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Abstract

Worms exploiting JavaScript XSS vulnerabilities ram-

pantly infect millions of web pages, while drawing the ire of

helpless users. To date, users across all the popular social

networks, including Facebook, MySpace, Orkut and Twitter,

have been vulnerable to XSS worms. We propose PathCutter

as a new approach to severing the self-propagation path of

JavaScript worms. PathCutter works by blocking two criti-

cal steps in the propagation path of an XSS worm: (i) DOM

access to different views at the client side and (ii) unautho-

rized HTTP request to the server. As a result, although an

XSS vulnerability is successfully exercised at the client, the

XSS worm is prevented from successfully propagating to the

would-be victim’s own social network page. PathCutter is

effective against all the current forms of XSS worms, includ-

ing those that exploit traditional XSS, DOM-based XSS, and

content sniffing XSS vulnerabilities.

We present and evaluate both a server-side and proxy-

side deployment of PathCutter. We implement PathCutter on

WordPress and Elgg and demonstrate its resilience against

two proof-of-concept attacks. We also evaluate the Path-

Cutter implementation on five real-world worms: Boonana,

MySpace Samy, Renren, SpaceFlash, and the Yamanner

worm. We show that although the worms themselves exploit

different vulnerabilities, at either the client side or server

side, they are successfully thwarted by PathCutter as it is

vulnerability agnostic and blocks the propagation path of

the infection. Our performance evaluation shows that ren-

dering overhead of PathCutter is less than 4%, and memory

overhead for one additional view is less than 1%.

1 Introduction

JavaScript is a cornerstone of the modern Internet that

enables enhanced user interactivity and dynamicism. It is

universally adopted by all modern e-commerce sites, web

portals, blogs, and social networks. However, JavaScript

code also has a demonstrated penchant for attracting vul-

nerabilities. JavaScript-based Cross Site Scripting (XSS)

worms pose a severe security concern to operators of mod-

ern social networks. For example, within just 20 hours in

October 4, 2005, the MySpace Samy worm [10] infected

more than one million users on the Internet. More recently,

similar worms [16–18] have affected major social networks,

such as Renren and Facebook, drawing significant attention

from the public and media.

JavaScript worms typically exploit XSS vulnerabilities

in the form of a traditional XSS, document object model

(DOM)-based XSS, or content sniffing XSS vulnerabilities.

Incorporated into web applications, Javascript worms can

spread themselves across social networks. Although they

are referred to as worms, these JavaScript malware activities

are more akin to viruses, in that they rely on interactions by

users on the social network to replicate themselves. Once

a vulnerable user is infected, malicious logic residing on

the user’s page coerces browsers of other victim visitors to

replicate the malicious logic onto their respective pages.

The high degree of connectivity and dynamicism ob-

served in modern social networks enables worms to spread

quickly by making unsolicited transformations to millions

of pages. While the impact of prior XSS worms has been

quite benign, it is conceivable that future worms would

have more serious implications as underground economies

operated by cybercriminals have become increasingly or-

ganized, sophisticated, and lucrative. In [29] Billy Hoff-

man describes a hypothetical 1929 Worm that uses a self-

propagating XSS attack on a brokerage site to wreak havoc

on financial markets.

The growing threat of XSS worms has been recognized

by the academic community, notably in the following two

papers. The Spectator [34] system proposed one of the first

methods to defend against JavaScript worms. Its proxy sys-

tem tracks the propagation graphs of activity on a website

and fires an outbreak alarm when propagation chains exceed

a certain length. A fundamental limitation of the Spectator

approach is that it does not prevent the attack propagation

until the worm has infected a large number of users. In con-



trast, Sun et al. [41] propose a purely client-side solution,

implemented as a Firefox plug-in, to detect the propaga-

tion of the payload of a JavaScript worm. They use a string

comparison approach to detect instances where downloaded

scripts closely resemble outgoing HTTP requests. However,

this approach is vulnerable to simple polymorphic attacks.

In this paper, we propose PathCutter as a complementary

approach to XSS worm detection that addresses some of

the limitations of existing systems. In particular, PathCutter

aims to block the propagation of an XSS worm early and

seeks to do so in an exploit agnostic manner. To achieve its

objectives, PathCutter proposes two integral mechanisms:

view separation and request authentication. PathCutter

works by dividing a web application into different views,

and then isolating the different views at the client side. Path-

Cutter separates a page into views if it identifies the page as

containing an HTTP request that modifies server content,

e.g., a comment or blog post. If the request is from a view

that has no right to perform a specific action, the request

is denied. To enforce DOM isolation across views within

the client, PathCutter encapsulates content inside each view

within pseudodomains as shown in Section 4. However, iso-

lation by itself does not provide sufficient protection against

all XSS attacks. To further prevent Same Origin Cross Site

Request Forgery (SO CSRF) attacks, where one view forges

an HTTP request from another view from the same site,

PathCutter implements techniques such as per-url session

tokens and referrer-based view validation to ensure that re-

quests can be made only by views with the corresponding

capability.

The design of PathCutter is flexible enough to be imple-

mented either as a server-side modification or as a proxy

application. To evaluate the feasibility of a server-side de-

ployment, we implement PathCutter on two popular social

web applications: Elgg and WordPress. We find that only

43 lines of code are required to inject PathCutter protection

logic into WordPress and just 25 lines of additional code are

required to secure Elgg1. We also evaluate a proxy-side im-

plementation of PathCutter. The proxy seamlessly modifies

content from popular social networks like Facebook on the

fly to provide protection from XSS injection attacks.

Based on published source code and press reports, we

analytically investigate PathCutter’s efficacy against five

real-world JavaScript worms: Boonana [17], Samy [10],

Renren [16], SpaceFlash [12], and the Yamanner worm [8].

Together, these worms span diverse social networks and ex-

ploit various types of XSS vulnerabilities, including Flash

XSS, Java XSS, and traditional XSS. However, they con-

verge in their requirement to send an unauthorized request

to the server in order to spread themselves. PathCutter ex-

ploits this need to successfully thwart the propagation of all

1Elgg has built-in support for request authentication but not view sepa-

ration.

these worms. Finally, we conduct performance evaluations

to measure the overhead introduced by our PathCutter im-

plementation at the client side. Our results show the render-

ing overhead (latency) introduced by PathCutter to be less

than 4% and the memory overhead introduced by one addi-

tional view to be less than 1%. For highly complex pages,

with as many as 45 views, the additional memory overhead

introduced by PathCutter is around 30%.

Contributions: Our paper makes the following contribu-

tions in defending against XSS JavaScript worms:

• We identify two key design principles (view separation

by pseudodomain encapsulation and request authenti-

cation) for fortifying web pages from XSS worms.

• We develop prototype implementations of the server-

side and proxy-side designs.

• We validate the implementation against five real-world

XSS social network worms and experimental worms

on WordPress and Elgg.

• We demonstrate that the rendering and memory over-

head introduced by PathCutter is acceptable.

The remainder of this paper is organized as follows. In

Section 2, we provide the problem definition. In Section 3,

we provide a survey of related work. We introduce the Path-

Cutter design and our prototype implementation in Section

4 and Section 5 respectively. An evaluation of the PathCut-

ter methodology and implementation is provided in Section

6. We discuss related and open issues in Section 7. Finally,

in Section 8, we summarize our findings and discuss future

work.

2 Problem Definition

A cross-site scripting (XSS) attack refers to the exploita-

tion of a web application vulnerability that enables an at-

tacker to inject client-side scripts into web pages owned by

other users [15]. To illustrate how PathCutter blocks the

propagation of a JavaScript-based XSS worm, we begin by

describing the steps involved in the life cycle of a typical

XSS worm exploit. Although XSS worms exploit different

types of XSS attacks, they all share a need to acquire the

victim’s privilege (in Step 2) and thus issue an unauthenti-

cated cross-view request (in Step 3), which PathCutter seeks

to block.

Step 1 – Enticement and Exploitation: A benign user is

tricked into visiting (or stumbles upon) a malicious so-

cial network page with embedded worm logic that has

been posted by an attacker. The worm is in the form

of potentially obfuscated, self-propagating JavaScript,

which is injected via an XSS vulnerability.
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Step 2 – Privilege Escalation: The malicious JavaScript

exploits the XSS vulnerability to gain all the victim’s

rights and privileges to the website that is currently

connected to from within the victim’s compromised

browser. For example, if the victim is logged into his

social network account, the worm has the ability to

modify the victim’s home page and can send messages

to the victim’s friends.

Step 3 – Replication: The worm now replicates itself. As

shown in Figure 2(a), the JavaScript worm uses its vic-

tim’s own privileges to send the social network web

server a request to change the victim’s home page. The

victim’s home page is now altered to include a copy of

the Javascript worm.

Step 4 – Propagation: When other benign users subse-

quently visit the infected victim’s page, Steps 2 and 3

are repeated. Such a strategy has been demonstrated

in the wild to support worm epidemics that can grow

beyond a million infections.

3 Related Work

3.1 XSS and JavaScript Worm Defense

Researchers have proposed numerous defenses against

XSS attacks and JavaScript worms that directly relate to our

work. A comparison of our work with closely related work

is shown in Table 1. Each individual defense mechanism

targets different stages of an XSS worm propagation and it

can be deployed at either the client or server. We explore

different XSS attack strategies and defenses in more detail

below.

Cross-Site Scripting Attacks and Defenses: Cross-site

scripting attacks can be broadly classified into two cate-

gories, traditional server-side XSS attacks (stored and re-

flected [15]), and client-side XSS attacks (DOM-based XSS

[4], plug-in-based XSS [6], and content sniffing XSS at-

tacks [21]), as shown in Figure 1.

In a traditional XSS attack, clients receive injected

scripts from the server. Many techniques have been pro-

posed that operate at the server side to defeat traditional

XSS attacks, including [19, 24, 25, 30, 32, 35, 37, 46].

While these systems are quite successful at identifying

XSS vulnerabilites, their tracking of information flow is re-

stricted to the server side and is blind to the client-side be-

havior of browsers and vulnerabilities in browser plug-ins.

BEEP [31] and Noxes [33] are the first client-side systems

to defend against traditional server-side XSS attacks. Later,

recent papers on systems such as Blueprint [44] and DSI

[38] discuss browser quirks [14] and propose client-side so-

lutions to traditional XSS attacks. Bates et al. [23] criticize

client-side filtering and propose their own solutions. Con-

tent Security Policy (CSP) [2], proposed by Mozilla, injects

a very fine grained policy that is specified at the server side

into HTTP headers. This policy is then adopted by client

browsers and enforced during every HTTP request.

In a DOM-based XSS attack, clients inject scripts

through an unsanitized parameter of dangerous DOM op-

eration, such as document.write and eval. A simple

example is that of the client-side JavaScript of web ap-

plication calls document.write(str) where str is part of

window.location. Therefore, the attacker can inject scripts

into parameters of URLs. A few defense mechanisms [40]

are proposed for DOM-based XSS. Futhermore, CSP can

be used to prohibit the use of dangerous functions such as

eval and document.write, but such policies also limit web-

site functionality. Recently, Barth et al. [21] proposed a

new class of XSS attack called Content Sniffing XSS attacks

where an image or a pdf file may also be interpreted as a

JavaScript file by the client browser. Moreover, malicious

JavaScript could also be injected by plug-ins. This has led

to the proliferation of plug-in-based XSS vectors such as

Flash-based XSS attacks, as a means to inject scripts into

web pages. For example, the Renren worm [16] exploited

a Flash vulnerability to enable access to the infected web

page vulnerability, and inject malicious JavaScript. To fix

the attack, users had to update their Adobe Flash plug-in to

prevent such malicious accesses. These defenses all target

Step 1 in the propagation of an XSS worm.

JavaScript Worm Defense Techniques: Sun et al. [41]

propose a Firefox plug-in that detects JavaScript worms us-

ing payload signatures. Their mitigation mechanism tar-

gets Step 3 (Replication) in the life cycle of an XSS worm.

Their approach is limited in that it protects only the spe-

cific client and not the entire web application. Furthermore,

it is vulnerable to polymorphic worms where the payload

dynamically changes during the worm’s propagation. As

shown by Dabirsiaghi et al. [27], the next generation of

JavaScript XSS worms could integrate advanced polymor-

phic payloads, which may prevent direct payload finger-

printing of worm instances and thereby prolong and widen

the epidemic.

Spectator [34] adopts a distributed tainting and tagging

approach that detects the spreading behavior of JavaScript

worms. The mitigation mechanism, which can be imple-

mented as a proxy, targets Step 4 (Propagation) in Section

2. A deficiency of their approach is that it only detects

the worm once a critical mass of users have been infected.

Xu et al. [47] propose building a surveillance network that

uses decoy nodes to passively monitor the social graph for

suspicious activities. Their approach is complementary to

ours in that it can detect worms like Koobface, that spread

through malicious executables and are delivered through re-
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Spectator Sun et al. Xu et al. BluePrint Plug-in Barth et al. Saxena et al. PathCutter
[34] [41] [47] [44] Patches [21] [40]

Blocking Step 4 3 4 1 1 1 1 2

Polymorphic Worm
Yes No Yes Yes Yes Yes Yes Yes

Prevention

Early-Stage Prevention No Yes No Yes Yes Yes Yes Yes

Types of XSS
All All

Passively Traditional Plug-in Content DOM-based
AllJavaScript Worms Observable Server-Side XSS Sniffing XSS XSS

that Can Be Defended Worms XSS Worms Worms Worms Worms

Deployment
Server or

Client Server Server Client Client Client
Server or

Proxy Proxy

Passive/Active Monitoring Active Passive Passive Active Active Active Active Active

Table 1. Design Space of XSS Worm Defense Techniques

  

XSS Attacks

Server-side XSS

Content 
Sniffing
XSS

Stored  
XSS

Reflected 
XSS

Client-side XSS

Plugin
XSS

DOM-based
XSS

Flash  
XSS

Java 
XSS

MySpace Samy Worm
Yamanner Worm

Renren Worm
SpaceFlash Worm

Boonana Worm

Our Experimental
Worm

Figure 1. Taxonomy of XSS JavaScript At­

tacks and Worms

mote browser exploits, which PathCutter cannot. In con-

trast, they acknowledge that their approach cannot detect

worms like MySpace Samy because it “does not generate

passively noticeable worm activities”. Another limitation

of their approach is that Xu’s decoy nodes, like Spectator,

require a minimal threshold of users to be infected before

detection. Both of these graph-monitoring systems target

Step 4 in the propagation of an XSS worm.

3.2 Request Authentication and View Separation
Techniques

Two main techniques used in PathCutter include re-

quest/action authentication and view separation. Here, we

discuss related work that informed the development of

these two techniques.

Request/Action Authentication Techniques: Barth et al.

[22] propose the use of an origin HTTP header to vali-

date the origin (<scheme, host, port>) of an HTTP re-

(a) XSS Worm Propagation

Infected Page Victim’s Page

Web Server

������� ��

��	
�� ���

�
��
��� �	��

(b) Cutting off XSS Worm Propagation

Infected Page Victim’s Page

Web Server

������� ��
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�� ���

�
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��� �	��

������� �� ����
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Figure 2. XSS Worm Propagation

quest. Previous attempts have also used secret tokens and

the referer header to validate requests from a different ori-

gin. Defending against CSRF attacks is similar to cut-

ting off the propagation path of a JavaScript worm in the

sense that both of them need to validate the request. There-

fore, referer and secret tokens can be used in both cases.

However, there is also the following fundamental differ-

ence. A CSRF attack is across different same-origin pol-

icy (SOP) origins but a JavaScript XSS worm propaga-

tion usually happens within the same SOP origin. For ex-

ample, malicious.com may try to modify contents on

bank.com. Those two websites are properly isolated at

the client side. Compared to a typical CSRF attack, a

JavaScript worm spreading is much harder to defend and

detect, because the forged request is actually from the same

website—the MySpace worm spreads within MySpace, so

SOP is not violated). And in theory, the worm can mod-

ify the user’s contents from the client side because they are

in the same origin. Hence, although we leverage CSRF

defense methods within PathCutter, they cannot by them-
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selves prevent XSS worm propagation as the origin header

proposed by Barth et al. [7] contains only origin informa-

tion such as http://www.foo.com and cannot distin-

guish requests from the same origin. To better illustrate this

point, secret tokens are indeed adopted by MySpace. How-

ever, because the token is accessible from the same origin,

the MySpace Samy worm [10] successfully steals that to-

ken. Similarly, attackers can also easily create and control

an iframe with the same origin URL to make a request with

correct referer header.

As a complementary strategy, social networks could also

incorporate techniques such as CAPTCHAs [1] to authen-

ticate actions/requests and defend against XSS attacks, at

the cost of some user inconvenience. Similar defense tech-

niques are used by websites such as Amazon that always

prompt users to input their username and password before

performing a potentially dangerous action.

View Separation Techniques: MiMoSA [20] proposes a

view/module extraction technique to detect multi-step at-

tacks at server side. Their concept of a view is different

from ours, and they can detect only traditional server-side

XSS vulnerabilities. Many blogs such as WordPress adopt

different subdomain names like name.blog.com to aug-

ment users’ self-satisfaction of owning a subdomain. Since

the purpose is not actually to prevent XSS worms, they do

not really combine view separation with request authentica-

tion. View separation is also very coarse, such that vulnera-

ble actions cannot always be isolated. For example, in many

social web networks, such as Facebook, updates from your

friends will also be shown on your own page, thus launching

unauthorized requests. In PathCutter, as shown later by the

Elgg example in Section 5, contents in the same page can

be separated into different views. Finally, there has been

a recent research thrust [26, 28, 39, 42, 43, 45] on build-

ing better sandboxing mechanisms for browsers. We argue

that these approaches are complementary. While sandbox-

ing provides a strong containment system, it is entirely up

to the programmer to decide which contents to put into the

container. In PathCutter, we can adopt any of these ap-

proaches to make the isolation of different views stronger.

4 Design

Here, we first provide an overview of the approach taken

by PathCutter. Next we define the concept of views and de-

scribe strategies used by PathCutter for implementing view

isolation and action authentication. Finally, we describe

how view isolation and action authentication can prevent

the propagation of an XSS worm.

4.1 Design Overview

PathCutter first isolates different pages from the server

at the client side, and then authenticates the communica-

tion between different pages and the server. By doing this,

the worm propagation path, in the form of an unauthorized

request from a different page will be successfully blocked.

The two main self-propagation routes of an XSS worm are

cut off as shown in Figure 2(b).

• Malicious HTTP request to the server from the in-

fected page. This is the most common exploit method

employed by XSS worms, i.e., they send a request to

modify the benign user’s profile/contents at the server

from the attacker’s (or infected user’s) page. Because

the request is from the victim’s client browser, the server

will honor that request. In our system, because the orig-

inating page of each request will be verified, the server

can easily deny such a request.

• Malicious DOM access to the victim’s page from in-

fected page at client side. An XSS worm can modify

the victim’s page at the client side to send a request on

behalf of that page. Because pages are well isolated at

client side, this self-propagation path is cut off.

Key Concepts. Key concepts used in PathCutter are defined

as follows.

• Views. A view is defined as a portion of a web applica-

tion. At client side, a view is in the form of a web page or

part of a web page. As a simple example, one implemen-

tation at a blogging site might consider different blogs

from different owners to be different views. It might also

consider comment post forms to be a separate view from

the rest of the page.

• Actions. An action is defined as an operation belong-

ing to a view. For example, a simple action might be a

request from blog X (view X) at client side to post a

comment on X’s blog post.

• Access Control List (ACL) or Capability. Access con-

trol list records all the actions that a view can perform. In

the previous example, a request from X cannot post on

blog Y ’s blog post, because X does not have the right to

do this action. Capability is a secret key that a view owns

that enables it to perform a specific action. Our system

supports the use of either ACLs (in the form of referrer-

based validation) or capabilities (in the form of per-url

session tokens) for access control.

4.2 Web Application Modification (View Separa­
tion, Isolation and Authentication)

We explore and evaluate different strategies for imple-

menting view separation, view isolation and view authenti-

cation, and securing an application using PathCutter.
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isolate.x.com

content.x.com

isolate.x.com

content.x.com

attacker

content.x.com

It cannot break 
isolate.x.com 
(different origin).

Secret token is 
required to access 
content.x.com. 
Attackers are not 
able to guess it.

View 1 View 2

Figure 3. Isolating Views Using Pseu­

dodomain Encapsulation

Dividing Web Applications into Views. We imagine that

there are at least three potential strategies for separating

web application content into views. First, a web application

can be divided into views based on semantics. For exam-

ple, a blog website can be divided using blog names. Fo-

rums can be divided based on threads and subject matter.

A second way to divide web applications is based on URLs.

For example, when clients visit blog.com/options and

blog.com/update, we can consider those two to be

from different views. Finally, in some web applications,

user-injected contents like comments might be on the same

web page as vulnerable actions such as posting comments.

In such cases, we need to isolate either those user comments

or the vulnerable actions.

Isolating Views at the Client Side. According to the

same-origin policy (SOP), DOM access for different ses-

sions from the same server is allowed by default. Theoret-

ically, we can isolate each view inside a new domain. But

numerous domain names are required. PathCutter encap-

sulates views within a pseudodomain to achieve isolation

by just two domain names. As shown in Figure 3, for each

view from contents.x.com, we embed an iframe with pseu-

dodomain name isolate.x.com inside the main page. There-

fore, an attacker who obtains control of contents.x.com in

one view, cannot break isolate.x.com to access contents in-

side another view that also belongs to contents.x.com due

to the same-origin policy. HTML5 also provides a sandbox

feature for preventing the origin access that can be used to

further strengthen isolation between different views.

Authenticating Actions. PathCutter checks the originating

view for each action (e.g., posting a comment) to ensure

that the view has the right to perform the specific action.

Either of the following two strategies might be implemented

http://www.foo.com/blog1/index.php:

<iframe src="contents.foo.com/blog1/index.php?token=**"

sandbox="allow-forms, allow-scripts">

</iframe>

Figure 4. Implementing Session Isolation in

WordPress

to authenticate actions.

• Secret Tokens. We could explicitly embed a secret token

with each action or request, especially those tending to

modify contents on the server side, as a capability. A

simple request might look like the following:
http://www.foo.com/submit.php?sid=****&...

The server will check the sid of each request to see if it

has the right to modify the contents. As an attacker will

not be able to guess the value of the secret token (sid), a

request from the attacker’s view will not have the right to

modify contents on another user’s page.

• Referer-based View Validation. The referer header in

the HTTP request can be used for recognizing views from

which an action originated. Then servers can check if the

action is permitted in the access control list. If not, the

action is denied.

4.3 Severing Worm Propagation

For a JavaScript worm that seizes control of a certain

view of an application by exploiting an XSS vulnerability,

there are two possible avenues to propagate as shown in

Section 4.1. Blocking the worm propagation can be con-

sidered in terms of blocking the following two forms of

malicious behavior. First, the worm can initiate an illegal

action to the server in order to exploit other views. Be-

cause PathCutter checks every action originating from each

view, illegal actions will be prevented. Second, the worm

can open another view at client side, and then infect that

view by modifying its contents. PathCutter’s view isola-

tion logic ensures that the worm cannot break boundaries of

different views belonging to a web application at the client

side.

5 Implementation

5.1 Case Study 1: Server­side Implementation ­
WordPress

We use WordPress [13], an open source blog platform,

as an example to illustrate the feasibility of implementing

PathCutter by modifications at the server side. We find that

just 43 lines of additional code were required to add sup-

port for secret token authentication and view isolation. It

took the authors less than five days to understand WordPress
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document.onload = function() {

forms = document.getElementsByTagName("form");

for (i=0; i<forms.length; i++) {

forms[i].innerHTML="<input type=\"hidden\" value=\""

+window.mySID+"\"/>" +forms[i].innerHTML;

}

}

Figure 5. JavaScript Function Added to Word­
Press for Inserting Secret Tokens into Ac­

tions

source code and insert those modifications.

Dividing and Isolating Views. We enable the multisite

functionality of WordPress, and our implementation clas-

sifies different blogs in WordPress as belonging to different

views. For example, www.foo.com/blog1 and www.

foo.com/blog2 will be divided into different views. A

finer-grained separation of views, such as different URLs,

can also be adopted. As a proof of concept, separation by

different blogs is implemented. As shown in Figure 4, a

view will be isolated at client side by iframes. Every time

a client browser visits another user’s blog, the real contents

will be embedded inside the outer frame to achieve isola-

tion. Borders, paddings, and margins will be set to zero in

order to avoid any visual differences.

Identifying Actions. Vulnerable actions in WordPress are

normally handled by a post operation in a form tag. For

example, the comments posting functionality is the output

to a user through comment-template.php and handled in

wp-comments-post.php. Similarly, the blog posting/updat-

ing functionality is the output to a user through edit-form-

advanced.php and handled in post.php.

Authenticating Actions. We use capability-based authen-

tication (using a secret token) to validate user actions. Ev-

ery action belonging to comment or blog posting categories

must be accompanied by a capability, or else the action will

be rejected. We implement this by injecting a hidden input

into the form tag, as shown in Figure 5 by JavaScript, such

that the client’s post request to the server always includes a

capability.

The ideal locations for implementing authentication

are at points where client-side actions affect the server

database. WordPress has a class for all such database opera-

tions and because every database operation will go through

that narrow interface, we can quickly ensure that our checks

are comprehensive.

5.2 Case Study 2: Server­side Implementation ­
Elgg

Elgg [5] is an open social network engine with many

available plug-ins. We use Elgg 1.7.10 with several basic

embedded plug-ins such as friends and blogs. Just two ad-

ditional lines of code were required to add support for view

isolation into the Elgg source code base. An additional file

was also required to support the modification which had 23

lines. It took the authors less than three days to understand

the Elgg source code and insert the corresponding modifi-

cations.

Dividing and Isolating Views. As discussed below, Elgg

has built-in mechanisms to protect the post action. How-

ever, a JavaScript worm can still steal the secret token just

as in the case of the MySpace Samy Worm. For example,

the worm could send an XMLHttpRequest to the server to

get the posting page and then steal the token. Therefore, we

need to isolate specific views at the client side to protect the

secret token as shown in Figure 6. Instead of using a div to

submit a comment, we adopt methods mentioned in Section

4.2 to isolate the view for posting comments.

Identifying Actions. The action we wish to protect is the

comment posting action in blog functionality of Elgg. It is

handled in mod/blog/actions/add.php.

Authenticating Actions. The blog plug-in functionality in

Elgg has already implemented action authentication. A se-

cret token, named elgg token, is embedded in each post

action that is checked by add.php upon each post request.

If the token is incorrect or missing, an error message is re-

turned to the user. We extend this logic to also check the

referer header of each post action.

Fixing Cascaded Style Sheet (CSS) Issues. After isolating

the post action into a separate view, we still need to fix sev-

eral outstanding CSS issues, including the following. First,

we make the iframe body transparent to leave the original

background unaltered. Second, we include all original CSS

files in order to retain the original style and layout. Finally,

we make the iframe size automatic and use the seamless at-

tribute in HTML5 to ensure that the iframe is well integrated

with its parent.

5.3 Case Study 3: A Proxy Implementation

Although a server-side implementation is most desirable,

a proxy-based deployment approach is attractive in certain

scenarios because it provides greater flexibility. For exam-

ple, this enables the service provider to deploy PathCut-

ter without changing the application, or alternatively, Path-

Cutter could be deployed at the client’s enterprise network.
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Original code:

echo elgg_view(’input/form’, array(’body’ => $form_body, ’action’ => "{$vars[’url’]}action/comments/add"))

After PathCutter modification:

echo "<iframe style = ’background:inherit;border:0;margin:0;padding:0’

sandbox=’allow-forms’ scrolling=’no’ height=’400pt’ width=’100%’

src=’http://other.com/echo.php?content="

.urlencode(elgg_view(’input/form’, array(’body’ => $form_body,

action’ => "{$vars[’url’]}action/comments/add")))."’/>";

Figure 6. Isolating Views in Elgg by Modifications to edit.php in views/default/comments/forms/
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Figure 7. View Isolation in PathCutter Proxy Implementation

Here, we describe a prototype implementation of PathCut-

ter over Privoxy [11] that secures Facebook.

Isolating Existing Views. As shown in Figure 7, when

the client browser requests a URL, such as content.x.com,

which requires isolation, the proxy redirects the URL to iso-

late.x.com with an embedded iframe containing a secret to-

ken in the src property. When the client browser requests the

redirected URL, the proxy forwards the request to the real

web server and displays the returned content in the iframe.

Dividing Nonexisting Views. As an example, we con-

sider an individual’s Facebook page that typically includes

comments and updates from other users in the individual’s

friend circle. Hence, we need to isolate multiple views

within each page. When we look at the HTML source code

of Facebook, we find that each comment and update is em-

bedded inside a span tag. So, the PathCutter proxy iden-

tifies span tags and simply uses a regular expression to re-

place them with an iframe. For example, as shown in Figure

8, we replace the span tag with an iframe and echo back

the other users’ comments. Even if a malicious script is

injected by an attacker, our transformation ensures that the

malicious script operates in a separate view, isolated from

the view with the capability to modify the victim user’s con-

Original code:

<span data-jsid="text"> user comments </span>

After PathCutter modification:

<span data-jsid="text">

<iframe scrolling=’no’ height=’100%’ sandbox style=’..’

src=’http://foo.com/echo.php?content=user%20comments’/>

</span>

Figure 8. Implementing View Separation for

Facebook

tent.

Our proposed approach to dividing views at the proxy is

vulnerable to injection attacks, i.e., the attacker can inject

the same pattern that we are looking for into the comments.

For example, as shown in Figure 8, the attacker can inject

<span data-jsid="text"> or </span> to confuse the

proxy. The proxy needs to modify the signature in order

to deal with such injection attacks. For example, if the at-

tacker tries to inject </span>, the proxy needs to find the

last matching </span> instead of the first match.

Authenticating Actions. The proxy checks the referer

8



header of each request. If the request is from foo.com (our

echoing server), this indicates that it is potentially a forged

request originating from a malicious comment. Hence, such

requests are rejected.

6 Evaluation

We analyze the effectiveness of the PathCutter approach

against five real-world worms. We further evaluate the

server-side implementation against two proof-of-concept

worms.

6.1 Evaluation against Real­world Worms

We evaluate PathCutter against two server-side XSS

(MySpace Samy, Yamanner) worms and three client-side

XSS (Renren, SpaceFlash, Boonana) worms by analyzing

the source code and online descriptions of these worms.

1. Boonana Worm. Boonana [17] is a Java applet worm

that was released in October 2010. The propagation of this

worm can be divided into the following steps:

1. A benign user visits an infected profile with a malicious Java

applet posted by the attacker.

2. The malicious Java applet exploits a Java vulnerability to in-

ject malicious JavaScripts on the client side, thus escalating

its privilege to the victim user.

3. The worm posts itself on the visiting user’s wall using the

stolen cookie.

4. Boonana proliferates over the social network when more

people visit the malicious applet.

PathCutter Defense: PathCutter blocks the Boonana worm

propagation at Step 2, by ensuring that the worm gains only

the privilege of a view containing the page of the malicious

Java applet, and not the privilege of the user’s Facebook

profile page. Therefore, the web server declines the request

to post on the user’s wall.

2. Renren Worm. The Renren worm [16] was a Flash-

based worm that spread on the Renren social network (one

of the largest Chinese social networks). The worm was re-

leased in 2009 and affected millions of users. The propaga-

tion of this worm can be divided into the following steps:

1. A victim user visits an infected profile with a malicious Flash

movie posted by the attacker.

2. The malicious Flash movie exploits a Flash vulnerability,

which injects malicious JavaScripts at the client side, thus

escalating its privilege to that of the victim (as shown in Fig-

ure 9).

3. The injected script replicates itself on the victim’s wall.

4. When other users visit the infected user’s profile, the worm

repeats the infection and replication process, and thus

spreads.

PathCutter Defense: A user who wants to share

something on the Renren social network, needs to

get a page http://share.renren.com/share/

buttonshare.do?link=.., and then send the real

share request. PathCutter isolates the real sharing request

in a view A that is different from view B where updates

from friends are displayed. Therefore, at Step 2, the worm

obtains only the privilege of that specific view B, and so is

unable to replicate itself on behalf of the victim user.

3. MySpace Samy Worm. The MySpace Samy worm [10]

was one of the first cross-site scripting worms that spread in

the MySpace social network, affecting over a million users

in 2005. The attack steps of Samy worm are as follows:

1. The victim visits an infected profile page, which carries a

malicious script (due to a script filtering problem in MyS-

pace). The infected user’s profile has the following code

to embed a malicious < div style = background :
url(′java\nscript : eval(...)′)

2. The worm first steals the secret token, required by MySpace,

using a GET HTTP request to escalate its privilege to the

view that can send a POST HTTP request.

3. The worm posts itself to /index.cfm?fuseaction=

profile.previewInterests&Mytoken=** on the

victim’s profile via XMLHttpRequest.

4. The Samy worm proliferates over the social network as more

victims visit the growing list of infected profiles.

PathCutter Defense: Two propagation paths are severed.

First, when the worm tries to steal the secret token required

by MySpace, that access is denied because different profiles

are isolated into different views. The XMLHttpRequest is

sent to a different domain and the response is not accessible

by the worm. Second, when the worm sends out the POST

request, that request is actually from the infected user’s pro-

file and not from the victim’s profile. PathCutter correctly

checks the capabilities of the originating view and denies

such modifications.

4. SpaceFlash Worm. The SpaceFlash worm [12] was re-

leased in 2006 as another JavaScript worm spreading on the

MySpace network by exploiting a Flash vulnerability. The

steps of a SpaceFlash infection are as follows:

1. A victim user visits the attacker’s “About Me” page with a

malicious Flash applet.

2. The malicious Flash applet is executed, exploits

a Flash vulnerability to access the MySpace

page, and retrieves the victim’s profile by visiting

http://editprofile.myspace.com/index.

cfm?fuseaction=user.HomeComments, thus

escalating its privilege to match the victim.

9



Allowing DOM access from Flash:

XN.template.flash=function(o){

return &nbsp;<embed src=\"+o.filename+\ type=\application/x-shockwave-flash\

+width=\"+(o.width||320)+\ height=\"

+(o.height||240)+\ allowFullScreen=\true\ wmode=\"

+(o.wmode||transparent)+\ allowScriptAccess=\always\></embed>;

};

Modifying DOM to add and invoke the malicious script:

var fun = var x=document.createElement(SCRIPT);

x.src=http://n.99081.com/xnxss1/evil.js;

x.defer=true;document.getElementsByTagName(HEAD)[0].appendChild(x);;

flash.external.ExternalInterface.call(eval,fun);

Figure 9. Flash Vulnerability Exploitation in the Renren Worm

3. The worm sends out an AJAX request to the server to post

itself on the victim’s “About Me” page.

4. SpaceFlash proliferates over the social network as more vic-

tims visit the growing list of infected “About Me” pages.

PathCutter Defense: In step 2, the worm cannot escalate

its privilege and therefore the unauthorized post request in

Step 3 is rejected, as it is does not originate from the vic-

tim’s “About Me” page.

5. Yamanner Worm. The Yamanner worm [8] was re-

leased in 2006 and infected tens of millions of users. It was

a JavaScript worm spreading in Yahoo! mail. The steps of

infection and propagation were as follows:

1. A victim user receives malicious email from the attacker.

2. The victim user clicks on the email and the malicious scripts

inside the email are executed due to a bug in Yahoo’s script

filter. Using these scripts the worm acquires the victim’s

privilege.

3. The worm opens the victim’s address book and sends out ma-

licious email containing itself to those who are listed in the

book.

4. Yamanner proliferates across the email social networks of

those victims who open the email.

PathCutter Defense: Even though the worm logic gets ex-

ecuted at the client, it does not have the privilege of sending

email to others. In the PathCutter approach, a secret token

is required to perform the action and the worm cannot steal

the token because it is isolated inside a different domain.

Summary. Although the five worms described above

all use different vulnerabilities and techniques to achieve

JavaScript execution privileges on behalf of a victim at a

specific social network web site, they are all blocked by

PathCutter. PathCutter exploits the fact that aforementioned

<form<?php echo $enctype; ?> id=”upload-file” method=”post” action=”<?php
echo get option(’siteurl’)
. ”/wp-admin/upload.php?style=$style&amp;tab=upload&amp;post id=$post id”;
?>”>

Figure 10. CVE­2007­4139 (Untainted Input in

wp­admin/upload.php)

worms all have to send a request to the server from an un-

trusted view in order to post themselves on the victim’s pro-

file. The common propagation path is severed in each case.

6.2 Evaluation against Experimental Worms

We evaluate our implementation using experimental

worms that operate on WordPress and Elgg. We imple-

mented two XSS attacks based on a published vulnerability

in WordPress (CVE-2007-4139 stored XSS [3]) and a cus-

tom DOM-based attack on Elgg that is based on a proof-of-

concept DOM-based attack [4]. We adopt the same code as

published in [4] to let Elgg read language settings in URL

parameters and write it on the web page without sanitizing.

Figure 10 shows the WordPress XSS vulnerability, which

does not properly cleanse one input from the user.

To convert the proof-of-concept attacks into worms, we

incorporated two propagation modules: a custom propaga-

tion module that we developed and a published worm tem-

plate [9]. The custom propagation module implements a

simple worm to propagate on the network as shown in Fig-

ure 11. The functionality of the worm is to post itself (for

DOM-based XSS attack, it will be the URL with code in-

jected into language settings) on the victim user’s blog com-

ments by AJAX when the victim visits an infected page.

The published worm template is the universal JavaScript

XSS worm template [9] as shown in Figure 12. We updated

the worm template with the XSS vulnerability we created,

10



check_infected();

// check if the user is infected or not

xmlhttp = new XMLHttpRequest;

xmlhttp.open("POST", post_url,true);

xmlhttp.onreadystatechange=function() {

if (xmlhttp.readyState==4) {

set_infected();

}

}

xmlhttp.setRequestHeader("Content-type"

, "application/x-www-form-urlencoded");

xmlhttp.setRequestHeader("Content-length"

, payload.length);

xmlhttp.send(payload);

Figure 11. Propagation Logic of Custom Proof
of Concept Worm

//Worm’s HTTP request object

function xhr() { ... }

Object.prototype.post = function(uri,arg) {

/*** usage: xhr().post(’foo.php’); ***/

this.open(’POST’, uri, true);

this.setRequestHeader(’Content-type’

,’application/x-www-form-urlencoded’);

...

this.send(arg);

};

/*** source morphing component ***/

Object.prototype.morph = function(s) {

...

switch(morphtype) {

case "unicode": ...

case "charcodes": ...

}

}

Figure 12. Propagation Logic of a Published

Worm Template

and the worm replicates itself as blog comments.

For evaluation, we deployed WordPress and Elgg with

and without our modifications on a Linux machine with

Apache-PHP-mySQL installed in our network. Before in-

tegrating PathCutter, we found that both worms propagate

easily in both networks by replicating themselves in the

form of blog comments. After adopting PathCutter, worm

propagation is effectively stifled, as view separation ensures

that comments must be posted from the same view as that

of the victim’s blog.

6.3 Performance Evaluation

We summarize memory and rendering time overhead in-

troduced by PathCutter. No measurable CPU overhead was

introduced by the system at the client.

Memory Overhead. The memory overhead introduced by

PathCutter depends on the complexity of pages on the social

network and strategy used by PathCutter to separate views.

In the Elgg and WordPress examples of Section 5, we chose
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Figure 13. Memory Overhead for Isolating
Comments from Friends

to isolate html elements with vulnerable actions into sepa-

rate views. Hence, only two frames were required per blog

page, and the memory overhead we introduced was negligi-

ble.

Instead, if we choose to isolate views based on con-

tent provenance, like comments in the Facebook example in

Section 5, the memory overhead we introduce depends on

the number of comments on the web page. We conducted

an experiment where we visited Facebook, using our proxy

implementation, on a Linux client running Firefox 3.6.18

with 2 GHz dual core Xeon processors and 2 GB of mem-

ory. The results are shown in Figure 13. We find that when

the number of comments is less than 10, PathCutter’s view

isolation iframes introduce less than 10% overhead. If we

have 45 comments, the iframes introduce nearly 30% over-

head. On Facebook threads are folded by default when the

number of comments in a thread exceeds three. Therefore,

we do not expect the overhead to be significant. Finally, if

Facebook adopts PathCutter’s approach and isolates poten-

tially dangerous actions (e.g., comment posts) into a differ-

ent view, we do not need to isolate comments at the proxy

and introduce those overheads.

Rendering Time Overhead. We perform a rendering time

comparison between our modified Elgg and the original

Elgg implementation. The experiment is performed on a

Linux machine running Firefox 3.6.18 with 2 GHz dual

core Xeon and 2 GB memory. We use Firebug to monitor

the onload event. Experiments are performed ten times for

the blog posting page of each version. The average render-

ing time for modified Elgg is 1.18 seconds, and for original

Elgg is 1.14 seconds. The additional rendering time over-

head is about 3.5%.
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7 Discussion

While we argue that PathCutter provides an effective se-

curity solution for defending against XSS worms in social

web networks, it is by no means a complete security solu-

tion. Here, we discuss certain known limitations of Path-

Cutter.

1. Vulnerability to Cookie and Content Stealing Attacks.

Networks running PathCutter are still vulnerable to cooking

stealing and other content exfiltration XSS attacks, as we do

not block the exploitation of the XSS vulnerability. The sole

objective of our system is to cut off the self-propagation

path of a JavaScript worm. Hence, although portions of a

victim user’s information may be revealed, the worm can-

not infect the user and spread any further. Websites need to

adopt auxiliary approaches to prevent such attacks, e.g., us-

ing HTTP-only cookies to prevent cookie-stealing attacks.

2. Vulnerability to Phishing and ClickJacking Attacks.
Networks running PathCutter also remain vulnerable to

phishing and clickjacking attacks. First, the worm can use

phishing or clickjacking to steal a user’s password or some

other confidential information. This is out of scope for this

paper. Second, one might argue that because the worm is

running under the privilege of the hosting web site, it is

much easier for the worm to launch such attacks. This is

true. However, both phishing and clickjacking require user

interaction. The user is not likely to input the worm directly

because the source code of the worm is unlikely to be in the

form of a normal comment, and the worm cannot induce

the user to input one because of the isolation mechanism in

Section 4.2. Therefore, phishing and clickjacking will not

help the propagation of a JavaScript worm even if launching

those attacks is easier in this case.

3. Vulnerability to Drive-by Download Worms. Finally,

networks running PathCutter remain vulnerable to worms

such as Koobface that upload binaries to victim hosts using

drive-by exploits. Such attacks are also out of scope for this

paper. However, systems such as Blade [36] may be used to

prevent such attacks.

Summary. Since PathCutter allows the exploitation of an

XSS vulnerability at the client-side, there are certain attacks

that remain possible. Specifically, damage to the first view

in each attack is not within the scope of this paper. However,

PathCutter strives to minimize the harm that an XSS worm

can cause, by containing it to a specific view of a website

and blocking its propagation to other views and other users.

8 Conclusion

We propose a new architectural approach to blocking the

two main propagation paths of JavaScript worms – DOM

access to a different view and unauthorized HTTP requests

to the server. We implement a prototype upon WordPress

and Elgg. We evaluate our system using five real-world

worms and two proof-of-concept worms. Our preliminary

evaluation demonstrates that the PathCutter approach re-

quires minimal modifications to the server application and

is effective against most XSS worms.
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