P2C: Understanding Output Data Files via On-the-Fly Transformation from Producer
to Consumer Executions

Yonghwi Kwon*, Fei Peng*, Dohyeong Kim*, Kyungtae Kim*, Xiangyu Zhang*, Dongyan Xu*,
Vinod Yegneswaran', and John Qian*
*Department of Computer Science, Purdue University
Email: {kwon58, pengf, kim1051, kim1798, xyzhang, dxu}@cs.purdue.edu
TSRI International
Email: vinod@csl.sri.com
Cisco Systems
Email: johnq@cisco.com

Abstract—In cyber attack analysis, it is often highly desirable
to understand the meaning of an unknown file or network
message in the absence of their consumer (i.e. the program
that parses and understands the file/message). For example,
a malware may stealthily collect information from a victim
machine, store them as a file and later send it to a remote
server. P2C is a novel technique that can parse and understand
unknown files and network messages. Given a file/message that
was generated in the past without the presence of any monitoring
techniques, and a set of potential producers of the file/message,
P2C systematically explores the execution paths in the producers
without requiring any inputs. In the mean time, it tries to
transform a producer execution to a consumer execution that
closely resembles the ideal consumer execution that can parse
the given unknown file/message. In particular, when a write
operation is encountered in the original execution, P2C performs
the opposite read operation on the unknown file/message and
patches the original execution with the loaded value. In order
to handle correlations between data fields in the file/message,
P2C follows a trial-and-error approach to look for the correct
transformation until the file/message can be parsed and the
meaning of their fields can be disclosed. Our experiments on a
set of real world applications demonstrate P2C is highly effective.

I. INTRODUCTION

Understanding data files and network messages with un-
known types or unknown structures is a prominent security
challenge. Consider the following scenario: a user downloads
and installs an Internet freeware that provides some desirable
functionalities. After using the freeware for a period of time,
she finds that some mysterious binary files are generated on
her hard disk. While these may be normal data files used by
the freeware, they could also contain private data such as
personal profile, contact list, and even key-strokes that the
freeware has stealthily collected from the victim machine.
The consumer of these data files is often not present on the
victim machine. In other words, there is not a program on

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.

NDSS 15, 8-11 February 2015, San Diego, CA, USA

Copyright 2015 Internet Society, ISBN 1-891562-38-X
http://dx.doi.org/10.14722/ndss.2015.23318

the victim machine that can parse and understand these data
files. Consider another scenario in which network monitoring
is deployed on an enterprise network. Assume some machines
are infected by an Advanced Persistent Threat (APT) malware,
which stays inactive until the targeted attack date is getting
close. That is the time the malware starts to communicate with
the remote Command and Control (C&C) server to coordinate
the attack. The network monitoring system picks up some
packets to a rarely visited URL. It is highly desirable to
understand the meaning of the packets. However, the consumer
of the packets is on the remote site. The aforementioned two
scenarios represent a prominent challenge: Can we understand
an existing file/message (generated in the past) with unknown
format and unknown meanings in the absence of the consumer
of the file/message. This paper aims to address the problem.

There are a large pool of existing works on protocol reverse
engineering [5], [12], [21], [6], [16], [4], [20] and input file
format reverse engineering [12], [13]. These techniques work
by monitoring the execution of consumer, that is, how the
network messages/files are parsed and processed. For example,
if consecutive bytes in an input file are accessed by consecutive
instances of the same instruction, these consecutive bytes
often constitute a buffer field. Most of these techniques focus
on disclosing the syntactic structure of input files/messages.
There are type reverse engineering techniques that can recover
variable types, semantics and data structure definitions from
stripped binaries [4], [14], [10], [19]. These techniques track
data flow between variables and API functions with known
interfaces. For example, if a variable has its value passed to a
parameter in strlen (), this variable must be a string pointer.
They can be combined with the aforementioned protocol/input-
file-format reverse engineering techniques to derive both the
syntax and semantics of input files/messages. However, the
biggest limitation for most of these techniques is that they
require the presence of the consumer. Some may not require
the consumer [4], [20], but they require the user to provide
inputs to drive producer execution (in order to apply dynamic
analysis) and monitor execution that produced files/messages
with the exact same format as the unknown file or message. In
our scenario, the file/message was generated in the past without
any monitoring. The user knows a set of potential producers
but she does not know which one generated the file/message or
which function of the producer generated it. She may not even
know how to run the producer (e.g. a botnet malware without
the presence of the C&C server may not run properly).

Lim et al. proposed a technique that performs static analy-
sis on producer binaries to derive the syntactic structure of
an output file [11]. It generates a regular expression from
program structure, which can be used to parse output files. For
example, a file write inside a loop leads to a kleene closure in
the resulting regular expression. However, the technique over-
approximates output format due to the conservativeness of the
underlying static analysis. It cannot denote constraints between
fields such as a preceding field describing the length of the
following field. It may generate regular expression such as “ (4
bytes)* (4 bytes)*” to denote two consecutive buffer
fields, not being able to express the constraints of/between
the two buffers. Note that this regular expression can parse
any output files. But the resulting parse tree unfortunately does
not reflect the real structure. Furthermore, the technique cannot
associate meanings to data fields.

In [8], Driscoll et al. have a nice observation that producer
and consumer are symmetric. Although the technique has a
different goal, which is to statically verify the correctness of
a producer by checking its conformance to the corresponding
consumer or vice versa, the observation inspired our solution,
called P2C. The basic idea of P2C is the following. Given
a file' that we want to understand and a potential producer
binary, we will leverage a recent binary forced-execution
technique [17] to explore the paths of the binary, by concretely
executing the producer along a large number of paths without
requiring any inputs. When a file open-for-write operation is
encountered, the operation may be the place where the subject
file was created, P2C starts to monitor the producer execution
and transform it to the corresponding consumer execution. In
particular, when a file write is encountered, it performs the
opposite read on the subject file. The values that are read are
patched to the execution such that the following operations can
be performed properly, in a way closely resembling the ideal
consumer execution. For example, by transforming a buffer size
write to the corresponding buffer size read from the subject file
and setting the size variable accordingly in the execution, when
the following buffer write is transformed to the corresponding
buffer read, the proper number of bytes are read. Once the
file can be correctly parsed, data flow tracking based reverse
engineering technique can be used to associate semantics to
the fields in memory.

Our contributions are summarized in the following.

e We propose the novel idea of on-the-fly transformation
from a producer execution to a consumer execution
to understand unknown files/messages that were gen-
erated in the past, without the presence of the real
consumers. In fact, we find that in some cases, the
transformed consumers are even better than the real
consumers as the real ones sometimes skip data fields.
The technique does not require the user to know the
precise producer or how to run a potential producer
binary.

e We identify that the prominent technical challenge
lies in handling correlations between fields. In some
cases, such fields correlations are not sufficiently ex-
posed from the producer logic. As a result, preceding

I'While P2C works on both files and network messages, we will focus our
discussion on files. Handling messages is similar.

symmetric reads in a transformed execution may not
provide enough guidance for the following correlated
symmetric reads. We have formally described the
nature of the problem and proposed an iterative search
based algorithm to address the problem.

e We have evaluated P2C on a variety of real world
binary programs. Our results show that P2C is able
to correctly parse their output files or messages and
disclose the correct meanings for most fields.

II. DEMONSTRATIVE EXAMPLE

In this section, we use an example to illustrate P2C. The
code snippet of the example is presented in Fig. 1. The program
allows users to create accounts and save account information
to a file. Given a data file that was generated previously and
the program itself, our goal is to understand the file, including
identifying individual data fields and their types and meanings.
Assume the program only serves as the producer of data files
and it does not have the consumer (parsing) logic. As such,
existing input format reverse engineering techniques [5], [12],
[13] that rely on observing how a file is parsed cannot be
applied.

As shown in Fig. 1, the program has two related data
structures. Struct header represents the header information
of the output file, which contains the type of the accounts
(e.g., type O, 1, and 2, denoting different permissions), the
number of accounts, the checksum of the file, and the name
of the group of accounts in this file (e.g., “basic” and
“silver_member”). Struct account_entry represents
the information for each account, including the id, the creation
date, and the balance. Method create_account () is used
to create accounts. It first allocates space for a new account and
saves it to the accounts [] array (line 22). It also initializes
the creation date related fields by calling system API functions
(lines 23, 24 and 26). It then sends an email using the newly
created id to notify the account creation (line 28). Method
output () emits account information to a file. It first emits
a magic number (line 45). It then sets the header fields (lines
46-47). It computes the size of the header (line 48), which
is dependent on the length of the name field in the header
struct. It emits the header size (line 49), followed by the header
(line 50). After that, it uses a loop (lines 51-52) to emit the
individual accounts.

Assume in a previous native execution of the program,
an output file was emitted as Fig 2 (c). Now we want to
understand the structure of the file and the semantics of the
individual fields of the file.

We first need an effective execution path exploration tool to
identify all the output file creation operations (e.g. fopen ()
for writes). We decide to leverage a binary forced-execution
platform we recently developed, called X-Force [17], to meet
this requirement.

X-Force executes an x86 binary program without requiring
any inputs. It supplies random inputs when needed. It has an
exception recovery scheme that suppresses runtime exceptions.
For example, it allocates memory on-demand when an invalid
pointer is de-referenced. At runtime, it also systematically

1 typedef struct header { 20 void create_account (...) {

2 inttype; 21 account_entry * acnt = ... malloc (...);
3 intacnt_num; 22 acounts[account_num-++]=acnt;
4 long checksum; 23 time_t t=time (NULL);

5 char name[128]; 24 struct tm tm= *localtime(&t);

6 } header; 25 acnt=>id=. ..

7 26 acnt->year = tm.year...;

8 typedef struct account_entry { 27 ..

9 charid [32]; 28 send_notify_email (acnt->id);
10 int year; 29

11 int month; 30 }

12 int day;

13 int balance;

14 } account_entry;

40 void output(accunt_entry** accounts) {

41 FILE * f = fopen(...);

42 int magic=0x4bfd;

43 header * h = (header*) malloc(sizeof(header));
45 put_int(f, magic);

46 h->name=strcpy(...);

47 h->acnt_number= account_num;

48 size=sizeof(header)-128+strlen(h->name);

49 put_int(f, size);

50 fwrite (h, size, 1, f);

51 for (i=0; i<account_num; i++);

52 fwrite(accounts[i], sizeof{account_entry),1,f);
53 }

Fig. 1. The code snippet of the demonstrative example.
0 4 8 12 16 24 29 61 65 77

21 acnt =... malloc (...); locetfa | 21| 0x0000 | 0x0001 | 0x2¢fcb0a0 [basic|x#+ [2014 | | (b) Produced file
24 struct tm tm= *localtime(&t); Jf \ ive /
25 acnt=>id=... e — £ el s
26 acnt->year = tm.year...; d (¢) Subject unknown file
28 send_notify_email (acnt->id); 0 4 8 12 16 24 37 69 73 85

|0x4bfd | _’9| 0x0001 |0.1'000_’ | Oxd3cedfae |silver_member |Ig'ohnson | 2004 | | dzou | |
41 f=fopen(...) \ Vi N ;
42 magic=0x4bfd; size header Istaccount ~ 2nd account

L I

45 put_int(f, magic);

46 h->name=...;
47 h=>acnt_number= ...; i

48 size=..; 21

I basic” [

45! get_int(P", &magic);

//magic=0x4bfd

size=29

//h=>type=1, h->acnt_number=account_number=2,...
/ffor (i=05i<2...)

/facount|0].id=kjohnson, account[0].year=2004

49 put_int(fsize); mn - Yo get_ini(F, &size); <

50 fwrite (h, size, 1, f); 50" fread (h, size, 1, f°); «——-

51 for (i=0; i<account_num...); . ,|51' for (i=0; i<account_num...);

52 fwrite(accounts[0],...); - A52' fread(accounts[0],...);e——
51'for (...)

(a) Original producer execution 52" fread(accounts[1],...);«

(d) Transformed consumer execution

Fig. 2. Understanding an output file generated in the past by transforming the current (producer) execution. The file operations are highlighted in the traces.
The relevant states are shown on the right of each trace. The dashed arrows associate a file operation with the corresponding field in the file. The field offsets

are presented on the top.

force-sets the branch outcomes of a bounded number of predi-
cates (out of the hundred of thousands predicate executions in
a single run) to explore a large number of execution paths. It
was used to reverse engineer variable types and data structure
definitions in stripped binaries by observing data flow between
variables and library/system calls, whose parameter types and
semantics are known before-hand. For example, if a variable
is copied from the parameter of strcpy, X-Force can infer
that its type is charx. O

In our usage scenario, when X-Force identifies an output
file creation operation, the current execution and the operation
are passed to P2C to start the transformation to parse the given
unknown file. A failure is reported if all output file creation
operations have been tried. Then a different producer candidate
will be tested.

Fig. 2 (a) shows a trace of the program in Fig. 1 when it
executes in X-Force. In the trace, the output file creation is
encountered (line 41). In this execution, an account is created
and inserted to the accounts[] array (lines 21-28). Since
inputs are randomly generated (in X-Force), the id field in the
account has a random value “x#"” (line 25). The name field
in header h has the value “basic” (line 46). As a result, the

header size is 21 (line 48). Finally, the execution produces a
file as shown in Fig. 2 (b).

In order to transform the producer execution to parse the
intended file (Fig. 2 (c)), when a file output operation is
encountered, P2C performs the opposite input operation on
the subject unknown file, which is also called the symmetric
read. Particularly, the first file output operation in the original
execution is to emit the magic number (line 45). Instead of
performing the write operation put_int (), P2C performs
get_int () on the subject file (line 45’ in the transformed
trace in Fig. 2 (d)). Having observed that the value to be emit-
ted (in the original run) and the value read (in the transformed
run) match, P2C proceeds to the next file operation. Similarly,
the second write at line 49 is transformed to a read at line
49’, which replaces the value of size to 29 from the subject
file. Consequently, the symmetric read at line 50’ reads 29
bytes instead of 21 in the original execution, which correctly
loads the header in the subject unknown file. Similarly, the
read at 50’ replaces the fields in the header structure with
the values loaded from the subject file. Now the number of
accounts changes from 1 to 2. As a result, the transformed
execution loads two account entries. Observe at the end, the
transformed execution properly parses the entire subject file.

Next, P2C leverages the type reverse-engineering capability
in X-Force to associate types and semantic tags to the fields
from the subject file. For example, in the original execution,
the year field of accounts[0] emitted at line 52 has data
flow from the library call localtime () at line 24. This
allows us to type the year field of accounts[0] in the
original execution, which in turn types the year fields of
accounts[0] and accounts[1] at line 52’ through the
symmetry between the original execution and the transformed
execution. Similarly, the data flow between lines 25 and 28
about the id field indicates this field contains an email id. The
data flow between 25 and 52 further allows P2C to determine
that the id fields of accounts[0-1] loaded at 52’ (in the
transformed execution) are also email ids.

Observe that through such a transformation procedure, P2C
is able to identify and type the fields from the file in Fig. 2
(c), which is not the file generated by the original execution
(i.e. Fig. 2 (b)).

We want to point out that there are three observations
critical to the effectiveness of P2C.

e The producer and consumer logics of the same kind
of data files have symmetric structures. The write
operations that generate a data file have the corre-
sponding read operations in the consumer. The essence
of P2C is to leverage the control flow in the producer
to generate the sequence of write operations such
that the corresponding reads can be performed to
parse the subject file. We will discuss how P2C can
handle rare cases in which producers and consumers
are asymmetric in Section V.

e A data file is often self-contained, meaning that it
has enough information to allow itself to be parsed.
For example, the number of data entries must be
present in the same file as an entry. Intuitively, one
can imagine that if such a property did not hold, the
corresponding consumer would have difficulty parsing
the file independently. Later in Section V, we will
discuss some exceptions, such as encrypted files.

e There are often dependences between fields, such as
that between the header size field and the header field
in Fig. 2 (b) and (c). We observe that the spacial
order of these fields in the file often follows the
dependence order. For example, the header size field
precedes the header field while the parsing of the
header field relies on the size field. In other words, the
values loaded earlier often provide sufficient direction
for later file operations. The property allows P2C to
gradually transform the producer to the corresponding
consumer. In our example, loading the size field
at line 49’ provides sufficient direction to load the
header field at line 50°, which in turn guides the
loading of the two account entries.

III. TECHNICAL CHALLENGES

We used an example in the previous section to demonstrate
the basic idea of P2C. In the real world, producers are often
much more complex and difficult to transform. According
to our experience, these challenges root at the correlations

between fields in the file. In particular, field correlations may
not be sufficiently exposed in the producer logic such that
the symmetric read of a preceding field may not provide
sufficient guidance to the later read(s) of the dependent field(s)
(in the transformed execution). Before we elaborate on this
issue, we would like to first define the different kinds of
field correlations. Based on their characteristics, we introduce
the following two kinds of correlations: data correlation and
control correlation.

Definition 1. Two fields in a file are data-related if they are
computed from some common data source in the producer
execution that generated the file.

Since the two fields share some common data source,
which may be a variable or a data structure, any perturbation
on the value of the source may cause both fields to change.
Fig. 3 (e) shows such an example, in which both fields v1 and
v2 have data flow from data.

Definition 2. A field fi is control-related to another field f,
if the value of f directly decides the proper parsing of f.

For example in Fig. 3 (a) and (b), the buf field is
control-related to the preceding len field. Fig. 3 (c¢) and (d)
show another kind of control correlation. In particular, field
id/1_id is control-related to the preceding type field, which
determines if an integer or a long value should be loaded
from the subject file. Note that according to the definition,
the correlation has to be direct. If f3 is data-related to f> and
f> directly decides the proper parsing of fi, f1 is not control-
related to f3.

In P2C, detecting and handling control correlations is much
more important than data correlations because the former
determines if P2C can properly parse the file fields. Note that
once these fields are parsed into memory of the execution, data
flow tracking based type reverse engineering can be leveraged
to understand the meaning of the fields. In contrast, data
correlations do not affect the parsing of fields. For example,
in Fig. 3 (e), despite the data correlation, the two fields can
be properly loaded when the symmetric reads corresponding
to lines 42 and 46 are performed. Hence, our discussion will
focus on control correlation in the rest of the paper.

We observe that some control correlations are easier to
handle compared to others. In Fig. 3 (a), in the transformed
execution, the symmetric read corresponding to line 6 would
properly set the value of len, which allows the following
symmetric read of buf to proceed properly. In contrast in
Fig. 3 (b), although the symmetric read at line 15 sets the
value of len, the following read of buf is incorrect because
strlen (buf)’s value is still a random value depending on
the content of buf in the original execution. For example,
assume buf=“##" in the original execution and the value in
the subject unknown file is “Yes”. Despite that the symmetric
read of 1len (at line 15) gets the correct value of 3, the follow-
ing read of buf will unfortunately still use the old incorrect
length of 2 (computed from strlen (buf)). Observe that in
both cases, the buffer field is control-related to the length field
in the file.

Similarly, in Fig. 3 (c), the symmetric read at line 22 will
drive the execution to take the proper branch at line 23 such

f= fopen (...); 10 f=fopen (...);

1

2

3 len = strlen(buf); 12 len = strlen(buf);
4 ... 13 ...
5

6
7

put_int(len);
fwrite(buf, len,1,f);

15 put_int(len);

(a) (b)

Fig. 3.
unexposed data correlation.

that the correct following symmetric read will be performed.
In contrast, in Fig. 3 (d), reading the correct value of type
from the file does not help choosing the correct branch.

The root cause lies in whether control correlations between
file fields manifest themselves through program dependences.
We hence further divide field correlations to the following two
classes.

Definition 3. A field control-correlation, f| correlated to f,
is exposed if there is a program dependence path from f, to
f1 in the producer execution that generated the file.

If there is not such a dependence path, we say the field
correlation is unexposed. Observe that in Fig. 3 (a), the field
control correlation is exposed by the program dependence edge
from 3 to 7 (by variable 1en). In contrast in (b), there is not
a program dependence path from 12 to 16. Note that although
at line 12, len is computed from buf, the data flow does not
expose the field correlation in the opposite direction, which is
the buf field control-related to the len field. As a result,
loading the correct value of len at 15 does not help the
following read of buf at 16 as the 1en value cannot propagate
to and affect line 16 along program dependences.

In (c), the program dependence path 21 — 23 — 24/26
exposes that the id field is control-related to the type field.
In contrast, the correlation in (d) is not exposed.

A key challenge to P2C is hence to handle unexposed field
control correlations (e.g., Fig. 3 (b) and (d)).

IV. DESIGN

Program P = s

Stmt s u= sp;s | skip | ri=le | ri='R(r,) |
Wi (ra,r) | goto(£y) | if () then goto(l;) |
rpi= fopendwrite!(r,) | fwrite[(rhuf,rl,rf) |
fclose!(r) | call’(4;) | retf(c)

Operator op:= + | — | = | /| ..

Expr ex= r|clal|ropn

Register — r:= {ri,r,rs3,...}

Const cu= {true,false,0,1,2,...}

Addr az= {0,1,2,...}

Label (o= {0,0,05,..)

Fig. 4. Language

In this section, we discuss the design of P2C, focusing on
handling unexposed control correlations between fields.

Language. P2C works on x86 binary executables, without
requiring any symbolic information. However, if we were to
discuss the design at the x86 level, the complexity of the
instruction set would render the discussion and the example
presentation very verbose. Hence, we introduce a simplified

20 f= fopen (...);

11 21 type=..;

22 put_int(type);

23 if (type==1)

14 24 put_int (id);
25 else

16 fwrite(buf, strlen(buf),1,f); 26 put long (1_id);

30 f=fopen (...);
31 type=foo(header); 41 vl=foo(data);
32 put_int(type); 42 put_int(v1);
33 if (foo(header)==1) 43

34 put_int (id); 44 ...

35 else 45 v2=gee(data);
36 put_long (1_id); 46 put_int (v2)
37 fwrite(header, 32, 1, f);

(©) () (¢)

40 f=fopen (...);

Examples for different kinds of field correlations; (a) and (c) are exposed control correlation; (b) and (d) are unexposed control correlation; (e) is

low level language, in which we only model enough to present
our technique. The language is presented in Fig. 4°.

Memory reads and writes are denoted by R(r,) and W(r,,
ry), respectively, with r, holding the address and r, the value.
As a low level language, conditional or loop statements are
not modeled. Instead we define jumps using goto and guarded
goto. We only model a small number of system calls that are
file output related: fopendwrite() takes r, as a pointer to the
buffer of a file name, creates the file for write, and returns the
handler in ry; fwrite() writes the content in the buffer pointed
to by 7y, with length r; to file ry. In the rest of the paper,
we will also use output operations put_int() and put_long()
for brevity, although they are not part of the language. Note
that translating them to fwrite() operations is straightforward.
Other function invocations and returns are denoted by call({)
and ret, respectively. The return value of a function call is
stored in ry. Each statement is annotated with a label, which
can be intuitively considered as the program counter (PC) on
x86.

Design Overview. Due to the presence of unexposed field
control correlations, simply transforming a producer execution
to the corresponding consumer execution may not work. There-
fore, P2C is essentially an iterative procedure that searches
for a valid transformation to parse the file. In particular, when
it encounters file output operations in which the symmetric
input operations cannot be determined with certainty (due
to unexposed correlations), P2C would select one option to
proceed. For example in Fig. 3 (b), at line 16, the length
of file write, which is also the length of the symmetric read,
does not come from a value loaded from the file, but rather a
value computed from the current state of buf in the original
execution. In other words, P2C does not know how many bytes
it should read. In this case, P2C will pick a value, which may
be the current length value strlen (buf) to proceed. To
detect in-appropriate choices, after each symmetric file read
operation (in the transformed run), P2C will re-execute from
the file open operation (i.e. the starting point of P2C) to
detect any inconsistency, which will cause P2C to roll back to
pick another option to explore at one of the uncertain points,
until either the file is properly parsed or all options have
been explored. In this case, P2C will test the next producer
candidate.

In Fig. 3 (b), assume the file to be parsed has a length
value 3 followed by a string “Yes”. The length value 3 is
properly read at line 15 through the symmetric read. Since
the following operation at line 16 has a length value not
from the file, P2C creates a backtrack point and then selects

2Since we leverage X-Force as our execution engine, the language here
bears some resemblance to that defined in [17].

the current strlen (buf) to proceed. Assume the current
strlen (buf) =2, the symmetric read only loads “Ye” to the
buffer. Re-executing with the length value and the buffer value
loaded from the file discloses an inconsistence. In particular, at
line 12, the left-hand-side 1en should have value 3 (according
to the file), but the right-hand-side strlen () operation on
the buffer loaded from the file has a value 2. As such, P2C
rolls back and selects a different length value at the previous
backtrack point at line 16. This time, it increases the length
value by one and reads 3 bytes. Re-execution does not detect
any inconsistency. P2C admits the choice and proceeds.

(Addr | Register) — Const

(Addr | Register) — Taint

Label — Instance

(Addr | Register) — (Label x Instance)

Store &
TaintStore T
InstrCnt cnt
OriginalDef S

Trace T = E
TraceEntry E = ({,i,c,t)
Instance i = Z
Taint t = PATCH_RELATED | INPUT_RELATED |
NONE
Patch P = (Label x Instance) — Constant
Fig. 5. Definitions.

A. Algorithm

In this subsection, we will present the algorithm. Later sub-
sections explain the different sub-components of the algorithm.

Definitions for Algorithms and Semantic Rules. To discuss
the algorithm and its components, we introduce a few defini-
tions in Fig. 5. Store G is a mapping from a memory address or
a register to a value, representing regular program state. Taint
store T associates each address/register with a taint that may
be (1) PATCH_RELATED, denoting that the current value in
the address/register is computed from a value brought in by
a symmetric read (called a patch); (2) INPUT_RELATED,
denoting the current value is computed from some input that
is not a patch. Since the original execution is from X-Force,
such input values are random; (3) NONE, denoting the other
cases. Note that we need tainting to determine if an operation
is uncertain such that a backtrack point needs to be created,
and to detect inconsistency during re-execution. Instruction
count cnt denotes how many instances a statement has been
executed. This is to uniquely identify an execution instance of
a statement. P2C also collects trace for inconsistency detection.
A trace T consists of a sequence of trace entries £, which is a
four-value tuple with the label (i.e. PC), the execution instance,
the left hand side value of the statement, and the taint of the
left hand side value.

The original definition map S is a mapping from an
address/register to an instruction instance that denotes the orig-
inal definition point of the value held in the address/register.
This is to facilitate patch generation. Note that when a variable
is emitted at an output point, the symmetric read operation
will bring in the corresponding value in the file. But the value
should be set at the original definition point of the variable
instead of at the current file output point. For example, consider
the following code sequence:

1 type=foo (data); 2 x=type; 3 y=x; 4 put_int (y)
[C1]

The symmetric read will load the value at line 4, but we
should patch the value of type at line 1. The benefit is
that all the related variables: %, y, and type are correctly
patched when we re-execute the code from the patched line
1. The original definition map is to facilitate such patching.
In practice, file output system calls often occur inside library
functions and use internal buffers. Without identifying the
original definitions that are usually in the user code, symmetric
file reads only patch the values of internal buffers and cannot
influence user code execution.

Patch P maps an instruction instance to a value, denoting
the patch for that instance. O

Algorithm 1 Iterative Parsing Procedure

Input: Store ©y: the starting store.
TaintStore Ty: the starting taint store.
Label (y: the starting PC.
F': the subject file to parse.
Output: a patch or NOT-PARSABLE
Definition: OriginalDef S: the mapping from an address/register to its origin
definition
Patch P: the current patch.

1: function PARSEFILE(Gy,To, {o,F)

2: (T,S,7,0,0) < (nil,nil,T,00,l)

3: P« nil

4: while true do

5: if ISFILECLOSE({) then

6: if ISEOF(F) then

7. return P

8: else

9: if there are unexplored options then

/*Roll back and explore a new selection*/

10: BACKTRACK();
11: else
12: return NOT-PARSABLE
13: end if
14: end if
15: end if
16: (1", §', v, o, {') < execute from (T, S, T, o, £) to the next file output

operation with patch P
/*Perform symmetric input operation and update patch*/
17: UPDATEPATCH(S', T/, ¢/, (', F)
/*Re-execute with the new patch and validate consistency*/
18: (T", S, t, 6, {) + execute from (nil, nil, Ty, Go, {o) to the same output
operation with the updated patch P
19: if = CHECKCONSISTENCY(T’, T") then

20: if there are unexplored options then
21: BACKTRACK();

22: else

23: return NOT-PARSABLE

24 end if

25: end if

26: T+ T

27: end while
28: end function

29: function UPDATEPATCH(S', T/, o', (, F)
30: Let the file operation at ¢’ be furite’ (ryy,ry,rs)
31: if U[ry] = INPUT_RELATED then

32: size + select a value in the possible range of r;
33: else

34: size + o'[ry]

35: end if

36: buf « O[rpuy]
/*Perform the symmetric read, backtrack on exception*/
37: fread(buf,size,1,F)
/*Update the patch*/
38: for i=0 to size do
39: (€p,ip) S'[buf+1i]
40: P[(£y,ip) — bufli]]
41: end for

42: end function

The algorithm is presented in Algorithm 1. It is invoked
when a file creation (for write) operation is encountered during
path exploration in X-Force. It takes as input the store, the taint

store, the label for the file creation operation, and the unknown
subject file. It aims to transform the original execution between
the file creation and the corresponding file close to parse
the subject file. If it successfully parses the subject file, the
algorithm will return the generated patch that decides where
the values from the file are applied to various execution
points. Otherwise, it indicates failure. The patch can be further
leveraged to type the file fields.

The main procedure is defined in PARSEFILE(). The config-
uration of program execution in P2C is a tuple of five fields: the
trace T, the original definition map S, the taint store 7, the store
o, and the label of the current statement ¢. One can consider
a program execution in P2C is a procedure of updating the
configuration step by step. In later subsections, we will explain
in the semantic rules how the different configuration fields are
updated.

At line 2, the configuration is initialized. Note that the
initial trace and the initial original definition map are set
to nil. The WHILE loop in lines 4-27 represents the main
iterative process. The algorithm progresses to a new file output
operation in each iteration until the file close operation is
encountered. In this procedure, uncertain selections may be
backtracked. Inside the loop, the algorithm first determines if
the file close operation is reached. If in the mean time, the
subject file also reaches its end, the file is successfully parsed
and it returns the current patch (lines 5-7). If there is still
left-over in the subject file, the current parsing efforts are not
successful, the algorithm will backtrack and try a different
option in one of the earlier selection points, until all options
are explored (lines 9-14).

If the file close operation has not been reached, the algo-
rithm executes the program until the next file output operation
is reached (line 16). It then invokes method UPDATEPATCH() to
perform the symmetric file read and generate the corresponding
patch (line 17). The patch is applied by re-executing from
the initial file creation operation (line 18). The re-execution
generates a new trace 7", which is compared with the previous
trace T’ (for the previous execution without applying the
new patch) (line 19). If they are inconsistent, which must be
caused by unexposed field control correlations, the algorithm
backtracks (lines 19-25). The WHILE loop then starts another
iteration to proceed to the next file output operation.

Function UPDATEPATCH() performs the symmetric file read
and updates the patch with the newly loaded value(s). It
first tests if the length value of the file write is tainted as
INPUT_RELATED (line 31), meaning that it is not computed
from a patched value, but rather from an input supplied by X-
Force randomly. If so, it selects a value from the legal range
of the length field, which is by default between O and the size
of the entire file>. Note that the selection can be backtracked
and neighboring values will be explored. If the length value is
not tainted as INPUT_RELATED, it is computed from either
a patched value or a constant value. In this case, the algorithm
uses the current length value (line 34). After the file read (line
37), the patch is updated by looking up the original definition
for each byte in the buffer field and setting the left-hand-side
values at those definitions to the ones loaded from the file.

3The first selection is the current length value.

1 //buf[]=fread(...);
r1= fopendwrite (...);

/Iput_int(len)
r3=4;
8 fwrite(r2, r3, rl);

~J

//len=strlen(buf)

3 10="buf; //parameter /Ifwrite(buf, strlen(buf), 1,f);
4 rO=call strlen; 9 r0=buf; //parameter
5 12=&len; 10 rO=call strlen;
6 W (12, 10); 11 2= buf;
12 fwrite (r2,10,rl);
Fig. 6. The code snippet in our language corresponding to the example in
Fig. 3 (b).

Note that if the symmetric read fails because the end of the
subject file is reached, the algorithm also backtracks.

Example. We translate the example in Fig. 3 (b) to our
language. The resulting code is shown in Fig. 6. Note that the
parameter of the strlen () call is passed through register
ro and the result of the call is also stored in ry. Fig. 7 shows
the execution of the algorithm on the example. It shows the
traces of three executions, including the initial execution and
two re-executions. For each trace, the control flow is shown
on the left and the states are shown on the right.

Assume the subject file contains length value 3 followed
by string “Yes”. In the initial execution (Fig. 7 (a)), the buffer
contains a random string “##” provided by X-Force. Observe
that after the memory write to address &len, the original
definition of the address is updated to (4,1) (i.e. the first
instance of line 4), which is the return site of strlen ().
Next, we will explain the algorithm execution procedure by
highlighting a few steps.

e At @), a symmetric read with a deterministic length of
4 bytes loads the length value 3 from the file and the
patch is to set the original definition of address &len
to 3 (according to line 17 in the algorithm).

e The algorithm re-executes with the patch (according
to line 18 in the algorithm), at B), the patch is applied
and the following instructions dependent on ry are
tainted as PATCH_RELATED.

e When the re-execution reaches ©), the algorithm does
not detect any patch inconsistency by comparing trace
(b) with trace (a)* (according to line 19 of the algo-
rithm). As such, it tentatively admits the patch and
proceeds to the next file operation at O).

e At D), the algorithm detects the length value is from
a random value. It selects a value (i.e. value 2) to
proceed and loads string “Ye” (according to lines 31-
32 in the algorithm). Since buf was defined earlier
than the starting point of the algorithm, we denote its
definition point as a special value 1;.

e The algorithm re-executes again with the new patch.
It applies the patch to buf at ®.

e However, at (), the patch applied on buf produces
the length value 2, which is inconsistent with the other
patch on r0. The algorithm backtracks, and resets
the length value to 3 at ©. This time, the correct

“While we will explain consistency checking in later subsections, the
intuition is that multiple patches cannot produce inconsistent values at an
instruction.

Applying patch P[<4,1>]=3 P[<4,1>]=3, P[<1,1>]=*Ye”
1, /Muf[j=fread(); o[buf[J}="##" 1, /buf[J=fread(). ofbuf[]J=##" L | fouf]]=fread(): o[buﬂ]]:'\"e"i
. ®)
2, rl=fopendwrite ; 2; rl=fopendwrte ; 2 rl=fopendwnte ;
3, 10=buf: 3; 10=buf 3; 10=buf;
4, 10=call strlen; o[r0] =2 4 | r0=call strlen; o[r0] =3 l@D 4 | 10=call strlen; o[10] =zé
5 12=&len; 5, 12=&len; 51 12= &len;
6, W (12, 10); o[&len] =2; 6 W (12, 10); o[&len] =3; 6, W (12, 10); o[&len] =2;
//S[&len]=<4,1> 7, 13-4 o[r3]=4: T 3=4 olr3]=4:
7, 13=4 olr3]=4; 8 I fwnte(r2, 13, 11); /ffread(r2,r3,r1)i 8 fwnte(r2,13,1l); /ffread(r2,r3,rl)
8; | fwrte(r2, 13, r1); /ffread(r2,r3,rl) ©
o[&len] =3
P[<4,1>]=3
9; 10=buf; 9, 10=buf;
9, 10=buf; 10, rO=call strlen; o[r0] =2 10; r0=call strlen; o[r0] =2
10, rO=call strlen; 11; r2=buf: 11, r2='buf;
11; r2=buf; 12, [fwrite (r2.10.r1); /ffread(r2,r0,r1) 12, fwnite (12,10.r1); /ffread(r2,r0,r1)
12, fwrite (r2,10.r1); o[buf[0-1]] ="He o[buf[0-1]] ="Ye~
P[<1.1>]=*Ye”
(a) Trace (b) Trace with one patch (c) Trace with two patches

Fig. 7.

The algorithm execution on the example in Fig. 6. The subject file to parse contains a length value 3 followed by a string “Yes™. Label 6; denotes

the first instance of line 6. The instructions and states in blue are tainted with INPUT _RELATED and those in red are tainted with PATCH_RELATED.

TABLE L ORIGINAL DEFINITION TRACKING RULES.
[Statement [Action’ | Ruke]
r:="R(ra) if (S[o[rs)] ==nil) | OD-READ
S[r] = (£,cne[£]):
else S[r| = S[o[r,]]
Wi (ra,ry) Slora]] = S[ry] OD-WRITE
rd:i="rs Slra] =STrs): OD-COPY
ri=tc S[r] = (&, cne[f)) OD-CONST
r:="riopra STr] = (€, cne[€]) OD-BINOP
TABLE II. PATCHING AND TRACING RULES.
[Statement [Action’ [Rule |
r:="R(rs) it (P[{€,cnt[€])] # nil A PT-READ
t[6[ra]] # PATCH_RELATED)
olr] = P{(t,cnu[])):
T=T - ([,CM[[],G[T],T["])
cnt[€— (cn[£] +1)]
W (ra,ry) T=T - {{,cnt[f],0[r],7[rs]) PV-WRITE
cnt[€— (cn[£] +1)]
if (/) then | if (t|r] =INPUT_REIATED) | PT-PREDICATE
goto(£y) o[r] = select from true or false
T=T - (¢,cnrlt], olr]<lr])
cnt[f > (cn[€] +1)]
r=c it (P[{€,cnt[€])] # nil) PT-CONSTANT
11 (P{{£,cni{£])] #)
BACKTRACK()
T=T - ([,CM[[],G[T],T["])
cnt[€— (cn[£] +1)]
r:="riopn it (P[{€,cnt[€])] # nil A PT-BINOP
t[r] # PATCH_RELATED)
olr] = P[(t,cm[)));
T=T - (£,cuff],ofr],r])
cnt[f— (cm[€] +1)]

string “Yes” is loaded and the re-execution becomes
consistent.

B. Semantic Rules

The algorithm of P2C in Section IV-A requires executing
the program iteratively. Such executions have additional se-
mantics including taint propagation, original definition track-
ing, patching and tracing. While tainting is standard and hence
omitted, we will discuss the later three semantics in this
subsection. Note that all such additional semantics are active
during each execution in P2C.

Original Definition Tracking. In a symmetric read, when
a value is read from the file to an address a, P2C needs to
decide where the value is patched to in the original execution.
It is undesirable to directly patch to the address. Because in
practice, file output operations often occur inside some library
functions and hence the address a is often an internal buffer
address. Therefore, P2C performs original definition tracking
to identify where the value in @ was originally defined. The
loaded value will be patched at the original definition site. We
have shown such an example [C1] in Section IV-A.

The original definition tracking semantic rules are de-
scribed in Table 1. The first column shows the statement and
the second column shows the corresponding instrumentation
semantics. The name of the rule is shown in the third column.
For a memory read (OD-READ), if the value was defined
even before P2C starts (i.e. earlier than the file creation point),
the current statement instance becomes the original definition
of the value. Later, if P2C determines the value should be
patched, this is the site where the patch is applied. If the value
has a non-empty original definition, P2C simply propagates
the definition to register . Both memory write (OD-WRITE)
and register move (OD-COPY) do not change the value, P2C
simply copies the original definition. For a binary operation
(OD-BINOP), since we cannot say the resulting value in r
comes from either r; or r, in general, its definition site is
hence the current statement instance.

Patching and Tracing. During execution, P2C constantly
checks if there is a patch for the current statement instance.
It also generates an execution trace which will be compared
with the trace from the previous execution to detect patch
inconsistency, which indicates the presence of unexposed field
correlations.

Table II presents the semantic rules for patching and
tracing. For a memory read (PT-READ), if there is a patch
for the current statement instance and the current value in the
memory was not previously computed from another patch, the
patch is applied. If the latter condition is true, there is patch
correlation and the current patch is ignored.

Algorithm 2 Validate Patch Consistency.

Input: T: the trace with the previous patch;
T>: the trace with the latest patch ;

function CHECKCONSISTENCY(T},T3)

if Ty = nil v T = nil then

return frue;

end if

(€y,0y,¢1,01) < POP(T}y)

(£2,13,C2,1p) + POP(T3)

if £,=6, ANi) =i, Ac;=c, then
/*Perfect match*/

return CHECKCONSISTENCY(T;,T3)

end if

if £, =6, A i) =i, then
/*Instructions match, but values not*/
11: if | #¢c2 A t) = PATCH_RELATED then

/*Inconsistent patches*/
12: return false
13: endif
14: if c; #c2 A t) # PATCH_RELATED then
/*Consistent patches*/

15: if ISPREDICATE(Z;) then

PVX RxLnhwN=

16: Ty « POPUNITL(T;, IMMPOSTDOMINATOR(¢)))
17: T « POPUNITL(T>, IMMPOSTDOMINATOR(}))
18: end if

19: return CHECKCONSISTENCY(T},T5)

20: endif

21: endif

22: end function

Example. Consider the trace in Fig.7 (c). At ®, r0 is com-
puted from the patched buf value and hence has the value
2 and the taint of PATCH_RELATED. As such, the current
patch is ignored. This leads to inconsistency when compared to
trace (b), in which r0 is 3. P2C backtracks to @ and changes
the number of bytes to read to 3. This time, buf is patched
with “Yes”. As a result, 70 has the value 3 and the taint of
PATCH_REILIATED at ®. As such, even though the patch
P[(4,1)] is ignored, the traces are consistent. O

The last two actions of the rule PT-READ are to add an
entry to the trace and update the statement instance counter.
The two actions are standard for all statements. For a predicate
statement (PT-PREDICATE), P2C tests if the branch outcome
is computed from a random input. If so, the branch outcome
should not be trusted. It creates a backtrack point and selects
a branch outcome to proceed. Note that later P2C may back-
track and take a different branch. This allows us to handle
cases similar to Fig. 3 (d). For a constant assignment (PT-
CONSTANT), if there is a patch and the patch is inconsistent
with the constant, P2C backtracks. Rule PT-BINOP is similar
to PT-READ, P2C checks the taint of the resulting value to
determine if the current patch should be applied.

Note the rules presented in this subsection are not the
comprehensive set, but rather an important subset. The rules
for other statements can be similarly derived.

C. Patch Consistency Validation

P2C progressively transforms individual file output opera-
tions to the symmetric input operations. Upon each symmetric
read, it creates a new patch entry and then re-executes from
the starting point (i.e. the file creation operation) to validate if
the new patch entry is consistent with the previously admitted
patch entries. The consistency check is by comparing the
execution traces with and without the latest patch entry. The
criterion is that a trace entry affected by patch must have
the same value across runs. In other words, if a trace entry

if (..) { L if () { 1 if(..){

1

2 if (...) 2, if(...) 2, if(...)

3 SI; 3 S1;

4 S2; 4, 82 4, 82
} } }

5 if(...) 50 if(...) 5, if(...)

6 S3 6, S3;
clse else

7 if (...) T if(..)

8 S4 8, S4

9 S5 9, 85 9, S5

(a) Program (b) Old trace (c) New trace

Fig. 8. Trace comparison example. The highlighted entries are those having
their values compared.

has value computed from some patch entry in one run, it
should not have a different value when a new patch entry is
applied. We have presented an example of such inconsistency
in Section IV-B.

In practice, consistency checking is more complex than the
examples we have presented. The application of patches may
cause control flow differences. Sometimes, such differences
do not suggest patch inconsistency. The consistency checking
algorithm is presented in Algorithm 2. It is a recursive algo-
rithm, which recursively compares the heads of the two given
traces until inconsistency is detected or the end of either trace
is reached.

Lines 5-6 acquire the head entries of the two traces. If they
are identical, the algorithm recursively compares the remaining
trace entries (lines 7-9). If the two trace entries have the same
statement instances but different values (lines 10-20), there
are two possible cases. In the first case (lines 11-13), the
entry from the old trace is patch related. Hence, the different
value from the new trace entry suggests patch inconsistency.
In the second case (lines 14-19), the old entry is not patch
related, which suggests the difference is solely caused by the
newly introduced patch, not by patch inconsistency. Therefore,
the algorithm proceeds to compare the remainders of the two
traces.

Special cares need to be taken if the entry is a predi-
cate (line 15) because the value differences indicate different
branches will be taken. The algorithm by-passes the control
flow differences by discarding trace entries until the immediate
post-dominator (i.e. the merge point of the two branches)
is reached. As such, the control flows of the two traces
are aligned again. In P2C, immediate post-dominators are
computed from the control flow graph generated by X-Force.

Example. Fig. 8 shows an example for trace comparison. The
program is shown in (a). Figures (b) and (c) present the old
and new traces, respectively. The new trace is generated by re-
execution after a new patch entry is generated. The traces are
simplified, containing only control flow information in order to
simplify the discussion. The comparison starts from the head,
both statement instances 1;’s have the same branch outcome.
The algorithm proceeds to compare 2,’s, which have different
branch outcomes. If 2, in the old trace is tainted as patch
related, inconsistency is detected and the algorithm will return
false. Assume it is not the case, the algorithm proceeds to
the immediate post-dominator of statement 2 in both traces,
which is line 4. In other words, 3, is discarded from the
old trace. Note that it is safe to discard such control flow
differences as they are already captured by the comparison

of the branch outcomes at 2;. Similarly, different branch
outcomes are detected at 51, the algorithm discards 6; from
the old trace and 71, 8; from the new trace despite the internal
structure of 7; because the immediate post-dominator of line
5 is line 9. Observe that the algorithm always aligns the
trace entries to ensure comparison is performed at appropriate
places. O

The algorithm handles trace entries from loops as at
runtime a loop is essentially unrolled to multiple levels of
nesting if-statements. We also handle the additional challenges
in trace comparison caused by recursive functions even though
the details are elided from the algorithm for brevity.

D. Reverse Engineering Field Semantics

We have explained how P2C parses a given file to memory
through execution transformation. Note that the successful
parsing of the file indicates that the syntactic structure of the
file is disclosed. Particularly, the individual fields of the file
are recognized by P2C. However, to understand the meaning
of the file, we still need to associate semantics to those fields.

In P2C, we leverage the data-flow tracking based type
reverse engineering capabilities in X-Force to resolve the field
semantics. Specifically, X-Force detects if a memory location
has data flow to some API with a known interface. If so,
the parameter types and semantics of the interface can be
used to type the memory location. Note that P2C patches
the field values loaded from the subject file to the execution,
which allows us to type these field values by observing
the data flow between the patched site and some known
APIs. For example in Fig. 2 (b), P2C replaces the original
accounts[0]={ “x#"”,2014,..} with accounts[0]={
“kjohnson”,2004,...} by the symmetric read at line 52’.
Through the data flow from 26 to 52 in the original execution,
P2C can type the newly loaded field value 2004 as a year
value. X-Force’s type reverse engineering system has a rich
set of semantic tags besides the primitive types, such as IP,
EMAIL, PASSWORD, and STDIN (denoting that a value
originates from stdin). It allows a field to have multiple
semantic tags. Users can also add to a pre-defined dictionary
that maps API functions to semantic tags.

V. DISCUSSION

Asymmetric Producer and Consumer. So far we have
assumed that the producer and the corresponding consumer
have symmetric structure such that the sequence of writes
in the producer corresponds to the sequence of reads in
the consumer. However in practice, the implementation of
a real world consumer may not be precisely symmetric to
the producer. We have seen cases in which the consumer
skips certain data fields when parsing the file, especially when
such fields are not critical. In this case, P2C has the unique
advantage of providing a better (transformed) consumer that
parses all fields. There may be more complex asymmetric
cases. Later in Section VI, we will show a case in which
the producer first writes a dummy header as a place holder,
then writes the main body. After that, it uses fseek () to go
back and replace the header. Note that this producer may be
asymmetric to a regular consumer that reads the header first
and then the body. P2C can handle this case because it can

10

generate a consumer that parses the given file by performing
the symmetric operations including the symmetric file seek,
although the generated consumer may be different from the
real world consumer.

Encryption. P2C has limited support in handling encrypted
files. In extremal cases, the entire files are encrypted. Specif-
ically, data are usually first stored in a buffer, which is then
encrypted and emitted through a single file write. In this case,
P2C can only perform the symmetric read and load the entire
ciphertext to the buffer. It cannot understand the structure
of the fields in the plain-text and their meanings, because
achieving this goal is as difficult as decrypting the ciphertext.
If the producer can generate different kinds of encrypted files
(in different places in the program), P2C will not be able to
determine which kind of encrypted file a given subject file
belongs to. This is because the given file can be correctly
parsed by the (single) symmetric read corresponding to any of
the (single) encrypted file writes.

It is common that a data file has part of its data encrypted
(e.g. a plaintext header and an encrypted payload). In this
case, P2C can still parse and type the plaintext part of the
data. For the encrypted part, although P2C cannot recover the
corresponding plaintext and its structure, it can still associate
types and semantic tags to the entire buffer. For example, it
may be able to tell that the encrypted buffer contains user ids
and passwords. This is because although the encrypted buffer
loses the syntactic structure of its plaintext version, it inherits
all the types and semantic tags.

VL

P2C is implemented on PIN [15]. We implement both bit
and byte level taint tracking mechanisms. All cases except
Steganography use a byte level taint tracking due to the
overhead. We evaluate P2C on 9 different programs shown
in Table III. The first two columns show program names
and sizes of program binaries. The third column shows sizes
of unknown files and network messages. The next column
presents the number of iterations P2C takes to transform the
producer execution at the correct output site (to get the desired
consumer execution), and the average number of iterations it
spends on transforming at a wrong file output site. Here an
iteration means a re-execution. Note that a program may output
multiple files and only one of the sites is the correct one. The
fifth column shows a total execution time to cover both the
correct and wrong output sites. The sixth and seventh columns
are coverage and the number of paths explored by X-force. The
coverage data include both the number and the percentage of
instructions covered.

EVALUATION

We use 5 programs that write files. InfoZip is a
file compressor utility. We use an arbitrary zip file cre-
ated by InfoZip to understand the =zip file header.
Steganography is a program that can hide a piece of secret
text to an existing bitmap file. We use P2C to understand
and extract the secret text from a bitmap produced by the
program. FreePiano can record and play piano songs. We
use P2C to understand a song file format. Mp3gain scans
and analyzes mp3 files and inserts meta data using ID3 tag.
Similarly, yamdi inserts meta data into flash video files. We
use P2C to understand the meta data format and make sure
that they do not add sensitive information.

We also evaluate P2C on 4 network programs to ana-
lyze network messages. We use P2C to understand an un-
known packet generated by the zbot malware. WinPing
sends ICMP messages and PowerOn broadcasts magic pack-
ets to turn on computers connected on the same network.
NetworkMorris is a network based chess game that also
supports chatting between players.

We have a few observations from the results. (1) P2C
can correctly parse all the given files/messages. The number
of iterations needed to find the appropriate transformation is
not large, indicating that field correlations are exposed by
program dependences in most cases such that backtracking
is not needed. (2) A program may output multiple files and
hence have multiple output sites. Only one of them is the
one we are looking for. When testing a wrong site, we
find that P2C only iterates a very small number of times.
In many cases, it terminates in the first execution. That is
because different files/messages often have different magic
numbers, which allow P2C to detect inconsistency quickly.
This also applies to the scenario where it tests a wrong program
which produces different file formats. (3) While P2C can
precisely identify all the fields in the given files/messages, it
can type (or associate semantic tags) to a large portion of the
identified fields. In some cases such as Steganography,
zbot and FreePiano, all or most fields are correctly typed.
The semantic tags have rich semantic information, which will
be illustrated by our later case studies. For some programs,
they have fields that are not related to any API calls such
that P2C cannot type them. For instance, many fields in
NetworkMorris denote game board information that is not
related to any standard APIs. WinPing also has some fields
that are solely arithmetic operation related. yamdi has a lot
of floating point fields. But the underlying typing engine of
P2C only considers non-floating-point APIs. InfoZip has
some fields that are arithmetic and bit operation related such
as CRC32. Since we only enable the bit-level taint analysis on
Steganography, they are not typed.

Although P2C can associate primitive types to all these
fields, we consider them untyped as the information is not
helpful enough. On the other hand, since these fields are not
related to any APIs (i.e. system calls and library calls), we
argue that they may be less important. (4) For the fields that
are typed, we manually verify that the derived types (semantic
tags) are always correct. (5) We find that some commercial
MP3 tag reader programs such as mp3tag are not able to
read the injected data by mp3gain whereas our transformed
consumer can recognize all of them. (6) X-Force is able to
achieve good coverage for most programs except FreePiano
and WinPing. FreePiano is a Ul intensive program and X-
Force currently does not have good support for this kind of
programs. In all cases, X-Force is able to cover the correct
output sites. (7) The execution time of X-Force is at the scale
of a few hours. The execution time for P2C is relatively much
smaller, 18 minutes on average. Note that one iteration of the
execution takes 40 seconds on average.

A. Case Studies

Next, we will present more details for a few cases.
Stenography. This program hides a secret string in a bitmap

file. Specifically, it stores each bit of the secret data into the

11

least significant bit of a pixel. As the least significant bit of
pixel does not exhibit visible differences to human, it is hence
difficult to notice the presence of the secret. In this case study,
we have a bitmap file which contains an unknown secret text
message. Fig. 9 shows how a message “SECRET” is added
to a given BMP file. The original bitmap file is on the top,
the secret is on the bottom, and the mutated bitmap is in the
middle. Note that given a secret message, a string containing
the size of the message and the message itself are added to
the bitmap file. The program always uses 5 bytes to represent
the ASCII version of the size. So the maximum length of the
secret message is 99999. The first 55 bytes of the file denote
the bitmap file header. Its internal structure is elided for brevity.

Given a file containing an unknown secret, we want to use
P2C to recognize where and what the secret is. P2C starts
executing the program without the plaintext bitmap file or the
secret message. It successfully parses the header (i.e. the first
55 bytes from the secret file) by transforming the header write
operations in the original execution that emit a sequence of
meaningless random values. These loaded bytes are typed as
INPUT_FILE_1, indicating they are related to the first input
file, which is supposed to be the plaintext bitmap file.

When the program emits the 56 byte, P2C performs the
symmetric read of the corresponding byte and identifies that
the original definitions of the first 7 bits are from a file read
but the remaining 1 bit is from a result buffer of a call to the
sprintf (...,"%d",...) APP.P2C patches the original
bits accordingly. In fact, the following 39 bytes from the secret
file have a bit that originates from the same buffer. After the
symmetric reads of these bytes, P2C successfully reconstructs
the buffer that holds the length of the secret, which is 6. This
length value is later used to guide the program execution to
read the least bit from the following 6 x 8 = 48 bytes. The
original definition of those bits is a return buffer of a file
read operation in the original execution, with the type of
INPUT_FILE_2, indicating they are from the second input file,
which is supposed to contain the secret message. By patching
the buffer, the original secret can be recovered by P2C. Note
that P2C does not require monitoring the original execution
that generated the secret file. It does not even require the
user to provide valid inputs to run the program. Compared
to techniques that reverse engineer output format [11], [4] and
hence aim to construct a general grammar for all bitmap files
with secret embedded, which may be difficult, P2C leverages
the producer logic to understand a given specific file.

InfoZip We use an arbitrary zip file to evaluate P2C on the
InfoZip program. Handling InfoZip is challenging as it
extensively uses file seek operations. Specifically, when the
program writes a zip file, it first writes a dummy file header
then appends the compressed content. The dummy file header
does not have a correct checksum value yet. After it finishes
the compression, then it seeks to the dummy file header and
rewrites the file header with the correct values. Fig. 10 (a)
shows a substantially simplified code snippet. It stores a value
writ and uses it in file seek later. Column (b) shows the
execution in which the symmetric read at line 3 is performed.
Column (c) shows the execution in which zf1i . siz is patched
but the value of writ is still problematic.

SNote that our original definition tracking can be configured to be performed
at the bit level.

TABLE IIL

EVALUATION RESULTS

. Unknown # of iterations # of typed fields / Elapsed Coverage / # of paths
Program Program Size File Size (Matched / Unmatched) # of fields | Time | # of total inst. explored |
InfoZip 37 KB 5 KB 12/07 19/ 35 2m 45s 6015/ 6015 385
Steganography 17 KB 4219 KB 24 /0T 3/3 9m 27s 631/974 12
FreePiano 2296 KB 6 KB 42707 6/6 28m 35s 47991 / 286571 2531
mp3gaint 109 KB 1304 KB 17707 6/10 24m 42s 21672/ 21672 754
yamdi 225 KB 102 KB 38707 34/72 1h 16m 38s 21491/ 24577 1183
zbot 26 KB 30 Bytes 712 577 8m 48s 3089 / 3089 199
WinPing 244 KB 45 Bytes 5/07 4/8 2m 27s 14758 / 29620 983
PowerOn 25 KB 102 Bytes 170 2/2 21s 709 / 1058 29
NetworkMorris 1049 KB 52 Bytes 20/4 15739 8m 6s 3057/ 7814 186
It means P2C terminates in the initial execution without backtracking.
< INPUT_FILE_1=
EETHIETH [bisa [wise | [o | [o | b holds # byte of the bitmap fle
Bitmap File LT3 { v
OOLELLLL] BOLLLELEE] R
v v <FILE_SIZE_1 - ¥ -INPUTFIE -
Pitamp Pila + Secrat File IECHIECH [osg JoJafa]afoafo]o] [o[a[a[a]oa]o]1] . |
<INPUT_FILE_l= <INPUT_FILE_l> + <INPUT_FILE_l= t
< l-‘J]_E_ISIZE_z > <INPUT_FILE 2=
[oJo]1]1Jo]o]0]0] [o]1]o]oJo]1]o]1] Bit representation of the ASCII
Secret File | " | " I " | " | " | S | . | - | " | : | ; | Translated into ASCII
characters
t t
| SecrctFilesie:s | [setient secrer | Plain secret values
<FILE_SIZE 2> <INPUT_FILE 2~

Fig. 9. Data flow and type information of the bitmap steganography program. FILE_SIZE_2 denotes that the value represents the size of second input file (i.e.
the one containing the secrete message) and INPUT_FILE_i represents the value is related to the ith input file.

const sig = 0x04034b50;
[.1] [..]writ=0 [.]wnt=0
1: writ +=csize; 1: writ, csize =100 1: wmt, csize= 100
2: Zisiz=csi 2: zfisiz=100 2: zfisiz=110
3: write(&zfi.siz); 3: read(&zfisiz) =110 3: read(&zfisiz) =110
[..] L.
4: seek(writ); 4: writ=100
[.] [.]
5: write(sig); 5: read(sig) = 0x313632
(a) ®) ©
Fig. 10. InfoZip. Code in (a); traces in (b) and (c). Particularly, the patch

on zfi.siz is applied in (c). The file operations are highlighted.

In the execution in Fig. 10 (b), zfi.siz has a value
100 because csize and passex are 100 and O respectively.
Then, P2C reads the corresponding value of zfi.siz from
the unknown file, which is 110, and generates a patch for
line 2. In the next run (c), although the value of zfi.siz is
corrected (110), writ still has a wrong value (100), leading to
a wrong file seek operation at line 5. This is because we cannot
patch csize: the correct value of csize cannot be inferred
from the correct value of zfi. siz. Fortunately, P2C detects
the parameter to file seek (at line 4) is uncertain. It creates a
backtrack point and proceeds with the current value 100. The
following file write (line 5) is to write a magic number as part
of the header. When P2C performs the symmetric read, since
the previous file seek got to a wrong starting point of the header
region in the unknown file, the loaded value is inconsistent
with the constant magic number. As such, P2C backtracks and

12

tries a different value of writ. Note that it cannot go beyond
line 5 until the file seek operation becomes correct. In this
case, P2C iterates 12 times. After that, the producer execution
is correctly transformed to parse the zip file.

zbot. zbot is trojan malware that communicates via net-
works. We apply P2C to the zbot client program in order
to understand some packets that we generated in a different
execution, which simulate a previously generated, unknown
message. In practice, such messages could come from a
network monitoring system that logs network messages that
are unusual. We find that the zbot client can create different
types of network messages, depending on the execution paths.
Therefore, this may create difficulty for dynamic analysis
based output format reverse engineering technique [4], [20]
that can generate output message grammars. In particular, the
user must drive the malware execution to cover the path that
generates the intended grammar.

In contrast, given a message, P2C is able to get to the
producers of different messages and test one by one to see
which one is the producer for the given message.

In this case, a valid message contains two packets ¢. The
first packet contains some constant magic number that is

6Since the packets are sent consecutively inside a method, P2C applies
transformation to the body of the method.

different for different kinds of messages. It also contains the
size for the second packet.

1: send(packetl. packetl.first):
2: send(packet2, packetl.second):

7 T] 4 s
S E

6 7
[|
4

Packet 1 | 5 I

15
“£%GHT7A4” |

Packet 2 B*%$9~~" |

5
s | 5]

w_H_)W_/

Unknown <CONST><TYPE_LENGTH><CONST>
Packet 0 8 9
[<taprorpc | | -Esoasesa- | <o170B1E- |
A N 7

Y Yo Y
<TYPE_PCNAME><CONST><TYPE_OSINFO> <IYPE_REG>

17 25

Fig. 11. Zbot case. The unknown message is on the bottom and the
corresponding meaningless message by the producer is on the top.

Fig. 11 shows the unknown message and the corresponding
meaningless message. In the first iteration of P2C, it reaches
the bulk write of the packet 1, it performs the symmetric read,
which loads the first packet from the unknown message. Note
that the first field of packet 1, denoted as packetl.first,
is a magic number. This allows us to detect inconsistency if
the current producer is not for the unknown message as the
magic number would be different. The second field denotes
the length of the second packet. The symmetric read correctly
patches the length variable in the execution. The third field of
packet 1 is supposed to be a command, which is also correctly
patched.

P2C proceeds to the second packet send and performs
the symmetric read that loads the second packet in the un-
known message. When it tries to patch the execution with
the loaded values, it identifies that the original definitions of
the first 6 bytes come from a buffer definition inside a call
sprintf (s, "$s_%8X_%8X", ...) witha variable length,
which suggests the length is uncertain. In other words, we do
not know how many bytes we should copy from the loaded
second packet back to the buffer. P2C automatically generates
a backtrack point and proceeds with the current value of 6.
As a result, the first 6 bytes “LAPTOP” are copied to the
buffer. Furthermore, the original definition of the 7™ byte
corresponds to the constant definition of letter °_’. As such,
P2C copies the 7 byte from the second packet, which is ‘P’
to the definition point, causing inconsistency. P2C backtracks
and tries to copy a longer sequence to the first field until the
correct string “LAPTOPPC” is patched. Once the first field is
correctly parsed, the remaining two fields can be easily parsed
as they have fixed length.

The type tags of the fields in the meaningless message (the
top one in Fig. 11) are passed onto the corresponding fields
in the unknown message. As such, we recognize that the first
field denotes <TYPE PCNAME> as it gets its value from
GetComputerName (). The following two fields are from
GetOsVersion () and RegQueryValue ().

VIL

Protocol/Input-file format reverse engineering. There have
been a large body of work on protocol and input-file format

RELATED WORK

13

reverse engineering [5], [12], [21], [6], [16], [4], [20], [13].
These techniques are mostly dynamic analysis based. They
monitor program execution to detect format disclosing instruc-
tions and track the data-flow between these instructions and
input file/message fields through taint analysis. For example,
a memory read in a loop accessing consecutive bytes inside a
given packet/file indicates a buffer field in the file/message [5],
[4]; comparison instructions often indicate hierarchy between
fields [6], [13]. In particular, some of them can reverse engineer
out-going message format and handle encrypted messages [4],
[20]. Some of them can generate message grammars [21],
[6], [16]. These techniques require monitoring the program
execution that parses or generates the messages/files, which
implies the users have to know how to run the program and
provide a few concrete inputs. In our application scenario,
we only assume the user knows the producer binary. He does
not need to know how to run the program or provide inputs.
In fact, we can easily extend P2C such that it can search
through a list of potential producers to find the right producer.
More importantly, given a subject unknown file/message, P2C
does not assume the original execution that produced the
file/message was monitored such that those techniques cannot
be directly used to derive the format and the meanings. In
addition, these techniques are dynamic analysis based such
that the results depend on the inputs provided. As such,
the generated grammar may be incomplete. In contrast, P2C
does not try to generate a general grammar, but rather parse
and understand a specific file by transforming an arbitrary
producer execution to the exact consumer execution that parses
the file/message. Coverage is hence not a concern for P2C.
Consequently, P2C has a different set of technical challenges
compared to these techniques. It focuses on generating the
proper consumer execution. After that, it leverages similar
taint-analysis based techniques to type fields.

Static Analysis based Output File Format Reverse Engi-
neering. Lim et al. proposed using static binary analysis to
analyze producer programs to construct regular expressions
that can be used to parse output files [11]. However, the
technique over-approximates the grammar of the output file
due to the conservativeness of the underlying static analysis.
It cannot express field correlations. As such, a buffer field
with variant length will be denoted by a kleene closure in the
resulting regular expression, which would accept many other
strings. Hence, although the regular expression can parse a
file, the generated parse tree may not reflect the real structure.
Furthermore, the technique does not associate meaning to
individual fields.

In [8], Driscoll et al. proposed a static technique that
checks the conformance of producer and consumer. It reports
any non-conformances as potential bugs. Although it has a
different goal, the observation that producers and consumers
are symmetric inspired P2C.

Binary Type Reverse Engineering. Techniques [14], [10],
[19], [4] have been proposed to reverse engineer data structure
definitions (e.g., field types) from binaries. They can also
reverse engineer semantic information to a certain extent such
as timestamps and IP addresses. These techniques work by
observing data flow between variables and API functions with
known interfaces. P2C leverages a similar technique to type
data fields after they are parsed to memory. Note that these

techniques cannot be used to solve our problem as in our case,
the subject file/message was generated in the past and there
is no way to track that producer execution. The contribution
of P2C lies in reconstructing a transformed execution that
parses the file such that types can be recovered by monitoring
the transformed execution. Balakrishnan et al. [1], [2], [18]
have shown that by statically analyzing executables alone can
largely discover syntactic structure of variables, such as sizes,
field offsets, and simple structures. Their technique entails
points-to analysis and abstract interpretation at binary level,
which may be difficult to scale to large and complex binaries.
They cannot be directly used to solve our problem.

Binary Reuse. P2C is also related to binary code reuse
[3], [9], [7] as it leverages the existing producer logic to
derive the consumer execution. BCR [3] identifies and reuses
encryption/decryption functions in malware using both static
and dynamic analysis. Inspector Gadget[9] leverages dynamic
slicing for identifying specific malware behavior for extraction,
reuse, and analysis. Virtuoso[7] applies dynamic slicing to
identify program logic in applications running in a VM, which
can then be reused for VM introspection. Compared to these
techniques, P2C does not extract any components. It tries to
leverage the producer logic in the context of the producer
execution and performs on the fly transformation.

VIII. CONCLUSION

We develop P2C, a system that can understand the structure
and meaning of an unknown file or network message that was
generated in the past, without the availability of their consumer.
It explores a set of potential producers to find out the real one.
It iteratively and progressively transforms a producer execution
to a consumer execution that closely resembles the ideal con-
sumer execution that can parse and process the file/message,
leveraging the symmetry between producer and consumer. It
does not require the user to know the exact producer, where in
the producer the file/message was generated, or how to run the
producer. It also features the capability of handling unexposed
field correlations. Experiments on a set of real world programs
show that the technique is highly effective.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
insightful comments. This research was supported, in part,
by DARPA under Cooperative Agreement HR0011-12-2-0006,
NSF under Award 1409668, and a gift from Cisco Systems.
Any opinions, findings, and conclusions in this paper are those
of the authors only and do not necessarily reflect the views of
our sponsors.

REFERENCES

[1] G. Balakrishnan, , G. Balakrishnan, and T. Reps. Analyzing memory
accesses in x86 executables. In Proc. of Intenational Conference on
Compiler Construction (CC), pages 5-23. Springer-Verlag, 2004.

[2] G. Balakrishnan and T. Reps. Divine: Discovering variables in executa-
bles. In Proc. of Internation Conf. on Verification Model Checking and

Abstract Interpretation (VM CAI), Nice, France, 2007. ACM Press.
J. Caballero, N. M. Johnson, S. McCamant, and D. Song. Binary
code extraction and interface identification for security applications. In

Proc. 17th Annual Network and Distributed System Security Symposium,
2010.

[3]

14

(4]

(5]

(6]

(71

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

J. Caballero, P. Poosankam, C. Kreibich, and D. Song. Dispatcher:
Enabling active botnet infiltration using automatic protocol reverse-
engineering. In Proc. of the 16th ACM Conference on Computer and
and Communications Security (CCS’09), 2009.

J. Caballero and D. Song. Polyglot: Automatic extraction of protocol
format using dynamic binary analysis. In Proc. of the 14th ACM
Conference on Computer and and Communications Security (CCS’07),
2007.

W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz. Tupni:
Automatic reverse engineering of input formats. In Proc. of the 15th
ACM Conference on Computer and Communications Security (CCS’08),
Alexandria, VA, October 2008.

B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee. Virtuoso:
Narrowing the semantic gap in virtual machine introspection. In Proc.
2011 IEEE Symposium on Security and Privacy, 2011.

E. Driscoll, A. Burton, and T. Reps. Checking conformance of a
producer and a consumer. In Proc. of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering (ESEC/FSE), 2011.

C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda. Inspector gadget:
Automated extraction of proprietary gadgets from malware binaries. In
Proc. 2010 IEEE Symposium on Security and Privacy, 2010.

J. Lee, T. Avgerinos, and D. Brumley. Tie: Principled reverse engineer-
ing of types in binary programs. In Proc. 18th Annual Network and
Distributed System Security Symposium, 2011.

J. Lim, T. Reps, and B. Liblit. Extracting output formats from
executables. In Proc. of Working Conference on Reverse Engineering
(WCRE), 2006.

Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic protocol format
reverse engineering through context-aware monitored execution. In
Proc. of the 15th Annual Network and Distributed System Security
Symposium (NDSS’08), San Diego, CA, February 2008.

Z. Lin and X. Zhang. Deriving input syntactic structure from execution.

In Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE), 2008.

Z. Lin, X. Zhang, and D. Xu. Automatic reverse engineering of data
structures from binary execution. In Proc. 17th Annual Network and
Distributed System Security Symposium, 2010.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In ACM SIGPLAN Notices,
volume 40, 2005.

P. Milani Comparetti, G. Wondracek, C. Kruegel, and E. Kirda. Prospex:
Protocol Specification Extraction. In IEEE Symposium on Security &
Privacy, 2009.

F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su. X-force: Force
execution binaries for security applications. In Proc. USENIX Security
Symposium, 2014.

T. W. Reps and G. Balakrishnan. Improved memory-access analysis
for x86 executables. In Proc. of Intenational Conference on Compiler
Construction (CC), pages 16-35, 2008.

A. Slowinska, T. Stancescu, and H. Bos. Howard: A dynamic excavator
for reverse engineering data structures. In Proc. 18th Annual Network
and Distributed System Security Symposium, 2011.

Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace. Reformat:
Automatic reverse engineering of encrypted messages. In Proc. of
14th European Symposium on Research in Computer Security (ES-
ORICS’09), Saint Malo, France, September 2009. LNCS.

G. Wondracek, P. Milani, C. Kruegel, and E. Kirda. Automatic network
protocol analysis. In Proc. of the 15th Annual Network and Distributed
System Security Symposium (NDSS’08), San Diego, CA, February 2008.

