
DPX: Data-Plane eXtensions
for SDN Security Service Instantiation

Taejune Park
1
, Yeonkeun Kim

1
, Vinod Yegneswaran

2
, Phillip Porras

2
, Zhaoyan Xu

3
,

KyoungSoo Park
1
, and Seungwon Shin

1

1
KAIST, Daejeon, Republic of Korea

taejune.park@kaist.ac.kr
2

SRI International, CA, USA

3
Palo Alto Networks, CA, USA

Abstract. SDN-based NFV technologies improve the dependability and resilience

of networks by enabling administrators to spawn and scale-up tra�c manage-

ment and security services in response to dynamic network conditions. How-

ever, in practice, SDN-based NFV services often su�er from poor performance

and require complex con�gurations due to the fact that network packets must

be ‘detoured’ to each virtualized security service, which expends bandwidth and

increases network propagation delay. To address these challenges, we propose a

new SDN-based data plane architecture called DPX that natively supports secu-

rity services as a set of abstract security actions that are then translated to Open-

Flow rule sets. The DPX action model reduces redundant processing caused by

frequent packet parsing and provides administrators a simpli�ed (and less error-

prone) method for con�guring security services into the network. DPX also in-

creases the e�ciency of enforcing complex security policies by introducing a

novel technique called action clustering, which aggregates security actions from

multiple �ows into a small number of synthetic rules. We present an implemen-

tation of DPX in hardware using NetFPGA-SUME and in software using Open

vSwitch. We evaluated the performance of the DPX prototype and the e�cacy

of its �ow-table simpli�cations against a range of complex network policies ex-

posed to line rates of 10 Gbps. We �nd that DPX imposes minimal overheads in

terms of latency (≈0.65 ms in hardware and ≈1.2 ms in software on average)

and throughput (≈1% of simple forwarding in hardware and ≈10% in software

for non-DPI security services). This translates to an improvement of 30% over

traditional NFV services on the software implementation and 40% in hardware.

1 Introduction

Modern enterprise and cloud network service management increasingly relies on tech-

niques such as software-de�ned networking (SDN) and network function virtualiza-

tion (NFV). One driver for this change is the �exibility that is a�orded by the tran-

sition from specialized hardware devices to virtualized software images that run on

commodity computing hardware. This “softwarization” trend is welcomed by network

administrators since it facilitates elastic scaling and dynamic resource provisioning.

However, the implementation and deployment of these techniques also raise sev-

eral practical deployment challenges. First, to fully leverage the bene�ts of NFV and

SDN, the network needs to carefully incorporate a network orchestration strategy [11],

2 Taejune Park et al.

such that an NFV integration does not overly complicate the network management

environment (i.e., a management challenge). For example, to operate multiple network

functions e�ciently, a network administrator may produce an orchestration strategy

that results in a diverse set of associated network �ow rules. Optimizing the result-

ing �ow orchestration is important. As NFV services are instantiated as software in-

stances, separate from network devices, they have the potential to degrade network

service performance when compared with legacy hardware-based solutions (i.e., a per-
formance challenge). We make the case that no contemporary system comprehensively

addresses both of the aforementioned challenges.

To address the management challenge, we are informed by prior projects on e�-

cient orchestration of virtualized network functions and middleboxes (e.g., CoMb [28]

and Bohatei [3]). However, these e�orts primarily focus on coordinating network

services (i.e., at the control plane) and do not address the underlying complexity of

managing network �ow rules (i.e., at the data plane). While recent e�orts such as

ClickOS [13] and NetVM [9] attempt to improve NFV performance by reducing man-

agement overhead using sophisticated I/O handling techniques, NFV systems still suf-

fer from structural performance overhead that stems from “tra�c detouring”.

This paper explores and evaluates one approach to streamlining NFV �ow pro-

cessing through the extension of native services directly within the SDN data plane.

Currently, most SDN data-plane device (i.e., SDN switch) implementations merely sup-

port basic packet-handling logic (e.g., forward, drop, and modify headers). However,

as SDN switches also include various processing elements (e.g., storing packets and

parsing headers), these may be leveraged for embedding additional security-service

and management logic. Thus, we pose the following research questions:

– Can an SDN data plane provide more advanced features, such as payload inspec-

tion and malicious tra�c �lters?

– Could these features be exploited to signi�cantly reduce the performance over-

head and the complexity of NFV orchestration?

For example, consider a switch that locally �lters disallowed packets, which pro-

vides an operator the ability to short-circuit the redundant forwarding of tra�c to a

�rewall immediately from the network. Recent advances in high-performance switch-

ing [7, 20], suggests that this could potentially be a viable and attractive solution. In-

spired by the potential bene�ts that can arise form the encapsulation of light-weight

security primitives into the SDN data-plane, we present a design and prototype im-

plementation of DPX. DPX is designed as an OpenFlow data plane [21] extension that

natively supports security services as a set of OpenFlow actions. DPX can not only

reduce redundant duplicated processing caused by frequent packet parsing to reduce

latencies, but also represent them as OpenFlow rules, allowing administrators to easily

con�gure network security services with simpli�ed �ow tables.

An important challenge to address in making this leap is the ability to express

security policies over aggregated �ow sets. Such �ow set expressions are necessary

because of the prohibitive expense of representing security rules using per-�ow rules

(i.e., the �ow-steering complexity challenge). To address this problem, DPX also imple-

ments a novel technique, called action clustering which allows a security service to

concurrently operate on a set of �ows.

DPX: Data-Plane eXtensions for SDN Security Service Instantiation 3

Network ApplicationNetwork ApplicationNetwork Application

Network Control Apps. Security Apps.
Network ApplicationNetwork ApplicationSecurity Application

Middlebox

Data-Plane Layer

Control-Plane Layer

(e.g., NFV)

Fig. 1. Two deployment strategies for security services in SDNs (control-plane applications and

in-network middleboxes)

DPX is designed in a manner that attempts to preserve the original philosophy of

SDN (i.e., simple data plane) to the extent possible by constructing its extensions as

modular SDN data plane components. As we noted, newly added security actions are

realized by OpenFlow actions, and those new security actions will be supported by

each DPX security action block. Each action block can be easily inserted or removed

based on requirements. For example, if a network administrator seeks to detect DDoS

attacks, the DPX SDN data plane can be extended in a component-wise manner, by

simply adding a DoS detection module.

We have implemented a DPX prototype with six security services in software and

two in hardware, using Open vSwitch [20] and NetFPGA-SUME [17] respectively. DPX

achieves a throughput of 9.9 Gbps, with 0.65 ms of added latency, producing a perfor-

mance pro�le that is comparable to simple forwarding and a latency pro�le that is two

to three times faster than NFV. In addition, we present several use-cases that illustrate

the capabilities of DPX’s security actions in detecting and responding to network at-

tacks and how DPX reduces complicated �ow tables emanating from network service

chains. In our scenarios, DPX successfully intercepts all attempted network attacks

and compresses the number of required �ow rules by over 60%.

2 Motivating Challenges

With the increased adoption of SDN, SDN- and NFV-based security solutions are also

gaining in popularity. However, these are associated with the following challenges.

Performance andManagement Challenge: Figure 1 illustrates two possible strate-

gies for deploying NFV-based security services. First, security services can be deployed

as an SDN application on a control plane and several applications are already de-

signed to provide security functionalities. This approach has the advantage of being

easily adaptable and manageable, but it is di�cult to use practically due to many con-

straints. Because of the architectural limitations of SDN (e.g., di�culty in inspecting

packet payloads), sophisticated security services cannot be implemented without third

party applications or devices. Moreover, a centralized controller must handle all un-

derlying network packets for security services, resulting in a signi�cant performance

overhead on the controller. This issue has been also discussed by Yoon et al. [36]; this

work demonstrates that using SDN applications for security services causes serious

overhead in many cases.

4 Taejune Park et al.

DoS1

Scan1 DPI1

Scan2

DoS2

DPI2

Flow_A

Flow_B
Flow_C

Flow_D

Flow_E

(a) Service chains example

Flow_E forward(DPI2)

forward(DoS1)

Actions

forward(DoS2)
forward(DoS1)

forward(DoS1)

Flow_D
Flow_C
Flow_B
Flow_A
Match

Rules for incoming flows forward(Scan2)

ActionsMatch

Flow_C

Flow_A forward(Scan1)
Flow_B forward(DPI1)

For returned from DoS1

Flow_A forward(DPI1)
ActionsMatch

For returned from Scan1

Actions

Flow_B

Match
forward(…)
forward(…)

Flow_A

For returned from DPI1

Flow_C forward(…)
ActionsMatch

For returned from Scan2

Actions

Flow_E

Match
forward(…)
forward(…)

Flow_D

For returned from DPI2
Flow_D forward(DPI2)

ActionsMatch
For returned from DoS2

DoS1

Scan1

DPI1

Scan2DoS2

DPI2

Flow_
A/B/C

Flow_
A/B/C

Flow_A

Flow_A

Flow_A
Flow_B

Flow_
A/B

Flow_C
Flow_D Flow_D

Flow_E
Flow_D

Flow_C

Flow_D/E

(b) Flow rules to handle the service chains

Fig. 2. An illustration of the �ow-steering challenge in service chaining.

Alternatively, security services can be deployed as virtualized network functions

(VNFs) on middleboxes (i.e., NFV). It allows deploying complicated security services

without functional limitations. However, since a middlebox is located remotely, this

approach would imply that all network tra�c should take extra hops that deviate from

the shortest path to the destination, resulting in performance degradation for both la-

tency and bandwidth. For example, when a packet is to be transmitted from the switch

A to B in Figure 1, the shortest distance is one hop, but it is stretched to three hops

if it goes through the middlebox. Therefore, the latency is increased and the network

bandwidth is wasted due to the extended path. In addition, since the VNFs operating

in the middlebox are independent instances, an administrator should arrange extra

control channels for each VNF.

Flow-Steering Complexity Challenge: As network threats become more sophis-

ticated, a single security device alone is not enough to secure a network. Hence a

multi-prong approach to security is adopted using SDN to compose service chains

that integrate multiple security features in a series, allowing each packet to be inves-

tigated by multiple services. However, there is an operational challenge to con�gure

such service chains in the data plane. For instance, we assume that we con�gure ser-

vice chains for �ve �ows with di�erent service chains according to security policy as

shown in Figure 2a. To operate these service chains, complicated �ow rules, as shown

in Figure 2b, are required in the SDN data plane. Each �ow is forwarded to the des-

ignated security instance, and the security instance returns the �ow to the data plane

after inspection. Then, the data plane forwards the �ow to the next security instance.

The �ow-steering challenge is closely related to challenges associated with man-

agement and troubleshooting of a network. As detecting network faults is tedious

[27, 35], simpli�ed network topologies are preferred to mitigate miscon�gurations.

While e�cient service chain design has been extensively studied [6, 26], little atten-

tion has been paid about the accompanying issues that arise while constructing service

chains. In particular, several research e�orts [5,37] have studied the prevalence of net-

work miscon�gurations whose likelihood will be further exacerbated by the need for

complicated tra�c steering rules.

3 System Design

To address the challenges discussed, we devise a novel data plane extension for SDNs,

called DPX, that provides security functions as part of the packet processing logic.

DPX: Data-Plane eXtensions for SDN Security Service Instantiation 5

DPX dataplane

 Flow
Table

Fl
ow

_k
ey

Fl
ow

_s
ta

ts

Security Actions

Common Actions

Data Section Inspection Logic Policy Handler

Controller

Event Msg.

Network ApplicationNetwork ApplicationSecurity Application
Network ApplicationNetwork ApplicationNetwork Application

Rule deployment
(via Flow_mod) OpenFlow Channel

(a) DPX system architecture

Flow_A sec_dos(...),sec_dpi(...),ouptut(...)
 Match Actions

Flow_B sec_vscan(...),sec_session(...)

Flow_A sec_dos(mbps=1000,policy=discard),output(…)
 Match Actions

Flow_B sec_vscan(…),sec_session(…),sec_dpi(…),…

(b) Example �ow table

Fig. 3. Illustration of DPX Design and Processing Work�ow

3.1 DPX Overview

Figure 3 illustrates the overall design of DPX and its work�ow. DPX de�nes security

functions in terms of one or more actions following the OpenFlow protocol paradigm

[21], which handles network packets with pre-de�ned actions using the match-action

interface. These DPX security actions perform security services on incoming packets

as part of the packet processing in a dataplane. For instance, in the �ow table of Fig-

ure 3b, the actions for Flow_A will monitor network �ows to detect whether �ows

send/receive more than 1000 Mbps, and the actions for Flow_B will perform multi-

ple network security functions (i.e., vertical scan detector, session monitor, and deep

packet inspector) on the corresponding tra�c. The security actions can be enforced

with the OpenFlow protocol from DPX applications running on an SDN controller.

3.2 DPX Actions

Each security action is an individual packet processing block in the DPX dataplane.

After looking up a matched �ow rule in the �ow tables for an incoming packet (i.e.,

parsing packets, looking up �ow entries corresponding to the packets, and updating

�ow statistics), DPX runs actions in the matched rule. In this case, if the list of actions

includes a security action(s) during execution, DPX will trigger a corresponding secu-

rity action block for the matched �ow, and the security action performs a designated

security check, through the following three steps, as depicted in Figure 3a.

First, DPX updates metadata or statistics of packets used for inspection into the

data section using (1) the �ow_key which stores the packet-level metadata used for

indexing �ow tables, and (2) the �ow_stats which contains the statistical data (e.g.,

the count and bytes of packets) of each �ow entry. For example, the action for DoS

detection updates the size of an incoming packet and its arrival time, and the action

for scanning detection updates the last access time and list of accessed TCP/UDP ports.

Second, the inspection logic performs an actual security operation to a packet within

the data section. For instance, the inspection logic for a DoS detector calculates bps

(bits-per-second) of a �ow using the metadata and statistical information for this �ow

(i.e., size and time of packets in its data section), and the inspection logic for a scanning

detector counts how many ports are hit within a time window using the last access

time and port list in the data section. The result of the operation is compared with a

threshold set by a user to decide whether or not to violate a security speci�cation.

6 Taejune Park et al.

Third, if there is a security violation, DPX handles packets according to one of the

three policies: (1) alert which sends an alert message to a controller with a datapath

ID, physical port number associated, the reason for event occurrence, reference fea-

tures (e.g., the current bps), raw packet data, and a cluster ID (we will describe this in

Section 3.3); (2) discardwhich terminates the packet processing sequence and drops a

detected packet; and (3) redirect which forwards packets to alternative destinations

(e.g., honeypot) instead of the original destination.

A DPX action is con�gured by its parameters like common OpenFlow actions (e.g.,

set_nw_src(10.0.0.1)), and the parameters must be set when a security action is

installed. For example, a bps threshold and a pattern list are the required parameters

for the DoS detector and the deep-packet inspector respectively. Depending on the

type of security actions, there may be one or more parameters, including the policy

parameter describing how to handle a detected packet. Speci�cally, we can represent

the security policy “if a 1000 Mbps DoS attack is detected, redirect the following tra�c

to port 2” as “sec_dos(mbps=1000,policy=redirect:2)”.

Bene�ts of DPX actions. We describe some noteworthy bene�ts of DPX actions.

1) Fine-grained security deployment: First, DPX actions integrate security oper-

ations to a �ow steering, so that a network administrator can only focus on a �ow di-

rection (e.g., whether normal tra�c reaches its destination) without considering secu-

rity con�gurations. This �ne-grained security deployment simpli�es the management

issue by reducing the number of �ow rules to detouring middleboxes.

2) Simpli�ed service chains: Second, DPX can compose a service chain in the

simpli�ed method. Regardless of the complexity of the service chain and the number

of services, a single line of a �ow rule can represent the service chain by enumerating

the actions. For example, if we con�gure a service chain for a DoS detector, an anomaly
detector, a vertical-scanning detectors, a session monitor, and a payload inspector of a

�ow destined to a 10.0.0.1 host, it can be described through a single rule as follows:

Flow: ...,nw_dst=10.0.0.1,...,actions=sec_dos(...),
sec_anomaly(...),sec_vscan(...), sec_session(...), sec_dpi(...),...

3) Optimized processing sequence: Another bene�t is that DPX optimizes packet

processing by eliminating unnecessary tra�c steering to NFVs or middleboxes. In the

case of a conventional SDN/NFV environment, tra�c has to be detoured to an NFV

host before reaching its destination. Therefore, the total traversal distance of the tra�c

is stretched, and the propagation delay and the bandwidth usage are increased as much

as the detoured path.

In addition, this detouring involves the latent wasting of network resources by re-

dundant packet processing. Generally, a switch forwards an incoming packet in four

steps (i.e., parse packets, look up �ow tables, update �ow stats, and execute actions),

and if security inspection is required for the packet, it would be forwarded to an NFV

host. After receiving the packet, the NFV host examines the packet through parsing,

classifying, updating, and inspecting, similar to a switch. Then, the NFV host returns

the packet to the switch, and the switch takes the packet processing steps one more
time to forward the packet to its original destination. Namely, the packet detouring

naturally connotes a redundant packet process, and this leads to a waste of network

DPX: Data-Plane eXtensions for SDN Security Service Instantiation 7

……Flow_D
Flow_C goto(table1)
Flow_B

goto(table1)
Match

goto(table1)
Flow_A

Actions
sec_dos(…),
goto(table2)

Match

*
Actions

sec_scan(…),
forward(…)Flow_C

Flow_B

sec_scan(…),
goto(table3)

Match

goto(table3),

Flow_A

Actions

Table 0
(Default table)

Table 1
(Aggregating flows for DoS1)

Table 2
(Separating flows)

Fig. 4. Tra�c steering with security actions

sec_scan (id = 10, …),
sec_dpi (id = 30,…)Flow_E

sec_scan (id = 10, …)

Actions

Flow_C
Flow_B

sec_dos (id = 10, …)

Match

sec_dos (id = 90119, …)
Flow_A

Flow_D

sec_dos (id =10, …)

sec_dos
bps

90119
10

DataID
Clustering Map

bps
bps

Threshold

sec_scan

port10
DataID

Clustering Map

Port
Count

sec_dpi

30
DataID

Clustering Map

rules Pattern
Matching

Inspection logicFlow Table

40 rules

Inspection logic

Inspection logic

Fig. 5. Design of Action Clustering

resources to degrade network throughput. We have checked that this performance

degradation indeed exists (See Section 6). For a service chain, such ine�cient opera-

tions would be repeated multiple times and worsen the performance.

In the case of DPX, security services are supported on a switch directly, so tra�c

does not need to be detoured, and the latency and bandwidth loss would be avoided.

Also, security actions process tra�c in a manner that minimizes redundancy: each

security action utilizes the �ow_key and the �ow_stats generated in the �ow lookup

step, rather than incurring a separate packet analysis process. Packets already contain

appropriate information such as addresses, protocol, and packet count and size, so the

overhead incurred by the security actions will be practically bounded to performing

the inspection logic – even in a service chain.

3.3 Action Clustering

Although DPX actions address the challenges raised in Section 2, there remain ad-

ditional complexities and opportunities for optimization; particularly when internal

tra�c-steering policies dictate that service chains share the same monitoring instance

between multiple �ows. For example, when we consider Figure 2a with DPX security

actions, Flows A, B, and C for DoS1 would be expressed as Figure 4; because each

individual �ow shares the same DoS monitor, Flows A,B, and C are redirected to the

next table for aggregated DoS tracking. After executing the DoS action, those �ows

are forwarded to the next table for additional actions.

To address this redundant tra�c steering challenge, we propose a novel technique

called the action clustering which merges DPX actions of multiple �ow rules into a

few synthetic rules. Figure 5 illustrates the work�ow of action clustering. DPX builds

the clustering map, per DPX action, which consolidates and manages the data section

based on the cluster ID. The cluster ID is a DPX action parameter used as the hash key

to lookup the clustering map before the data segment is updated and delivered to the

8 Taejune Park et al.

Flow_B

Flow_E sec_dpi(id=20, ...), ...

sec_dos(id=10, ...), sec_dpi(id=10, ...), ...

Actions

sec_dos(id=20, ...), sec_dpi(id=20, ...), ...
sec_dos(id=10, ...), sec_scan(id=20, ...), ...

sec_dos(id=10, ...), sec_scan(id=10, ...),sec_dpi(id=10, ...), ...

Flow_D
Flow_C
Flow_B
Flow_A
Match

Fig. 6. Simpli�ed �ow rules with action clustering

inspection logic. The shared data segment facilitates detection of abnormal behavior

not just within a given �ow but also abnormal behavior across aggregated �ows. For

example, in Figure 5, Flow_A and Flow_C have the same action (“sec_dos”) and the

same cluster ID (10). Thus, the aggregated data for both �ow rules are maintained in

the clustering map for DoS detector. When the packets of Flow_A and Flow_C arrive

at the switch respectively, the statistics (in this case, the packet length) of the �ows

are accumulated and updated for each �ow. If a DPX action runs standalone, its cluster

ID would be set with a unique random ID (Flow_B). Since DPX considers the type of

actions and the cluster ID together, the same cluster ID between di�erent actions does

not correlate (e.g., the DoS detector action for Flow_A/C and the scanning detector

action for Flow_D which use the same cluster ID 10). The action clustering works

regardless of service chaining. Even when a service chain is con�gured, the clusters

in the chain drive independently for each action (Flow_E).

Here, we address the motivational challenge as shown in Figure 2a. With action

clustering, an administrator could con�gure security service chains as shown in Fig-

ure 6. In this service chaining, the �ows share the same cluster ID between the same

instances (i.e., DoS1 for �ow A/B/C, DPI1 for �ow A/B, and DPI2 for �ow D/E).

3.4 Advanced Action Clustering

In this section, we introduce two additional features, inconsistent clustering and multi-
clustering which make the action clustering more �exible in practice.

1) Inconsistent-Parameter Clustering. In some circumstances, di�erent detection

policies may need to be applied to a tra�c stream, e.g., stringent security control on

some �ows and loose security on others. Inconsistent-parameter clustering, which takes

di�erent parameters to allow each clustered action to react di�erently under the shared

data section, can be used in this scenario. The following �ow rules serve as examples.

Flow_A: actions=sec_vscan(ports=1000,time=5,id=10),...

Flow_B: actions=sec_vscan(ports=500,time=3,id=10),...

The sec_vscan action detects a vertical scanning attack by counting how many

ports are hit within a speci�c time window. Since the sec_vscan actions are in the

same cluster, they share the same data that contains the count of port hits and the last

arrival time of each port, but each sec_vscan has di�erent parameters for detecting

di�erent scanning attacks. In this case, those parameters imply that multiple security

policies are applied to the same data. For instance, when the current aggregated count

of port hits is 700 in the last three seconds and 900 in the last �ve seconds, DPX only

triggers an alert against Flow_B and not Flow_A.

DPX: Data-Plane eXtensions for SDN Security Service Instantiation 9

2)Multi-Clustering. The key idea behind multi-clustering is that a DPX action can be

assigned to multiple clusters for computing di�erent statistics. When DPX executes an

action containing multiple cluster IDs, it updates the incoming �ow state (i.e., �ow_key

and stats) with all related clusters. Thus, multi-clustering allows a �ow to be enforced

by a sub security policy alongside a parent security policy. For example, it is possible

to set an additional bandwidth limitation to a �ow of interest while preserving the

original bandwidth limitation.

Flow_A: actions=sec_dos(mbps=1000,id=10),...

Flow_B: actions=sec_dos(mbps=500,id=10,20),...

The DoS action for Flow_B involves two cluster IDs, 10 and 20, but Flow_A is only

associated with cluster 10. This means that the DoS action monitors the bandwidth for

both �ows using ID 10, while separately monitoring the bandwidth for Flow_B using

ID 20. It implies that the two �ows (Flow_A and B) should not exceed the total of 1000
Mbps, and also Flow_B, by itself, should not exceed 500 Mbps (but Flow_A can reach

up to 1000 Mbps).

3.5 Action Enforcement

Since security functions are designed as parts of actions, DPX applications that engage

security actions can be implemented on top of an SDN controller. By appending DPX

actions into Flow_MOD messages, an administrator can deploy security functions to a

speci�c network �ow. Then, a DPX switch will execute the security functions de�ned

in the action �elds by the Flow_Mod messages. When security actions on the data

plane detect abnormal behaviors (e.g., any violation of DoS thresholds) with the alert

policy, it sends an alert, which is an OpenFlow message with the detection information,

to the SDN controller. Then, the DPX application in a controller receives the alert

message and responds with appropriate reactions to abnormal behaviors by registering

its event handlers.

In addition, DPX preserves the same work�ow as the original OpenFlow interface.

Therefore, not only is it highly compatible with the existing OpenFlow API and fea-

tures, administrators with experience in OpenFlow can also integrate DPX on their

network with minimal e�ort and overhead.

4 System Implementation

To validate our design principles, we developed a prototype implementation of DPX

in both software and hardware. We provide details on both implementations below.

4.1 Software-based DPX

The software-based DPX switch is implemented based on Open vSwitch (OVS) [20,24]

version 2.4.9, as shown in Figure 7. In order to perform actions on a matched packet

from the �ow table, OVS will invoke the execute_actions sequence with packet data

(i.e., socket bu�er (SKB)) and an action key which enumerates a list of actions to be

executed for the matched �ow. We modi�ed the execute_actions module of OVS to call

10 Taejune Park et al.

Security Action BlockSecurity Action Block<Security Action Block>

O.F.
Actions

DPX
Entry point

Execute
Actions

Data Section
Inspection
Logic

Policy
Handler

Alert

R
edirect

Forward

Va
lid

Discard

 Flow
Table

Lookup Send
Alert
MSG

Send
Event
Msg.

output

Flow_key, stats

Alert to controller

So
ck

et
 b

uff
er

&
Ac

tio
n

ke
y

Fig. 7. An illustration of the software-based DPX datapath

the DPX entry point that is the starting point for DPX security actions when the �ow

key includes security actions. A security action is composed as a modular function

block which is a function interface block performing three stages described in the

previous section (i.e., update the data section, perform the inspection logic, and impose

the policy on detected tra�c), and a new security action can be added by registering

a new block to the DPX entry point.

To demonstrate this implementation, we present six DPX security action blocks

in the software-based DPX: (1) DoS detector which detects a bandwidth exceed by

Mbps threshold, (2) Deep Packet Inspector (DPI) which �nds a matched pattern in a

packet payload, (3) Anomaly detector which detects a change rate of bandwidth, (4)

Vertical-Scanning (vScan) detector which counts how many TCP/UDP ports are hit

within a time window, (5) Horizontal-Scanning (hScan) detector which counts how

many hosts for a speci�c TCP/UDP port are hit within a time window, and (6) Session

monitor which traces TCP sequences and counts invalid connections. The total num-

ber of supported �ows with an action cluster is only limited by the memory capacity

of a host device.

4.2 Hardware-based DPX

The hardware-based DPX switch is implemented using the NetFPGA-SUME board

which is an FPGA-based PCI Express board with four SFP+ 10 Gbps interfaces [38].

We migrated the OpenFlow IP package of NetFPGA-10G board [22] to our NetFPGA-

SUME board and extended it to support DPX actions. To enable DPX, the hardware-

based DPX includes the security processing sequence that consists of a security action

selector, security action modules, and a policy handler as depicted in Figure 8.

After looking up the �ow table, a �ow_key, �ow_stats, and an action key are de-

livered to the security action selector, which looks up security actions to be executed

by the action key. A security action in the hardware-based DPX is designed as a secu-

rity action module which is an independent entity that contains a data section with its

own memory space. Thus we can easily add new features by registering a new security

module to the security action input selector. When security actions are executed, all

security action modules will be executed in parallel. Therefore, the security action in-

put selector transfers all parameters related to security actions through the wide data

bus, and packet data are carried to each security module from the packet bu�er, as

shown in Figure 8. Then, when a security violation is detected among the performed

security actions, the policy handler applies a designated policy to the detected packet.

If a security violation is detected by multiple security modules and policies are con-

DPX: Data-Plane eXtensions for SDN Security Service Instantiation 11

Intf. 0

Intf. 1

Intf. 2

Intf. 3

Host
Intf.

Fl
ow
 T
ab
le
 C
on
tr
ol
le
r Intf. 0

Intf. 1

Intf. 2

Intf. 3

Host
Intf.O

pe
nF
lo
w
 A
ct
io
n
pr
oc
es
so
r

Fl
ow

_k
ey

Packet
Packet buffer

Input output

Fl
ow

_k
ey

, s
ta

ts
&

Ac
tio

n
ke

y

In
pu
t A
rb
ite
r +
 O
ut
pu
t q
ue
ue

Pa
ck
et
 p
re
pr
oc
es
so
r

Po
lic

y
ha

nd
le

r

Discard

Alert

Re
dir

ec
t

<Security Action Module>

Data Section
(BRAM)

Update
Data Section

Read
Payload In

sp
ec
ti
on

Lo
gi
c

Se
uc

iry
 A

ct
io

n
In

pu
t S

el
ec

to
r <Security Action Module>

Data Section
(BRAM)

Update
Data Section

Read
Payload In

sp
ec
ti
on

Lo
gi
c

<Security Action Module>

Data Section
(BRAM)

Update
Data Section

Read
Payload In

sp
ec
ti
on

Lo
gi
c

Wide Data Bus

Fig. 8. An illustration of components and data�ow in the hardware-based DPX

�icted, a higher priority policy is applied; the priority of policies is redirect→ discard
→ alert (high to low).

We verify the hardware-based DPX by designing two security action modules: (1)

DoS detector with 1024 action clustering blocks, and (2) DPI action with four action

clustering blocks that can each store 1024 patterns of 256 bytes. The number and length

of rules can increase depending on memory con�guration in NetFPGA-SUME.

4.3 Controller and OpenFlow protocol

To enable enforcement of security actions, we have designed an application program-

ming interface for the POX controller [25] which is a Python-based SDN controller.

We have supplemented the DPX event handler class to receive DPX messages and im-

plemented a new Python module supporting DPX applications. We have added around

500 lines of Python code to POX to enable all DPX related functions. Finally, we have

used the OpenFlow 1.0 vendor extension for communication between the control plane

of DPX (i.e., POX implementation) and the DPX switch. It is worth noting that our

design principles will also apply to more recent versions of OpenFlow and modern

controllers such as ONOS [2] or OpenDaylight [14]. We chose POX and OpenFlow 1.0

due to their simplicity for rapid prototype development.

5 Security Use Cases

To highlight operational use-cases of DPX, we �rst set up a testbed (shown in Figure

9), where a DPX switch is used to connect a malicious host and a server (hosting FTP

service, which has a bu�er-over�ow vulnerability). The switch is controlled by a con-

troller running DPX security applications. A malicious host is used to perform three

di�erent attacks: (i) DoS, (ii) port scanning, and (iii) bu�er over�ow exploit against

the FTP server. Here, we will present how the DPX switch analyzes ongoing network

tra�c, detects attacks, and reports to the controller. We assumed that a network admin-

istrator has pre-con�gured the security applications for reacting to network attacks.

1) Denial of Service. DPX has two mechanisms to detect DoS attacks: DoS detector

actions and anomaly detector actions. In this example, we employ a DoS detector ac-

tion to alert when the tra�c surpasses 500 Mbps, and the malicious host sends over

1 Gbps tra�c to the FTP server using hping3 [8]. When the DoS detector action de-

tects the attack (i.e., high-volume tra�c), it sends an alert message including current

packet-rate information to the DPX controller (Figure 10a). Then, the DPX application

12 Taejune Park et al.

Malicious
Host

(1)Attack
FTP

Server

Middle-boxController
(Security apps)

(3)Alert
(4)Install a rule

(a)Redirect
DPX Switch

 Datapath
Security Actions

O.F. Actions

(2)Detect

CVE-2010-4221
vulnerable

Fig. 9. Testbed and Operational Scenario of DPX Use Cases

(a) DoS attack alert message (b) hping3 result in the malicious host

(c) Horizontal scanning alert message (d) Nmap result in the malicious host

(e) Remote exploit alert message (f) Metasploit result in the malicious host

Fig. 10. Alert messages & block results for various use-case attacks

installs a new �ow rule to block the attack tra�c in DPX. Hence, most of the tra�c is

dropped, and the DoS attack is suppressed as shown in Figure 10b.

2) Port Scanning. DPX can detect horizontal and vertical scanning via its scan de-

tector actions. In addition, the session monitor action can help in detecting stealth

scanning attacks. In this example, we con�gure the horizontal scan detector action

with 50 hosts and a 10 second time window. The malicious host generates horizontal

scans directed at port TCP/21 using nmap [18]. When DPX successfully detects the

horizontal scanning, DPX sends an alert message including current host count to the

controller (Figure 10c). Then, the DPX application installs a new �ow rule to block the

attack tra�c, as shown in Figure 10d.

3) Remote Exploit. Next, we consider the case where a malicious host tries to exploit

the vulnerability of ProFTPD to get a remote shell. In this use-case, the malicious host

uses Metasploit [16] which is a very popular penetration testing tool. This class of

attacks can be detected by the DPI action, so we set the DPI action with 100 rules

including the attack pattern at 99th. After performing the attack, the DPI action detects

the attack pattern in the packet payloads and issues an alert message to the controller.

The alert indicates the corresponding pattern number that is matched in the pattern

list (Figure 10e). Then, the DPX application installs a new �ow rule to block the attack

tra�c, preventing the malicious host from acquiring a remote shell through the exploit

sequence, as shown in Figure 10f.

4) Middlebox Cooperation. DPX can cooperate with other middleboxes using the

redirect policy to redirect packets, such that middleboxes or NFV services only pro-

DPX: Data-Plane eXtensions for SDN Security Service Instantiation 13

Fig. 11. Simple security control with DPX

cess packets �ltered by DPX, instead of all packets. For example, the network in Figure

9 runs a honeypot with security actions on the DPX switch. When a security action

has the redirect policy, benign connections are forwarded to the original destination,

but only suspicious connections are classi�ed and transmitted to the honeypot. In ad-

dition to this approach, this conditional packet handling can be applied to implement

other network security solutions such as honeynets or Moving Target Defense.

5) Security Control. Since DPX is designed to be compatibile with OpenFlow, a se-

curity control solution can be implemented on a controller by combining the network

management ability of OpenFlow and DPX security features. Figure 11 is the exam-

ple application that is built on the POX controller; It collects information about the

switches by requesting statistics messages such as OFPC_FLOW_STATS, OFPC_TABLE_

STATS, and OFPC_PORT_STATS, and monitors the status of deployed security actions

through the DPX security handler. Using those collected information, the application

displays the direction and amount of tra�c between each switch and the current se-

curity status. If a security violation occurs, the administrator can establish a future

security policy based on observed network conditions. For example, in the case of Fig-

ure 11, the anomaly detector action of the switch s3 alerts that current tra�c-level is

285% higher than usual. A administrator could analyze the cause of this alert from the

displayed tra�c information, and determine that the switch s4 is currently generating

a large amount of tra�c to s3. Then, the administrator can block tra�c for s4 to s3,

or deploy stricter security actions to defend against future attacks.

6 System Evaluation

The test environment consists of two hosts (i.e., h1 and h2) and an NFV host with a

datapath device that operates the DPX switch and the DPX controller, as illustrated

in Figure 12. All machines run Ubuntu 14.04 and have an Intel Xeon E5-2630@2.9GHz

processor, 64 GB of RAM, and Intel X520-DA2 10GbE NICs. The datapath device uses

the NetFPGA-SUME board for running the hardware-based DPX switch, or runs the

software-based DPX switch on the host OS. Although DPX may be deployed in multi-

switch environments, we focused on single switch evaluations because the overall

throughput is determined by the bottleneck switch.

We measured the throughput and latency of DPX actions in three di�erent ways

to verify the impact of DPX actions on performance. First, we con�gured the DPX

switch to forward all incoming packets from h1 to h2 after passing DPX actions (e.g.,

in_port=1,actions=sec_dos(...),output:2). Second, to compare the performance

14 Taejune Park et al.

Datapath
(HW-DPX / SW-DPX)

h1
10GbE

10GbE

DPX
Controller

(1)

h2
10GbE

10GbE (2)

10GbE (3)

NFV(Do nothing)
10GbE

Fig. 12. Evaluation Topology

Packet size (bytes)
64 256 512 1024 1514

Th
ro

ug
hp

ut
 (G

bp
s)

2
4

6
8

10
11

128

Simple
DoS
DPI100
DPI500
DPI1000
Chain
NFV

(a) Full-size graph

Packet size (bytes)
64 256 512 1024 1514

Th
ro

ug
hp

ut
 (G

bp
s)

9.
8

9.
85

9.
9

9.
95

10

128

Simple
DoS
DPI100
DPI500
DPI1000
Chain
NFV

(b) Magni�ed graph

Fig. 13. Throughput of Hardware-based DPX

Latency (msec)
0 0.5 1 1.5

C
D

F
0.

2
0.

4
0.

6
0.

8
1

Simple
DoS
DPI
Chain
NFV

Fig. 14. Latency of HW-DPX

Packet size (bytes)
64 256 512 1024 1514

Th
ro

ug
hp

ut
 (G

bp
s)

2
4

6
8

10
11

128

Simple
DoS
Anomaly
vScan
hScan
Session
DPI100
DPI500

64 256 512 1024 1514

DPI100
DPI500
DPI1000
Chain
NFV

Packet size
64 256 512 1024 1514

Chain
NFV

(a) Throughput

Latency (msec)
0 0.5 1 1.5 2 2.5

C
D

F
0.
2
0.
4
0.
6
0.
8

1

Simple
DoS
Anomaly
vScan
hScan
Session
DPI
Chain
NFV

(b) Latency

Fig. 15. Performance of Software-based DPX

overhead of DPX security services, we measured the simple forwarding delay on the

native NetFPGA-SUME and Open vSwitch 2.4.90 from h1 to h2 without any special

handling (i.e., in_port=1,actions=output:2). Finally, to evaluate how much DPX

improves the performance compared with a conventional NFV environment, we mea-

sured the performance when packets traverse an NFV host before arriving at h2 (i.e.,

in_port=1,actions=output:3 and in_port=3,actions=output:2). The NFV host

does nothing and immediately returns packets to the DPX switch. Here, please note

that we do NOT mean to measure the performance of each security action or ver-

ify their functionality. Our evaluation aims to measure the overhead of processing

security functions as security actions in the datapath and how much performance im-

provement DPX provides over NFVs. The throughput was measured with various size

of packet bursts generated by Intel DPDK-Pktgen [10], and the latency was measured

through the RTT of TCP packets that contain random 256-byte payloads generated by

nping [19].

6.1 Evaluating Hardware-based DPX Performance

Throughput. Figure 13a illustrates the throughput of the hardware-based DPX. All

security actions (i.e., DoS detector and DPI with 100, 500 and 1000 rules) achieved

throughput close to 10 Gbps for the simple forwarding case. On closer inspection,

(Figure 13b), while we incur minimal overheads (< 1%) for the worst case of 64-byte

packet burst, it is negligible and the line-rate performance is realized for bursts of

higher-packet sizes. When con�guring the security service chain with DoS and DPI,

we �nd that there is no observable overhead because of the parallel processing pro-

vided by hardware-based DPX.

We also note that the NFV-based approach incurs signi�cant overheads before the

1024-byte point. In particular, it delivers only 1 Gbps of throughput at the 64-byte

DPX: Data-Plane eXtensions for SDN Security Service Instantiation 15

point. This degradation is mainly caused by the bottleneck on the NFV host and pro-

cessing overhead of the incoming and outgoing packet stream. While this throughput

degradation can be moderated through improvements of the NFV host itself, it is di�-

cult to alleviate the bottleneck completely considering that multiple virtual machines

could potentially be service-chained in actual NFV deployments.

Latency. The CDF in Figure 14 illustrates the latency induced by hardware-based DPX

switch processing. In the most cases, the latency of DPX actions converges to the

latency of simple OpenFlow forwarding; 99% of packets are processed in less than

0.65 ms. Even in the case of the service chains, there is no meaningful overhead in

latency. This result is remarkable when we compare DPX actions with the NFV host.

Even if the NFV host directly returns tra�c without any additional processing, the

latency is a factor of two or more times higher than DPX actions.

6.2 Evaluating Software-based DPX Performance
Throughput. Figure 15a presents the throughput results of software-basedDPX. Most

of the DPX actions, except the DPI action, incur small overheads compared to the

simple forwarding of the native OVS; In all byte ranges, DPX services achieve at least

90% of the throughput of simple forwarding. In the case of composite service chaining

that comprises of all security features except DPI (i.e., DoS detector, Anomaly detector,

Vertical/Horizontal Scanning Detector, and Session Monitor), there is only a minor

performance degradation, that is comparable to the overhead of just using the anomaly

detector. This performance degradation is not the overhead by the chaining itself, but

mainly the bottleneck by the worst performing security action in the chain.

These results indicate that DPX o�ers a compelling performance improvement

over the NFV-based solutions. The NFV-based approach only achieves a throughput

of 7.7 Gbps in the best case (i.e., 1514-byte point). Here, considering that the simple

forwarding of both software and hardware gets nearly 10 Gbps at the 1514-byte point,

the throughput of the NFV detouring should also be similar in both the software and

the hardware cases at the 1514-byte point because detouring to NFV is based on simple

forwarding. However, the software-based NFV detouring has lower throughput. This

means that there are other performance degradation factors besides the bottleneck on

the NFV host; this extra overhead is due to OVS having to concurrently process two

packet streams since the NFV host returns a packet stream to OVS and h1 continues

to send the packet stream to OVS for a certain period. Thus the bandwidth capacity of

OVS is exceeded causing it to underutilize the bandwidth of the network. This over-

head was less obvious on the hardware switch, but the throughput limitations of the

software environment clearly exposes the bandwidth wastage from NFV detouring.

An exception to this is the DPI action, which barely achieves 1 Gbps, with through-

put decline that follows the number of rules (i.e., 100, 500 and 1000 rules). This lim-

itation is due to the overhead of pattern matching in software; both Snort [32] and

Suricata [34] in the IPS mode provide similar throughputs of 0.8-1.2 Gbps in our tests.

Although it is di�cult to objectively compare the DPI action with Snort and Suricata

because of functional di�erences, this result suggests that the DPI action could be uti-

lized for the initial inspection at edge nodes before forwarding to native DPI instances

for improved performance.

16 Taejune Park et al.

…

…

h2h1 NFV

Spine

Leaf

POX Controller
(forwarding.l2_learning)

…

(a) Leaf-Spine Topology

The number of Leaf-Hosts (ea)
1 3 5 7 9Th

e
nu

m
be

r o
f R

ul
es

 (e
a)

0

40
0

80
0

12
00

16
00 Chain 0

(==DPX)
Chain 1
Chain 2
Chain 3
Chain 4

(b) Count of required rules

Fig. 16. Evaluating DPX Flow Table Simpli�cation

Latency. Figure 15b illustrates the latency of the software-based DPX as a CDF graph.

In most cases, the latency of DPX actions approaches that of the latency of simple

forwarding in native OVS including the DPI action; 99% of packets, are processed in

less than 1.5 ms. We cannot also �nd any meaningful overhead while constructing

service chaining. Therefore, we can see that there is very little processing time de-

lay while con�guring service chaining with DPX. Here, NFV detouring incurs about

twice the latency of the hardware case. We also veri�ed that the extra overhead was

caused by the propagation delay to the NFV host on the switch; In the case of simple

forwarding, the average latency of software-based switching is 1.21 ms and hardware-

based switching is 0.50 ms. However, the average of latency for the NFV detouring

case with software-based switching is 2.18 ms and for the hardware-based switching

is 1.34 ms. In summary, while hardware-based switching increased latency by 37%,

the overhead of software-based switching is 55%. This di�erence could be attributed

to 20% extra overhead in the path expansion latency and redundant packet processing

at the switch. Finally, we also measured the computational overhead of DPX actions,

and it was negligible (1-2% of the packet-switching overhead).

6.3 Flow Table Simpli�cation

We conducted an evaluation of the e�ectiveness of DPX in simplifying �ow rules.

However, since �ow tables vary depending on the controller (application) con�gu-

ration, network policy and background tra�c, it is di�cult to make universal claims.

Hence, we have assumed a speci�c use case and emulated it using Mininet [12] (a pop-

ular virtual network emulation tool) and the POX controller. While we make no claim

as to the representativeness of the use case or topology, we believe that qualitatively

similar bene�ts could be extended to real NFV networks.

We emulated a leaf-spine topology that is a two-layer datacenter network archi-

tecture, and connected end hosts to each leaf switch as depicted in Figure 16a. One

of the connected hosts is used as an NFV host to operate network services. Then, we

count the number of required �ow rules when all hosts can communicate with each

other (i.e., using ping-all test without packet loss) including a path to visit an NFV

service chain, while increasing the number of hosts. The �ow rules are installed by

the forwarding.l2_learning application on the POX controller.

As shown in Figure 16b, the number of required �ow rules for the entire network

exponentially increases following the number of hosts and the length of the service

DPX: Data-Plane eXtensions for SDN Security Service Instantiation 17

chain to drive tra�c to the NFV host and a service chain. When the number of leaf

hosts is 10 and the length of the service chain is four, the network needs 1620 rules for

the communications between all hosts. On the other hand, DPX can provide a service

chain without any detouring of tra�c. Thus, the network with DPX only requires

minimal �ow rules that lead tra�c to their destination directly, and it is equivalent to

when the length of the service chain is zero. Therefore, the number of required �ow

rules is signi�cantly reduced regardless of the length of the service chain. Speci�cally,

even if the number of leaf hosts is 10 and the length of service chain is four, the network

only needs 540 rules to enable communications between all hosts.

7 Discussion

Our evaluation demonstrates that DPX imposes minimal overhead that approaches

the line-rate performance of simple forwarding with respect to both throughput and

latency. We further �nd that the performance degradation of NFV actually stems from

a variety of auxiliary overheads such as packet re-processing on the NFV and steering

overhead on the switch that contribute to the overall reduction in throughput, beyond

added path latency. In a real network, a service chain may be lengthened thereby re-

quiring additional hops to the NFV device. In such cases, the resulting degradation

will be greater than in our experimental environment.

DPX can also reduce the number of �ow rules including data-plane security func-

tions, and the action clustering allows complex security policies to be expressed in a

simpli�ed �ow table as described in Sections 2 and 3. Today, networks with thousands

of hosts are commonplace, thanks to virtualization technology. Hence, optimizing the

network tra�c engineering in terms of both performance and security while consider-

ing the impact of NFV placement places an onerous challenge on network administra-

tors. We believe that describing complex security policy in terms of aggregate action

clusters will help to relieve con�guration, management and debugging workloads. In

practice, DPX enables the network administrator to prioritize tra�c engineering over

security-device routing and service-chain management.

Limitations. Since DPX operates security services at each switch, DPX cannot di-

rectly enable distributed solutions that span the whole network, such as network-wide

DoS detection. This can be addressed by adding support for controller-based applica-

tions, as discussed in the use-cases section. Another potential solution involves design-

ing a DPX data-exchange protocol between security actions on a network. In future

work, we plan to investigate new message protocols that exchange network statistics

(e.g., current bandwidth, number of active �ows) across DPX switches to synchronize

security information and enable fully distributed security-policy enforcement.

8 Related Work

Our paper is informed by prior work on network-function control and data-plane-

based network functions. The CloudWatcher [30] service uses OpenFlow to detour

network �ows to physical network devices in dynamic cloud networks, where the se-

curity functions are pre-installed. SIMPLE [26] and Gupta et al. [6] propose e�cient

18 Taejune Park et al.

tra�c steering for composing service chaining with middleboxes. CoMb [28] consoli-

dates network middleboxes into a single physical machine to reduce capital expenses

and device sprawl. While these systems streamline NFV deployment, they do not ad-

dress the associated degradation challenge due to NFV detouring.

Popular software switch implementations [7, 20, 24] enhance scalability by sup-

porting a large number of virtual ports to guarantee high performance. Pisces imple-

ments a custom software switch using the P4 processing language [29] and Switch-

Blade proposes the use of FPGAs to build custom network protocols on hardware [1].

AccelNet [4] uses FPGA-based smart NICs to support the bandwidth needs of net-

work datacenters. OFX [33] is an OpenFlow extension framework which enables an

OFX application to be loaded onto a switch at a runtime. NEWS [15] is an extended

SDN architecture that handles packets through modi�ed switch �ow tables called app

tables. Their approach results in redundant processing sequences for network services

as these are implemented as external modules. In contrast DPX integrates all security

functionaliity inside the SDN data plane and thus its performance overhead is min-

imal. QoSE [23] is another data plane module that provides security functions using

a distributed NFV, but it su�ers from performance degradation due to frequent traf-

�c detouring. Avant-guard [31] uses data-plane connection migration and actuating

triggers to defend against control-�ow saturation attacks. However, its objectives are

narrower and it does not a�ord the �exibility to run arbitrary security services.

9 Conclusion

This paper presented the design and (hardware/software) prototype implementations

of a new data plane architecture called DPX, which embeds security functions directly

into a switch as a set of actions. DPX simpli�es composition of service chains and

enables graceful integration of security services. DPX is carefully engineered to mit-

igate associated detouring overheads, such that it can provide security services with

maximal performance, producing a performance pro�le that is comparable to simple

forwarding and a latency pro�le that is two to three times faster than traditional NFV.

Furthermore, action clustering reduces the number of �ow rules and eliminates un-

necessary service-chaining actions by aggregating them into a single DPX action. As

the network becomes more complex, we expect that the approach of DPX has high-

potential that could be utilized not just to support e�cient academic security projects,

but also industrial operations.

Acknowledgement. KAIST was supported by Institute for Information & commu-

nications Technology Promotion(IITP) grant funded by the Korea government(MSIT)

(No.2018-0-00254, SDN security technology development). SRI International was sup-

ported by the National Science Foundation(NSF) award no. 1642150.

References

1. Anwer, M.B., Motiwala, M., Tariq, M.b., Feamster, N.: Switchblade: a platform for rapid de-

ployment of network protocols on programmable hardware. ACM SIGCOMM Computer

Communication Review 40(4) (2010)

DPX: Data-Plane eXtensions for SDN Security Service Instantiation 19

2. Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T., Lantz, B., O’Connor, B.,

Radoslavov, P., Snow, W., et al.: Onos: towards an open, distributed sdn os. In: Proceedings

of the third workshop on Hot topics in software de�ned networking. pp. 1–6. ACM (2014)

3. Fayaz, S.K., Tobioka, Y., Sekar, V., Bailey, M.: Bohatei: Flexible and elastic ddos de-

fense. In: 24th USENIX Security Symposium (USENIX Security 15). pp. 817–832. USENIX

Association, Washington, D.C. (Aug 2015), https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/fayaz

4. Firestone, D., Putnam, A., Mundkur, S., Chiou, D., Dabagh, A., Andrewartha, M., Angepat,

H., Bhanu, V., Caul�eld, A., Chung, E., et al.: Azure accelerated networking: Smartnics in

the public cloud. In: 15th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI 18), Renton, WA (2018)

5. Gill, P., Jain, N., Nagappan, N.: Understanding network failures in data centers: measure-

ment, analysis, and implications. In: ACM SIGCOMM Computer Communication Review.

vol. 41, pp. 350–361. ACM (2011)

6. Gupta, A., Habib, M.F., Mandal, U., Chowdhury, P., Tornatore, M., Mukherjee, B.: On service-

chaining strategies using virtual network functions in operator networks. Computer Net-

works 133, 1–16 (2018)

7. Honda, M., Huici, F., Lettieri, G., Rizzo, L.: mswitch: A highly-scalable, modular

software switch. In: Proceedings of the 1st ACM SIGCOMM Symposium on Soft-

ware De�ned Networking Research. pp. 1:1–1:13. SOSR ’15, ACM, New York, NY,

USA (2015). https://doi.org/10.1145/2774993.2775065, http://doi.acm.org/10.1145/
2774993.2775065

8. hping3: A network tool able to send custom TCP/IP packets and to display target replies,

http://www.hping.org/hping3.html
9. Hwang, J., Ramakrishnan, K.K., Wood, T.: Netvm: High performance and �exible net-

working using virtualization on commodity platforms. In: 11th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 14). pp. 445–458. USENIX

Association, Seattle, WA (Apr 2014), https://www.usenix.org/conference/nsdi14/
technical-sessions/presentation/hwang

10. Intel: Intel DPDK: Data Plane Development Kit, http://dpdk.org
11. Kim, H., Feamster, N.: Improving network management with software de�ned networking.

IEEE Communications Magazine 51(2), 114–119 (2013)

12. Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid prototyping for software-

de�ned networks. In: Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in

Networks. p. 19. ACM (2010)

13. Martins, J., Ahmed, M., Raiciu, C., Olteanu, V., Honda, M., Bifulco, R., Huici, F.:

Clickos and the art of network function virtualization. In: 11th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 14). pp. 459–473. USENIX

Association, Seattle, WA (Apr 2014), https://www.usenix.org/conference/nsdi14/
technical-sessions/presentation/martins

14. Medved, J., Varga, R., Tkacik, A., Gray, K.: Opendaylight: Towards a model-driven sdn con-

troller architecture. In: World of Wireless, Mobile and Multimedia Networks (WoWMoM),

2014 IEEE 15th International Symposium on a. pp. 1–6. IEEE (2014)

15. Mekky, H., Hao, F., Mukherjee, S., Lakshman, T., Zhang, Z.L.: Network function virtualiza-

tion enablement within sdn data plane. In: IEEE INFOCOM. pp. 1–9 (2017)

16. Metasploit: Penetration Testing Software, https://www.metasploit.com/
17. NetFPGA: NetFPGA-SUME board, https://netfpga.org/site/#/systems/

1netfpga-sume/details/
18. nmap: Network Mapper - Security Scanner, https://nmap.org/
19. Nping: An Open source network packet generation,, https://nmap.org/nping/

20 Taejune Park et al.

20. Open vSwitch: An Open Virtual Switch, http://openvswitch.org/
21. OpenFlow: Open network foundation, https://www.opennetworking.org/

sdn-resources/openflow
22. Organization, N.G.: Netfpga 10g open�ow switch (2012), https://github.com/NetFPGA/

NetFPGA-public/wiki/NetFPGA-10G-OpenFlow-Switch
23. Park, T., Kim, Y., Park, J., Suh, H., Hong, B., Shin, S.: Qose: Quality of security a network se-

curity framework with distributed nfv. In: Communications (ICC), 2016 IEEE International

Conference on. pp. 1–6. IEEE (2016)

24. Pfa�, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme, J., Gross, J., Wang, A.,

Stringer, J., Shelar, P., Amidon, K., Casado, M.: The design and implementation of open

vswitch. In: 12th USENIX Symposium on Networked Systems Design and Implementa-

tion (NSDI 15). pp. 117–130. USENIX Association, Oakland, CA (May 2015), https://www.
usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff

25. POX: Python Network Controller, http://www.noxrepo.org/pox/about-pox/
26. Qazi, Z.A., Tu, C.C., Chiang, L., Miao, R., Sekar, V., Yu, M.: Simple-fying mid-

dlebox policy enforcement using sdn. In: Proceedings of the ACM SIGCOMM

2013 Conference on SIGCOMM. pp. 27–38. SIGCOMM ’13, ACM, New York, NY,

USA (2013). https://doi.org/10.1145/2486001.2486022, http://doi.acm.org/10.1145/
2486001.2486022

27. Roy, A., Zeng, H., Bagga, J., Snoeren, A.C.: Passive realtime datacenter fault detection and

localization. In: NSDI. pp. 595–612 (2017)

28. Sekar, V., Egi, N., Ratnasamy, S., Reiter, M.K., Shi, G.: Design and implementation

of a consolidated middlebox architecture. In: Presented as part of the 9th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 12). pp. 323–

336. USENIX, San Jose, CA (2012), https://www.usenix.org/conference/nsdi12/
technical-sessions/presentation/sekar

29. Shahbaz, M., Choi, S., Pfa�, B., Kim, C., Feamster, N., McKeown, N., Rexford, J.: Pisces: A

programmable, protocol-independent software switch. In: Proceedings of the 2016 ACM

SIGCOMM Conference (2016)

30. Shin, S., Gu, G.: Cloudwatcher: Network security monitoring using open�ow in dynamic

cloud networks (or: How to provide security monitoring as a service in clouds?). In: Network

Protocols (ICNP), 2012 20th IEEE International Conference on. pp. 1–6. IEEE (2012)

31. Shin, S., Yegneswaran, V., Porras, P., Gu, G.: Avant-guard: Scalable and vigilant switch �ow

management in software-de�ned networks. In: Proceedings of the 20th ACM Conference

on Computer and Communications Security (CCS 2013) (November 2013)

32. Snort: Network Intrusion Detection System, https://www.snort.org/
33. Sonchack, J., Aviv, A.J., Keller, E., Smith, J.M.: Enabling practical software-de�ned network-

ing security applications with ofx (2016)

34. Suricata: An open source-based intrusion detection system (IDS), https:
//suricata-ids.org/

35. Tammana, P., Agarwal, R., Lee, M.: Simplifying datacenter network debugging with path-

dump.

36. Yoon, C., Park, T., Lee, S., Kang, H., Shin, S., Zhang, Z.: Enabling security functions with

sdn: A feasibility study. Computer Networks 85, 19–35 (2015)

37. Zeng, H., Zhang, S., Ye, F., Jeyakumar, V., Ju, M., Liu, J., McKeown, N., Vahdat, A.: Libra:

Divide and conquer to verify forwarding tables in huge networks. In: 11th USENIX Sympo-

sium on Networked Systems Design and Implementation (NSDI 14). pp. 87–99. USENIX

Association, Seattle, WA (Apr 2014), https://www.usenix.org/conference/nsdi14/
technical-sessions/presentation/zeng

38. Zilberman, N., Audzevich, Y., Covington, G.A., Moore, A.W.: Netfpga sume: Toward 100 gbps

as research commodity. IEEE micro 34(5), 32–41 (2014)

