andtions. On the other hand, the longer TTL value of NS records is

2.7%, respectively. The decreasing trend continues in ata cbl-
lected in 2012, where Aer-A only contributes 0.4% of the traffic.
It indicates that most buggy implementations that causisgtiob-
lem have been fixed. From the local perspective, the pergerdt
A-for-A is also negligible (<0.1%).

3.4.3 DNS Blacklists

DNS blacklist (DNSBL) is a popular method used by site admin-
istrators to vet domains for spam, malware etc. Although BNS
utilizes the DNS protocol, it does not translate betweertrfzzaes
and |IP addresses. Rather, site administrators use it tontiat
whether the target hostname is blacklisted, by craftingténget
hostname into a special URL under the blacklist provideds d
main and issuing an A query. When the query reaches the ackl
provider’s authoritative nameserver, the nameserversgilid a re-
sponse according to its own format. In popular DNSBL designs
the return code will be NXDomain (domain not exist) if the-tar
get hostname does not hit the blacklist. In particular, 73 &
DNSBL queries return NXDomains, which gives DNSBL queries
significantly higher failure odds than other query types.

The usage of DNS blacklists has been reported in [19]. DNS
blacklists lookups accounted for 0.4% and 14% of lookup&irt
December 2000 trace and Feburary 2004 trace, respectively.
2012, DNSBL queries account for 1.7% of the lookups. The per-
centage is lower than year 2004, but higher than year 2000.

3.5 TTL Distribution

The time-to-live (TTL) field in the DNS responses informs the
resolver how long it should cache the results. Figure 6 sttbes

the key reason that keeps the load of DNS servers residirgehig
in the hierarchy manageable. Only 1.8% of the queries avedss
to root servers in our trace, because in most cases the-slat
nameserver knows the authoritative nameserver using ttieeda
NS records. If NS records have a much shorter TTL, the client-
side nameserver will need to query the root servers much frsre
quently. We also observe that the TTL of NS records returned b
root servers is extremely regular: almost all records havk af

two days.

We further compare the TTL of A and NS records in 2012 and
that in 2000 as reported in [20]. The TTL of NS records roughly
remains stable. However, the TTL of A records in 2012 is much
smaller. In 2000, only about 20% of A records have TTL lesstha
one hour. About 20% of A records have TTL larger than one day.
In 2012, about 90% of A records have TTL less than one hour and
almost 0% of A records have TTL larger than one day. This diffe
ence shows the wide deployment of CDN and other services that
leverage short TTLs, which inevitably poses more pressaoréhe
DNS infrastructure.

3.6 Repeated DNS Queries

Multiple previous studies of root DNS servers have revetiiatl
over 56%-85% of queries observed at root servers are repga@e
42]. These studies further identified that misconfiguredboisave
clients mainly caused these astonishingly high numbeesally a
“normal” resolver should not issue many, if any, repeateerigs
to authoritative servers because of the effect of cachirmyvéyer,
our dataset shows that this is not the case—a consideratilerpo
of DNS queries from “normal” resolvers could still be coresield
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Figure 7: The repeated query ratio and average number of
queries per resolver for major organizations.

repeated. In this section, we analyze the prevalence arldrexp
potential reasons behind the repeated query behavior ofvess
in more detail.

3.6.1 Simulation Methodology

For our analysis, we simulate an infinite resolver cacheenie
playing the captured DNS traffic. If the query returns an A A4
or PTR record, the resolver knows the IP address of the qlidde
main or the domain for the queried IP address. It should oeis
a query for the same domain or IP address before the TTL expire
If it issues such a query, we count it as a repeated query.

We find that from the perspective of our resolvers, the pércen
age of repeated queries that is issued to the root serversthed
authoritative severs is 12.0% and 8.8% respectively. The cd
repeated query varies significantly across different degdions.
We plot the hourly repeated query ratio, in addition to therait
query volume for major organizations in Figure 7. Althougime
organizational subnets have a repeated query rate of 209%gtwarh
their traffic volume is low. The repeated query rates for Hrgést
subnets lie between 10% and 15%.

3.6.2 Hourly Plot of Repeated Query Ratio

The three resolvers shown in Figure 8 exhibit very differgrar-
acteristics. The university resolver (Figures 8(b)) hashlghest
repeated query rate. Meanwhile, it also exhibits a strorsitige
correlation (p-value < 0.001) between the repeated quéeyanad
the query volumei(e., the repeated query rate rises when the query
volume rises). In addition, its overall query volume showdear
diurnal pattern and weekly pattern. The traffic peaks apgedng
business hours of each day. Much more DNS traffic occurs glurin
weekdays and less traffic during weekends.

The commercial ISP resolver (Figure 8(a)) has a repeatey que
rate that varies between 5% and 10% during most of the days- Ho
ever, the repeated query rate rises to 15% and above betwesen D
15th and Dec. 18th. The overall query traffic also exhibittang
diurnal patternj.e., the traffic volume rises during night time and
falls during day time. It reflects the typical network usadeao
residential network. However, we do not observe strong Vyeek
pattern. In addition, a strong positive correlation (pueak 0.001)
between the overall query volume and the repeated queryexate
ists.

The public DNS resolver (Figure 8(c)) has fluctuating repeat

query rate ranging from 5% to 15%. Because its users span dif-

ferent time zones, we naturally observe neither diurndepasg nor
weekly patterns from its overall query volume. Althoughdé&o
observe from the plot, statistical tests also indicateanstpositive

correlation (p-value < 0.001) between its overall queryme and
its repeated query rate.

While many resolvers exhibit strong positive correlatietveen
the query volume and the repeated query rate, it is not altveeys
case. The former suggests that cache eviction has a impootan
in the volume of repeated queries. The higher the query velism
the higher the repeated query rate will be. We further olestrat
resolvers within a /24 subnet show high homogenaity. ( either
all of them or none of them exhibit strong correlation, witry
few exceptions). We omit these graphs due to space conSaiesa
This reflects on the administrative policies within /24 sefisn the
choice and configuration of network and DNS software.

3.6.3 Possible Causes

To further understand the cause of these repeated quegg®m
formed additional analysis to separate repeated queaes/dre is-
sued in close proximity (the remainder could be attributedache
eviction). We find that over 75% of repeated queries (acrtiss a
resolvers) are due to related queries issued in close teinypmx-
imity and the remainder are likely due to cache evictionhatre-
solver. We investigate two popular resolver implementegiBIND
(9.9.2-P1) and Unbound (1.4.16), as well as the behaviddpehDNS
and GoogleDNS, from which we distill a few possible impletation-
related factors that cause repeated queries in close tahypoix-
imity.

e CNAME Chain Sanitization. When a response includes mul-
tiple records forming a CNAME chain, both BIND and Unbound
issue extra queries to verify the trustworthiness of therchahis

is an intentional security enhancement to counter the Kskyiat-
tack [21], which could cause repeated queries and increased
sponse times. Nearly 20% of A and AAAA queries in our dataset
were eventually responded to with CNAME answers, which reake
CNAME chain sanitization contribute to about 40% of all refsel
queries in our simulation.

e Concurrent Overlapping Queries. A resolver could issue re-
peated queries if it receives tvawerlappingqueries in close prox-
imity. Two queries are considered overlapping if they bglom
either of the two cases: i They request identical name; aii)
Some parts of their delegation chain or CNAME chain are ident
cal. If the identical segment is missing in the cache, thelves
will send two identical requests, which will be counted gsesed
query. Implementing birthday attack protection [41] cafphmiti-
gate this effect. We observe that both BIND and Unbound have i
plemented birthday attack protection, but interestingbp@eDNS
and OpenDNS do not strictly suppress identical queries.

e Premature Retransmissions.We found that Unbound takes an
arguably aggressive retransmission strategy, waitingifity one
round-trip time before it retransmits the request. BIND isren
conservative and has a minimum retransmission timeout@h&9

In our local experiments, we observed that Unbound issuestale
times more repeated queries than did BIND due to its prematur
retransmission timer.

e Resolver Quirks. Resolvers might also have some implemen-
tation quirks (or bugs) that could trigger repeated qudrieome
cases. We have found that, in certain cases, BIND will resek+
pired ‘NS’ names twice before replying to client queriesuléng

in repeated queries and increased response times. Giveortie
plexity of the name resolution process, we suspect simigaxies
could lurk in resolver implementations.

4. MALWARE DOMAIN GROUP DETECTION
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Figure 8: The hourly repeated query ratio and overall DNS quey volume for typical resolvers

In this section, we present our approach to detect prewiausl
known malicious domains by simply using temporal correlain

DNS queries. The key intuition is that DNS queries are not iso

allelizing our approach for large-scale computation isigtrtfor-
ward.

In particular, we devise a multi-step approach to discoeerec
lated domain groups for each anchor domain. We describeghe s

lated from each other. For any DNS query, the underlying pro- in detail in Section 4.1, 4.2.1 and 4.2.2, respectively.

cess that generates it is likely to generate other relatedesgs For

example, when a browser loads a web page, it starts by qeeryin 4.1 Coarse ldentification of Related Domains

the page’s domain name, assuming it is not cached already. Af

ter the browser starts to render the page, it will generadiiadal

We represent the notion of correlation with co-appearaneg, (
a domain is considered to be correlated with the anchor domai

DNS queries for other domain names whose content is embedded j; is frequently queried together with the anchor from same

or linked in this page. This applies to malware as well. For ex

ample, drive-by exploits typically involve a long redirieet chain
before the occurrence of an exploit. Malware frequentlysuse
main generation algorithms (DGAs) as a rendezvous tecbriigu

recursive resolver). We set a time window threshiBldto restrict
the search scope. Given an anchor domain, we extract theiloma
segment with the anchor domain in the middle according to the
window size. All domains in the segment are considered asae|

search for command and control updates. Hence, we propose tqjomain candidates.

detect malicious domain groups by using the temporal caticel

We quantify how closely the candidate domain is related with

among DNS queries, given some well-known seed malicious do- the anchor domain using two metrics derived from the ideafof T

mains (also known as anchor points).

IDF [26], a metric used widely in information retrieval to awire

One of the key differentiators between our work and recert ma  the importance of a term in a document, given a collectioncaf d

licious domain detection work using DNS traffic [7, 8, 11] et
ability to detect malicious domains groups. We also onlydnagy

uments. Let us consider the set of anchor domains td.b&iven
a query domainl, a segment corresponding to an anchor domain

a small number of malware domains as seeds instead of a large, (note that there can be multiple segments correspondingdoa

training set. In addition, our intuition of DNS query coagbn is
general, so that our approach can detect different typesroé-c
lated domain groups, including but not limited to phishisgam
and scam campaigns, DGA-generated domains, redirecti&s, li
and so on. The ability to detect malicious domains in gerssal
differentiates our work from existing work targeting spigctypes
of correlated domains [9, 23, 37, 45].

chor domain), and a total set efsegmentsS, the TF-IDF-based
metric has two components: (a) the term frequengy = n(d, s)

, Wheren is a function indicating how many times the domain
occurs in the segment and (b) the inverse document frequency
maar = |S|/|{s € S : d € s}|, which measures how rare the do-
maind is across the set of segmerfishy computing the ratio of
the total number of segments to the number of segments irhwhic

Detecting correlated malicious domain groups using the DNS ihe domain occurs. The final TE-IDF score is the productef

traffic collected from recursive resolvers is a challengamk. The
difficulty rises from two major factorskFirst, the DNS queries are
quite noisy, in the sense that we observe a mixture of quéeees
longing to many different groups. We will also frequentlyl f@

andmidf.

Note that if the candidate domain is popularly queried in the
DN traffic, itsm. s value is expected to be large no matter whether
it is related with the anchor domain or not—this will be camt

observe some queries that should have been in the groupsecau acted bym,, in the score, which down-weights popular domains.

of DNS caching. Second the traffic volume is high. With about
80 million DNS queries per hour, conventional approachasdre
able to discover correlated groups like clustering will scéle.

In order to make the problem tractable, we introduce theonoti
of “anchor malicious domairis Instead of searching in the entire
DNS corpus, we only target domains that are correlated wvaigh t

For the domains truly correlated with the anchor domain, xpeet
both itsm.; andm;qs value to be large. We set two thresholds—
T is the minimum value ofn;¢, andT;q4 is the minimum value

of m,q¢. Given an anchor domain, we extract all domain segments
containing it, and then compute the ; andm,qs values for all do-
mains that appear in the segments—we keep the domaingaeiith

anchor domains. Given one anchor domain, we discover a groupyajyes passing the corresponding thresholds to get a ciokenst-

of additional malicious domains that are related with it.eTiro-
cessing of different anchor domains is mutually indepenhd€his
design benefits our detection approach with high applitgbilt

can work as long as at least one anchor domain is availablgs, Th
the bar to apply our approach is much lower than those systems

that require a comprehensive labeled training set. In madipar-

fication of the group of domains related to the anchor domain.

4.2 Finer Identification of Related Domains

To get a more precise identification of domains related to the
anchor domains, we first cluster domains according to fattern
of co-occurrencevith the anchor domain.



i i Anchor Coarse Related | Malicious Benign
4.2.1 Domain Clustering Domain # Domain # Domain # | Domain #

Let us consider the sét, of domain segments that have anchor 129 55373 16601 8772
domaina at their center point (note that there can be multiple such
domain segments for any anchor domain). fgi, S,) denote the
number of times: occurs inS,. Each domaind in S, is repre-
sented as a Boolean vectorof dimensionf(a, S.), wherev; is
set to 1 ifd co-occurs close (within a small window) to thg
occurrence of the anchor domainin S,, and 0 otherwise. We
then cluster the vectors corresponding to each domaifi,ims-
ing XMeans [36] clustering, with squared Euclidean distaas

Table 7: The number of identified domains after the coarse re-
lated domain identification step, and the number of labeled ra-
licious and benign domains.

we only label the domains that are identified in toarse identifi-
cation of related domaing&ccording to Section 4.1).
We conduct a two-step process to label the domains as fallows

the clustering distance metric. Note that XMeans is a [ant 1. Blacklist Matching.  We match the detected domains against
clustering algorithm like KMeans, which additionally setie the five popular external blacklists, including Malware Dom&ilock
number of clusters automatically. In clustering modelss fiossi- List [1], Malware Domain List [25], Phishtank [3] WOT (Web of

ble to increase the likelihood by adding parameters, butrtfey Trust) [4] and McAfee SiteAdvisor [2]. If a domain is listed a
overfit the data. We use XMeans with Bayesian InformatioteSri ~ malicious by any one blacklist, we will confirm it as malicgu

ria (BIC) as the model complexity cost, which gives a pengdiyn
proportional to the number of parameters in the model — XMean
finds the number of clusters that trades off the increasea ket
lihood with the increased penalty term. Each cluster in tiput

of XMeans groups together domains that share a common ppatter
of co-occurrence with, (e.g., a cluster may have domains that co-
occur with only the first and second occurrence of the ancbimt p

a, but not with other occurrences ofin S,,).

2. IP Address Comparison. If a domain resolved to the same
IP address with a known malicious domain confirmed in the first
two steps, we also confirm it as malicious. Because DNS nagae re
olutions may contain multiple steps.g¢., a CNAME record that
reveals the canonical name followed by an A record that lates
into IP addresses), we build a directed graph to representdme
resolution results for all the detected domains. Next, wegian-
dard graph traversal to find all detected domains that redolthe
4.2.2 Domain Group Extraction sa\r/nve IP address wi_th known _m_alici(_)us domains.

} ) ) e label a domain as malicious ahy of the above steps con-

After clustering the domains related to an anchor domain, we firms it. Any domain that cannot be confirmed is conservagive!

further process the domain segments surrounding the amichor  pgled as benign, although some of them look very suspicious.
main. We break each domain segment into multiple subsegment gai4 labeling approach is strict. Hence, our evaluation ovayes-
according to the cluster result, where each subsegmeneadect timate the false positive rate. (We make this design choicaibise

from the domains in a particular cluster. Note that the syieat the damage of false alarms on legitimate domains is grelager t

size is smaller than or equal to the cluster size, becaus@fkire missing malicious domains.)

cluster may not appear in that particular segment. o Table 7 presents the result of step 1 (coarse related dontetin i
We use two filters to further refine subsegments—the first filte tification), as well as the number of malicious domains thatan

Tyreq is based on domain frequency, while the second filter. label based on the identified domains. We observe that fiest, d

is based on the size of the subsegment. Small subsegmehts wit ain co-appearance is an effective way to discover morecioat
infrequent domains are more likely to have benign domaias th  gomains given anchor domains. On average each anchor domain
pass the co-occurrence-based relatedness checks bulyasitaze is expanded to 128 malicious domains. Second, the coarge ide
little commonality with the anchor domain. _ tification includes large number of benign domains as wehisT

The subsegments corresponding to the anchor domains ferm th g expected, because the DNS traffic is noisy in nature. Hewev
refined domain groups.é., related domains) for the anchor domains—is doesnot mean that our approach incurs 8772 false positive
they are considered to be potentially malicious, and hemeeep  gomains. This is only the intermediate result after the §itsp de-
candidates for further analysis. scribed in Section 4.1. Our approach contains two more steps

. further refine the detection result.

4.3 Evaluation

We use one day's worth of the DNS traffic to evaluate the mali- 4.3.2 Detection Accuracy
cious domain group detection technique. The data was tetlem In order to understand how the values of different threshold
Dec. 16, 2012 and contains 1.82 billion DNS query/respoass p affect the detection accuracy, we apply step 2 (fine-graided-

. tification of related domains), systematically tune thesgiolds,

4.3.1 Evaluation Methodology measure the system performance with different values, &mtd p

The module needs known malicious domains as anchors as in-the result in Figure 9. In our experiment, we find that setting
put. We visit three blacklists: Malware Domain Block Lisf],[1 thresholdT;; = 2 andT;qss = 0.05 produces significantly bet-
Malware Domain List [25] and Phishtank [3]. We choose these ter results than higher values, so we only show the varying de
three blacklists instead of other popular ones becausepttosyde tection accuracy when these two thresholds are fixed at saieh v
their blacklisted domain database including timestampdfawn- ues. Due to space constraint, we do not show the other cases. W
load. We select all domains that are blacklisted on the saaye d  vary T, from 0 to 40, andls;.. from O to 40. We observe a
of the data used for the experiment as anchor domains. Wenobta steep drop in true positive number whép, ., increases from 0 to
129 anchor domains using this method. Note that althoughsee u 40. In the mean time, the number of false positive domains als
these three blacklists to obtain the anchor malicious dosyaiur decreases quickly. We observe a similar trend when we vary th
approach is not limited to these three blacklists. Ratherethod Tsize threshold value. A larger threshold causes both the number
can be used as long as some initial anchor domains are deailab  of true positives and the number of false positives to desgreAs

Next, we need to label the detected domains as either madicio detection modules are typically tuned towards a low fals@tpe
or legitimate to measure the detection accuracy. Labelingoa rate, we findTy,.q = 40 andTs;.. = 20 to be a good thresh-
mains in our dataset is impractical due to the huge volumeckle old choice. With this setting, this module detects 6890 ioresly
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Figure 9: The number of TPs and FPs in the detection result,
varying the minimum domain frequency and minimum seg-
ment size thresholds.

unknown malicious domains (true positives), with 258 fgissi-
tive domains. The detection precision achieves 96.4%. @rege,

each anchor domain is expanded to 53 previously unknown mali

cious domains. During real-world deployment, the operatbo
runs the malware domain group generation system will determ
whether he prefers a tighter or a looser threshold. A tigtesthold
produces fewer false positives, but also discovers fewdicinas
domains. A loose threshold does the opposite.

4.4 Domain Group Analysis
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Figure 10: The size of domain groups, the intersection and
union of each group pair.

Although we have 129 anchor domains, only 79 of them result in

correlated domain groups. Figure 10(a) plots the distidbuf the
detected domain group size. The largest group contains ag asa
852 domains.

Next, we study the similarity among the detected domainggou
We quantify the similarity using the Jaccard similarity nebe-
tween group pairs. Figure 10(b) shows the raw value of iaters
tion and union size of all the domain group pairs. We obsemae t
85.2% of the pairs have a Jaccard similarity of less than Gn@an-
ing that they are almost mutually exclusive. On the othedhaar-
tain domain groups exhibit significant overlapping. Thididates
that the anchors domains deriving these groups are related.

Domain Group 1 (account.s5.com). The first domain group
we examine is detected with the anchor domadcount.s5.com

This group includes 25 domains as shown in Table 8. The first

23 domains are highly similar. They share prefixes with theesa
format, and contain a likely randomly generated segmenhén t
middle. Further, they resolve to the same IP address and gar

address in our DNS data, but their IP address is differem fitmat
of the previous 23 domains.

www.yuid-3043.asdfzxcvedddawer.8866.0rg www.ugez718fhgjjf.2288.org
www.lhvg-5566.asdfzxcvedddawer.8866.0rg www.xshb&6866y.nut.cc
www.xthc-1941.asdfzxcvedddawer.8866.0rg www.fbpk-D81d.fdrrty.flu.cc
www.ugez-3781.asdfzxcvedddawer.8866.org  www.miwr&d8666y.nut.cc
www.lgvg-2321.asdfzxcvedddawer.8866.org  www.yuid-3089898).flu.cc
www.hcrl-3059.asdfzxcvedddawer.8866.0rg www.okyt-B@2d.fdrrty.flu.cc
www.wsgb-0085.asdfzxcvedddawer.8866.org  www.ghqgl20@ftihfdedghf.asia|
www.avkf-1992 fioiiedfnicd.8866.0rg www.hdsm-446Qdtirrty.flu.cc
www.plzu-4528.asdfzxcvedddawer.8866.0rg www.gcqlZLB&66y.nut.cc
www.hjxs-1569.dingjiuniegaodiao.8800.0rg oatrrp.oundfirtfind.com
www.fapj-1710.hongchenyouai.7766.org lonhetei.flickopsearch.com
www.rncw-2132.hongchenyouai.7766.org www.dzni-5168dcthenyouai.-
www.v(fz-0982.asdfzxcvedddawer.8866.0rg 7766.0rg

Table 8: account.s5.com malware domain group

pill-erectionmeds.ru rxpill-medstore.ru
onlinerxpillhere.ru medpillbuy-online.ru
medspill-erection.ru pillcheap-med.ru
online-drugstoremen.ru  menonlinedrugstore.ri
mendrugstore.ru onlinepharmacydrugs/ru

Table 9: A suspicious pharmaceutical domain group

uggshootss.com niceuggsforsale.com
uggsbootsonsale4us.net  officialuggsretails.com
uggsclassic.org uggsbootsoutletmarket.com
louisvuittonwhite.net louisvuittonoutletfranchisema
nicelouisvuittonbag.com  louisvuittonusfoutlet.com

Table 10: Domain group of counterfeit goods

Domain Group 2 (Pharmaceuticals). We identify a large sus-
picious online pharmaceutical campaign containing 295alns

and show it in Table 9. They share the same TLD, “.ru”. Also,
they all contain special terms like “drug,” “med,” or“pilih their
domain names. We examined their DNS query trace and find that a
subset of them is served by the same name server whose damain i
blacklisted.

Domain Group 3 (Counterfeit Goods).  We identify a scam
campaign of counterfeit good containing 17 domains, shawrat

ble 10. All domains contain the brand name to make them Id@X i
legitimate. Nonetheless, users have reported a subsetroftell-

ing fake goods” on the Internet. We list the scam domain&Jygs
andLouis Vuittonas one campaign because their domains resolve
to the same IP address in our DNS data.

Domain Group 4 (Malware DGA). We also discover a cam-
paign of 71 domains that we suspect to be algorithmicallyegen
ated, shown in Table 11. This type of domains are usuallyigder
by malware instances to obtain the IP address for a C&C seswer
they carry no semantic meanings, which distinguishes them f
domains used by human users. The domain names exhibit regula
patterns (i.e., they share the same TLD “.ru” and their sédevel
domain name contains four random characters). This caneksp
to a variant of the TDS botnet. Our analysis further showsdhby
nine of these queries successfully resulted in DNS answet sih
answers refer to the same authoritative name server, winosaid
name is now blacklisted.

5. RELATED WORK

DNS Measurement studies. Many prior studies have measured

same name server in our DNS data. Based on Google SafeSearclhe performance of the DNS infrastructure. Multiple measunt

results, we suspect that these belong to the same coordiimeate

studies conducted at root servers reported that a largemage

ware campaign. The last two domains also resolve to the sBme | of traffic at root servers is invalid [5, 12, 13, 42]. In paudiar,
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Compared Feature [ Prior Work | Result Summary

Root perspective

Invalid TLDs [12, 13,42] [ The ratio is steady 20% in 2001, 2002 and 2008, but rises toiB@a12.

A-for-A [12,13,42] [ Theratiois 12%, 7.03%, 2.7% and <0.1% in 2001, 2002, 2008848.

DNS query type breakdown | [13, 42] The ratio of AAAA queries increases from 4.7% (year 2002)1566 (year 2008) to 26.6% (year 2017
Queries with negative answefr [20] 14.7%, 27.3% and 54% in Jan 2000, Dec 2000 and 2012, resplgctiv

Local perspective

DNS query type breakdown | [20] There are no AAAA queries in 2000, but 13.4% of all queriesAhé\A queries in 2012.
Queries with negative answer [20] The ratio rises from 11.1% (year 2000) to 18.0%.

Queries with no answer [20] The ratio drops from 23.5% (year 2000) to 15.1% (year 2012).

Cause of negative answer [20] PTR and A queries cause the most negative answer in 2000 42d r2@pectively.

TTL distribution [20] TTLs of A records in 2012 are much smaller than those in 2000.

DNSBL query ratio [19] 0.4%, 14.0% and 1.7% in year 2000, 2004 and 2012, respsctivel

Table 12: Summary of comparisons with prior measurement stdies

Ig8p.ru  n4gf.ru
n5di.ru  ntée.ru
oldk.ru  ot2j.ru
pSha.ru  rg8x.ru
s3po.ru  sbh4u.ru

Table 11: A suspected DGA domain group

Brownlee et al. discovered that 60%-85% of queries to thedt-r
server are repeated [12]. Castro et al. analyzed traffiecteld
from multiple root servers and reported that 98% of the waffi
invalid [13]. Castro et al. confirmed in a later study that & lo
fraction of busy clients (0.55%) generate the most invaiadfic
at root servers [5]. We cross-compare some of these samiésresu
from the perspective of a globally distributed resolverteaissess
the persistence of such problems. Our vantage point prevade
different perspective and greater opportunity for undeming the
root cause of certain phenomena.

Jung et al. analyzed SMTP traffic with DNS blacklist lookupS][
In this work, we compare the DNS blacklist usage in 2012 with
their reported findings. Ager et al. used active probing réples
to compare local DNS resolvers with public DNS services like
GoogleDNS and OpenDNS in terms of latency, returned address
and so on, by actively issuing DNS queries from more than 5@co
mercial ISPs [6]. Otto et al. studied the impact of using fUDNS
resolvers instead of local resolvers on the network lat@fic/DN
content fetching [34]. Liang et al. measured and comparedath
tency of root and TLD servers from various vantage pointg.[24
Our measurement study has a different goal from theirs. itticpa
ular, we study the performance of recursive DNS resolvers dd/
not cover the client perceived DNS performance in our study.

DNS performance studies. Jung et al. characterized the DNS
traffic obtained from two university sniffers and evaluatieel effect

of different TTL values with trace driven simulations [2Blang et
al. measured DNS server responsiveness from the vantages poi
inside a large content distribution network [35] findingtthasig-
nificant fraction of LDNS resolvers do not honor TTLs. Wesgal
al. measured how the cache policy of different DNS softwdre a
fects the number of DNS queries by trace driven simulatid$. [
Bhattiet al. conducted experiments to reduce the TTL of Arés
on university DNS resolvers and found a low increase in DS tr
fic [10]. While the focus of this paper is on the broad highelev
characteristics of DNS data such as the overall distribudfauery
types and failures, prevalence of repeated queries etuisjtiieg
the implications of caching and DNS performance in greatgiid

in the context of the SIE dataset is future work.

DNS Malware Studies. Researchers have recently proposed us-
ing DNS traffic statistics to identify malicious domains §7,11].
Notos [7] and EXPOSURE [11] build models of known legitimate
domains and malicious domains, and use these models to ¢ompu

ing a reputation score for a new domain that indicates whethe
the domain is malicious or legitimate. Their objective isctam-
pute reputation scores for domains by using a large set ofries
whereas we try to extract malware domain groups by just using
the temporal features. Kopis [8], aims to detect malwareanm

by monitoring network traffic at the “upper-levels” of the SNhi-
erarchy. Our approach is fundamentally different from Isojpi
terms of the vantage point (monitoring at the TLD as opposed t
the RDNS servers), features in use and operational reqeirem
Konte et al. uses active techniques to identify maliciowss-flux
DNS domains from spam data [22]. Rajab et al. actively probed
open DNS caches to test the prevalence of known malicious do-
mains [38]. In contrast, we employ passive analysis on domai
queries at resolvers. Hao et al. examine TLD servers toerust
newly registered domains based on registration informagind
lookups [16]. In [44], Yadav et al. proposed several statt
metrics to identify randomly generated domain names ofédietn
and subsequently they improved on their techniques by exami
ing failed DNS queries [45, 46]. Perdisci et al. [37] propbse
technique to detect malicious flux service networks thrquagsive
analysis of recursive DNS traces. Unlike our approach tiaktd at

the co-occurrence and sequence in domain names, theiraabypig
focused on fast-flux features, where multiple IP addressemal-
tiplexed to a single domain name using DNS responses witti sho
TTLs. Sato et al. [39] extended blacklists using the co-oecce
relation between DNS queries. We operate on a much morelgloba
and larger dataset and our analysis is complicated by thetfat
our data stream occludes the client IP addresses, as wevebser
aggregated data streams emanating from the resolver, waads-
sitates more sophisticated analysis.

6. CONCLUSIONS

In this paper, we conduct a comprehensive measurement study
with more than 26 billion DNS query-response pairs collé¢tem
600+ global DNS resolvers. Besides reaffirming some findings
in published work, our results reveal some significant diffiees.

We witness the demise of A-for-A queries and a significar iris
‘AAAA queries. We also find that queries for invalid TLDs are
responsible for more than 99% of queries with negative anetye
served at root servers and that TTLs of A records become much
smaller than a decade ago. In Table 12, we summarize compar-
isons made in this paper with five prior studies and highligint
results. Note that this table only includes a subset of olasmes-
ment results that are directly comparable with resultsiorprork.

Our findings can help implementation, deployment, and cenfig
uration of DNS software, websites, and other applicatidrisst,
because of the increase of AAAA queries for IPv6 addresseb; w
sites should take IPv6 support into account. The high faitatio
of PTR queries implies that some DNS administrators paydess
tention to configuring reverse mappings from IP addresse®+o



main names. The high rate of invalid TLD queries to root sexve
suggests that client-side implementations should difiiéiee lo-
cal names (used only in Intranets) with global domain nares.
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