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Abstract mented attack profiles [3,18]. While the effectiveness
of a misuse-detector is tightly linked to the quality of its

Identifying new intrusions and developing effective sig- signature database, competing requirements make gen-
natures that detect them is essential for protecting comz

erating and maintaining NIDS signatures difficult. On
puter networks. We preseftemeana system for au- one hand, signatures shoulddpecific they should only

tomatic generation of intrusion signatures from honeynejye ity the characteristics of specific attack profilese Th
packettraces. Our architecture is distinguished by its eMpyck of specificity leads to false alarms—one of the ma-

phasis on anodular design framewor_lt}at encourages jor problems for NIDS today. For example, Sommer
independent development and_ modification _Of SysteMyng paxson argue that including context, such as the vic-
components anpjroltocol se_mantlcs awarenessichal- . response, in NIDS signatures reduces false alarm
lows for construction of signatures that greatly reducerates [28]. On the other hand, signatures shoulddre
false alarms. The building blocks of our architecture g o that they match variants of specific attack pro-
include transport and service normalization, iNtrusiongas  Eor example, a signature that does not account for
profile c_Iusterlng and_ automata I_earnlng that generate?ransport or application-level semantics can lead to false
connection and session aware signatures. \We demon, ms [6,22,32]. Thus, a balance between specificity

strate the potential of Nemean's semantics-aware, re3,q generality is an important objective for signatures.
silient signatures through a prototype implementation. ;. present the design and implementation of an ar-

We use two datasets to evaluate the system: (i) & Prozpitactyre calledNemeah for automatic generation of

duction dataset for false-alarm evaluation and (ii) a hon'signatures for misuse-detection. Nemean aims to create

eynet dataset for measuring detection rates. Signaltures?gnatures that result in lower false-alarm rates by bal-
generateq_by Nemean for NetBIOS explo!ts had a O(y%mcing specificity and generality. We achieve this bal-
false-positive rate and a 0.04% false-negative rate. ance by includingemantics awarenessr the ability to
understand session-layer and application-layer protocol
1 Introduction semantics. Examples of session layer protocols include
NetBIOS and RPC, and application layer protocols in-
Computer network security is a multidimensional activ- clude SMB, TELNET, NTP and HTTP. Increasingly, pre-
ity that continues to grow in importance. The preva-Processors for these protocols have become integral parts
lence of attacks in the Internet and the ability of self- Of NIDS. We argue that these capabilities are essential for
propagating worms to infect millions of Internet hosts automatic signature generation systems for the following
has been well documented [30, 34]. Developing techf€asons:
nigues and tools that enable more precise and more rapid
detection of such attacks presents significant challenges
for both the research and operational communities.
Network-security architectures often include network
intrusion detection systems (NIDS) that monitor packet 2 semantics awareness enables signatures to be gen-
traffic between networks and raise alarms when mali-  erated for multi-step attacks in which the exploit
cious activity is observed. NIDS that employisuse- does not occur until the last step.
detectioncompare traffic against a hand-built database
of signatures or patterns that identify previously docu- 3. Semantics awareness allows weights to be assigned

1. Semantics awareness enables signatures to be gen-
erated for attacks in which the exploit is a small part
of the entire payload.



to different portions of the payloackt (., times-  packet traces collected at two unused /19 address ranges
tamps, sequence numbers, or proxy-cache header§)6K total IP addresses) from two distinct Class B net-
based upon their significance. works allocated to our campus. We collected session-
level data for exploits targeting ports 80 (HTTP), 139
4. Semantics awareness helps produce generalizgthd 445 (NetBIOS/SMB). Sectidd 6 describes the data
signatures from a small number of input samples. collection environment. We use this packet trace data as
input to Nemean to produce a comprehensive signature
&t for the three target ports. In Sectldn 7, we describe
the major clusters and the signatures produced from this

Our architecture contains two componentstata ab- data set. Leave-out testing results indicate that our sys-
straction componerthat normalizes packets from indi- €M generates accurate signatures for most common in-
vidual sessions and renders semantic context asig-a  rusions, including Code Red, Nimda, and other popular
nature generation componethat groups similar ses- exploits. We detected 100% o_f the_ HTTP_ex_pI0|ts and
sions and uses machine-learning techniques to genep9-96% of the NetBIOS exploits with 0 misdiagnoses.
ate signatures for each cluster. The signatures producddext, we validated our signatures by testing for false
are suitable for deployment in a NIDS [3, 18, 31]. We alarms using packet traces of all HTTP traffic collected
address specificity by producing both connection-leveffom our department's border router. Nemean produced
and session-level signatures. We address generality b(.},false alarms for this data set. By comparison, Snort [3]
learning signatures from transport-normalized data an@enerated over 1,000 false alarms on the same data set.
consideration of application-level semantics that ersble These results suggest that even with a much smaller sig-
variants of attacks to be detected. Therefore, we arguBature set, Nemean achieves detectability rates on par
that Nemean generatbalancedsignatures. At present, vy|t_h Snort while identifying attacks with superior pre-
Nemean’s goal is to provide an automated mechanisrffiSion and far fewer false alarms.
to build accurate signatures that keep pace with exploits
and network viruses released everyday and is not meat Related Work
to “automate real-time deployment” of signatures. We
discuss this issue in greater detail in Secfioh 3.3. Sommer and Paxson [28] proposed adding connection-

The input to Nemean is a set of packet traces collectedevel context to signatures to reduce false positives in
from a honeynetdeployed on an unused IP address spaamisuse-detection. Handlegt al. described transport-
Any data observed at a honeynet{# anomalous, thus level evasion techniques designed to elude a NIDS as
mitigating both the problem of privacy and the problemwell as normalization methods that disambiguate data
of separating malicious and normal traffiéVe assume before comparison against a signature [6]. Similar work
that the honeynet is subject to the same attack traffic adescribed common HTTP evasion techniques and stan-
standard hosts and discuss the ramifications of this astard URL morphing attacks [22]. Vignat al. [32]
sumption in Sectiofl8. described several mutations and demonstrated that two

To evaluate Nemean's architecture, we developed avidely deployed misuse-detectors were susceptible to
prototype implementation of each component. This im-such mutations. The works of Handleyal. and Vigna
plementation enables automated generation of signatures al. highlight the importance of incorporating seman-
from honeynet packet traces. We also developed a sintics into the signature generation process.
ple alert generation tool for off-line analysis, which com-  Honeypots are an excellent source of data for intrusion
pares packet traces against signatures. While we demoand attack analysis. Leviet al. described how honey-
strate that our currentimplementation is extremely effecpots extract details of worm exploits that can be analyzed
tive, the modular design of the architecture enables anyo generate detection signatures [13]. Their signatures
of the individual components to be easily replaced. Wewere generated manually.
expect that further developments will tune and expand Several automated signature generation systems have
individual components resulting in more timely, precisebeen proposed. Tablg 1 summarizes the differences be-
and effective signatures. From a broader perspectivayveen Nemean and the other signature-generation sys-
we believe that our results demonstrate the importanceems. One of the first systems proposed was Honey-
of Nemean'’s capability in a comprehensive security arcomb developed by Kreibich and Crowcroft [11]. Like
chitecture. Sectiolll 3 describes the architecture and Setdemean, Honeycomb generated signatures from traffic
tions[2 andb present our prototype implementation ofobserved at a honeypot via its implementation as a Hon-
Nemean. eyd [20F plugin. At the heart of Honeycomb is the

We performed two evaluations of our prototype. First,longest common substrifgCS) algorithm that looks for
we calculated detection and misdiagnosis counts usintghe longest shared byte sequences across pairs of con-

5. Semantics awareness results in signatures that a
easy to understand and validate.



Traffic source Generates Contextual Semantics Signature Generation Target
Signatures Aware Algorithm Attack Class
Nemean Honeypots Yes(Generates connection- and Yes (MSG) Clustering General
session- level signatures) and automata learning

Autograph DMZ No (Generates No (COPP) partitioning Worm
byte-level signatures) content blocks

Earlybird DMZ No (Generates No Measuring Worm
byte-level signatures) packet-content prevalence

Honeycomb Honeypots No (Generates No Pairwise LCS General
byte-level signatures) across connections

Figure 1: Comparison of Nemean to other signature-gernerayistems.

nections. However, since Honeycomb does not consideslarm for each cluster. Intuitively, generation of gener-
protocol semantics, its pairwise LCS algorithm outputsalized alarms is similar to the automata-learning step of
a large number of signatures. It is also frequently dis-our algorithm. However, the goals and techniques used
tracted by long irrelevant byte sequences in packet payin our work are different than the ones used by Julisch.
loads, thus reducing its capability for identifying attack  In [4], Christodoresclet al. presented a semantics-
with small exploit strings, exemplified in protocols such aware methodology to detect malicious traits in x86 bi-
as NetBIOS. We discuss this in greater detail in Secnaries. Their approach is semantics aware because their
tion[Z4. algorithm incorporates semantics of x86 instructions that

Kim and Karp [10] described the Autograph systemare executed. In contrast, Nemean incorporates seman-
for automated generation of signatures to detect wormgics of various protocols in parsing application level
Unlike Honeycomb and Nemean, Autograph’s input arepacket content. Hence, the malware-detection algorithm
packet traces from a DMZ that includes benign traffic. presented in [4] and the signature-generation algorithm
Content blocks that match “enough” suspicious flowsof Nemean consider semantics at different levels.
are used as input to COPP, an algorithm based on Ra- Anomaly detectiois an alternative approach for mali-
bin fingerprints that searches for repeated byte sequencefus traffic identification in a NIDS. Anomaly detectors
by partitioning the payload into content blocks. Like construct a model of acceptable behavior and then flag
Honeycomb, Autograph does not consider protocol seany deviations from the model as suspicious. Anomaly-
mantics. We argue that such approaches, while attraadetection techniques for detecting port scans have been
tive in principle, seem viable for a rather limited spec- explored in [9, 29]. Balancing specificity and generality
trum of observed attacks and are prone to false positivesas proven extraordinarily difficult in anomaly-detection
This also makes Autograph more susceptible to mutasystems, and such systems often have a high false-alarm
tion attacks [6, 22, 32]. Finally, unlike byte-level signa- rate. This paper focuses on misuse-detection, and we will
tures produced by Autograph, Nemean can produce bothot discuss anomaly-detecting technigues further.
connection-level and session-level signatures.

Another system developed to generate signatures for .
worms, Earlybird [27], measured packet-content prevas3 Nemean Architecture

lence at a single monitoring point such as a network

DMZ. By counting the number of distinct sources and As shown in Figur€l2, Nemean'’s architecture is divided

destinations associated with strings that repeat often if't0 two components: the data abstraction component

the payload, Earlybird distinguished benign repetitions@nd the signature generation component. The input to

from epidemic content. Like Autograph, Earlybird also Nemean is a packet trace collected from a honeynet.

produced byte-level signatures and was not aware of prd=ven when deployed on a small address spagg, @ /24

tocol semantics. Hence Earlybird has the same disadvarfontaining 256 IP addresses), a honeynet can provide a

tages compared to Nemean as Autograph. Iarg_e_ volume of data without significant privacy or false
Pouget and Dacier [19] analyzed honeypot traffic toPOSItIVes concerns.

identify root causes of frequent processes observed in a

hon_eypotenvironment. They first organized the observe(é_l Data Abstraction Component

traffic based on the port sequence. Then, the data was

clustered using association-rules mining [1]. The result-The Data Abstraction Component (DAC) aggregates and

ing clusters were further refined using “phrase distance”transforms the packet trace into a well-defined data struc-

Pouget and Dacier’s technique is not semantics aware. ture suitable for clustering by a generic clustering mod-
Julisch [8] also clustered alarms for the purpose of dis-ule without specific knowledge of the transport proto-

covering the root-cause of an alarm. After clusteringcol or application-level semantics. We call these aggre-

the alarms, Julisch’s technique generategkaeralized gation unitssemi-structured session trees (SST$he
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Figure 2: Components and data flow description of the Nemesnitacture.

components of the DAC can then be thought of in termselements of the SST to highlight the most important
of the data flow through the module as shown in Fig-attributes, like the URL in an HTTP request, and de-
urel2. While we built our own DAC module, in principle emphasize the less important attributes, such as en-
it could be implemented as an extension to a standardrypted fields and proxy-cache headers in HTTP packets.
NIDS, such as a Bro policy script [18]. Nemean’s current weight assignment is simply based on

Transport normalizatiordisambiguates obfuscations our expert knowledge of protocols and prevalent attacks.
at the network and transport layers of the protocol stacklt should be noted that the weights are not tuned to reflect
Our DAC reads packet traces through thebpcap  a specific attack, but are meant to be sufficiently general
library. This can either be run online or offline on and reflect high level behavior drawn from a large class
t cpdunp traces. This step considers transport-specifiof attacks. We expect that these might need to periodi-
obfuscations like fragmentation reassembly, duplicatecally adjusted to accommodate significant changes in ex-
suppression, and checksums. We describe these ploit patterns.
greater detail in Sectidd 4.
. Theaggregatiorstep groups packet data between t"‘f°:§.2 Signature-Generation Component

osts into sessions. The normalized packet data is firs

composed and stored dsws Periodically, the DAC  The clustering module groups sessions and connections
expires flows and converts them intmnnections A with similar attack profiles according to a similarity met-
flow might be expired for two reasons: a new connec-ric. We assume that sessions grouped together will corre-
tion is initiated between the same pair of hosts and portgpond to a single attack type or variants of a well-known
or the flow has been inactive for a time period greaterattack while disparate clusters represent distinct astack
than a user defined timeout (1 hour in our experimentabr attack variants that differ significantly from some orig-
setup). Flows are composed of packets, but connectioniaal attack. Effective clustering requires two properties
are composed of request-response elements. Each copfthe attack data. First, data that correspond to an attack
nection is stored as part ofseession A session is a se- and its variants should be measurably similar. A clus-
quence of connections between the same host pairs.  tering algorithm can then classify such data as likely be-

Service-specific information in sessions must be nor{fonging to the same attack. Second, data corresponding
malized before clustering for two reasons. First, clas-o different attacks must be measurably dissimilar so that
sification of sessions becomes more robust and clustes clustering algorithm can separate such data. We be-
ing algorithms can be independent of the type of serdieve that the two required properties are unlikely to hold
vice. Second, the space of ambiguities is too large to profor data sets that include significant quantities of non-
duce a signature for every possible encoding of attackamalicious or normal traffic. Properties of normal traffic
By decoding service-specific information into a canon-vary so greatly as to make effective clustering difficult
ical form, normalization enables generation of a morewithout additional discrimination metrics. Conversely,
compact signature set. A detection system must themalicious data contains identifiable structure even in the
first decode attack payloads before signature matchingoresence of obfuscation and limited polymorphism. Ne-
This strategy is consistent with that employed by popu-mean’s use of honeynet data enables a reasonable num-
lar NIDS [3]. We describe the particular normalizations ber of meaningful clusters to be produced. While each
performed in greater detail in Sectigh 4. cluster ideally contains the set of sessions or connec-

The DAC finally transforms the normalized sessionstions for some attack, we also presume that this data will
into XML-encoded SSTs suitable for input to the clus- contain minor obfuscations, particularly in the sequéntia
tering module. This step also assigns weights to thestructure of the data, that correspond to an attacker’s at-



tempts to evade detection. These variations provide the One reason for this requirement is that unlike systems
basis for our signature generation component. such as EarlyBird and Autograph, the target of attacks
The automata learning module constructs an attackve seek to address is much broader than flash worms.
signature from a cluster of sessions. A generator is imit includes everyday targeted attacks, viruses spreading
plemented for a target intrusion detection system andhrough network shares and botnet sweeps that occur be-
produces signatures suitable for use in that system. Thi®w the noise thresholds and look similar to misconfig-
component has the ability to generate highly expressiverration. We expect intentional data pollution through
signatures for advanced systems, such as regular exprdafge botnets to be an issue for aforementioned systems
sion signatures with session-level context that are suitas well.
able for Bro [18, 28]. Clusters that contain many non-
uniform sessions are of particular interest. These differ-
ences may indicate either the use of obfuscation transfor-

mations to modify an attack or a change made to an existpe nave implemented prototypes of each Nemean com-

ing attack to produce a new variant. Our signature genponent. While the Nemean design provides flexibility

eration component gener.alizes. _these transformations % handle any protocol, we focus our discussion on two
produce_a §|gnature that.|s resilient to evasion _at_tempt%peciﬁc protocol implementations, HTTP (port 80) and
Generalizations enable S|gnature_s to matc_:h_mallmous S etBIOS/SMB (ports 139 and 445), since these two ser-
quences that were not observed in the training set. vices exhibit great diversity in the number and types of
exploits.
3.3 Current Limitations e Transport-Level Normalization: Transport-level
normalization resolves ambiguities introduced at the net-
New worms, viruses, and variants of existing malwarework (IP) and transport (TCP) layers of the protocol
appear in the Internet everyday [16], and standard colstack. We check message integrity, reorder packets as
lections of signatures are not able to keep pace. Thuseeded, and discard invalid or duplicate packets. The
the immediate goal for Nemean is to address this gap bjmportance of transport layer normalizers has been ad-
automating signature generation. Nemean does not adiressed in the literature [6, 21]. Building a normalizer
dress automating the real-time deployment of signatureshat perfectlyresolves all ambiguities is a complicated
Given our emphasis on accurate, efficient signatures andndeavor, especially since many ambiguities are operat-
not on timeliness, the current Nemean design includesng system dependent. We can constrain the set of nor-
the following simple manual selection process: malization functions for two reasons. First, we only con-
¢ Selecting either or both of the generated session andider traffic sent to honeynets, so we have perfect know!-
connection-level signatures for a given cluster. For multi edge of the host environment. This environment remains
step attacks such a Welchia, there is a benign connectiomlatively constant. We do not need to worry about am-
(a GET / request) that precedes the attack sequence. biguities introduced due to DHCP or network address
this case, the operator simply chooses either the connetranslation (NAT). Second, Nemean'’s current implemen-
tion signatures for the following steps of Welchia and/ortation analyzes network traces off-line which relaxes its
the session signature, but whitelists the signature correstate holding requirements and makes it less vulnerable
sponding to the benign first step. We provide results fronto resource-consumption attacks.
both connection and session-level signatures for each at- Attacks that attempt to evade a NIDS by introducing
tack in our evaluation but remove the benign connectiorambiguities to IP packets are well known. Examples of
corresponding to Welchia. This was not an issue for othesuch attacks include simplesertion attackghat would
attacks. be dropped by real systems but are evaluated by NIDS,
¢ A sanity check to ensure that a signature correspondandevasion attackg¢hat are the reverse [21]. Since Ne-
to an attack cluster and not a misconfiguration or inten-mean obtains traffic promiscuously via a packet sniffer
tional data pollution. While this is not an issue in our (just like real a NIDS), these ambiguities must be re-
evaluation dataset, we consider this necessary for an ogolved. We focus on three common techniques used by
erational deployment. One of the interesting aspects oéttackers to elude detection.
our semantics-aware approach is that it results in signa- First, an invalid field in a protocol header may cause
tures with semantic context that are easily parsed. Misa NIDS to handle the packet differently than the desti-
configuration could likely be separated by picking from nation machine. Handling invalid protocol fields in IP
clusters with a large number of sources sent to a larg@ackets involves two steps: recognizing the presence of
number of destinatioAsHowever, fully-automating Ne-  the invalid fields and understanding how a particular op-
mean and making it immune to data pollution remains arerating system would handle them. Our implementation
area of future work. performs some of these validations. For example, we

DAC Implementation



1. Build the multiset”' of all normalized connections.

2. ClusterC into exclusive partition§ £ = {¢;}.

3. Produce a connection-level signatyrefor each cluster by generalizing cluster data.
4. Build the multisetS’ of all sessions. Each sessighe S’ is a sequence of identifiers denoting the connection
clusters that contain each connection in the session.

5. ClusterS’ into partitions¥ = {¢; }.

6. Produce a session-level signaturg for each cluster, generalizing the observed connectioerorgs.
7. Produce a NIDS signature. The signature is a hierarchitahzaton where each transition in the session-level
signature requires that the connection-level signaturthiidentified connection cluster accepts.

Figure 3: Multi-level Signature Generalization (MSG) aifigfom. Sectiof b provides more complete details.

drop packets with an invalid IP checksum or length field.tions for analysis. We plan to incorporate this function-

Second, an attacker can use IP fragmentation t@lity into our system in the future.

present different data to the NIDS than to the desti- NetBIOS is a session-layer service that enables ma-
nation. Fragmentation introduces two problems: cor-chines to exchange messages using names rather than
rectly reordering shuffled packets and resolving over!P addresses and port numbers. SMB (Server Message
lapping segments. Various operating systems addred3lock) is a transport-independent protocol that provides
these problems in different ways. We adopt #heays- file and directory services. Microsoft Windows ma-
favor-old-datamethod used by Microsoft Windows. A chines use NetBIOS to exchange SMB file requests. Net-
live deployment must either periodically perfoamtive- ~ BIOS/SMB signature evasion techniques have not been
mapping[26] or match rules with passive operating sys- well studied, possibly due to the lack of good NIDS rules

tem fingerprinting. The same logic applies for frag- for their detection. A full treatment of possible Net-
mented or overlapping TCP segments. BIOS/SMB ambiguities exceeds the scope of this paper.

Third, incorrect understanding of the TCP Control

Block (TCB)_tea_r-down timer_ can cause a NIDS_to im-5  Multi-level Signature Generalization
properly maintain state. If it closes a connection too
early it will lose state. Likewise, retaining connections e designed théMulti-level Signature Generalization
too long can prevent detection of legitimate later connecy\sG)algorithm to automatically produce signatures for
tions. Ourimplementation maintains connection state fog, o malized session data. The signatures must balance
an hour after session has been closed. However, sessioggsecificity to the exploits observed in the data with gen-
that have been closed or reset are replaced earlier if a Ne¥tality, the ability to detect attack variants not previgus
connection setup is observed between the same host/pQffserved. We use machine-learning algorithms, includ-
paurs. ing clustering and finite state machine generalization, to
e Service-Level Normalization: We provide a brief  produce signatures that are well-balanced.
discussion of the implementation of service normalizers Duye to the hierarchical nature of the session data, we
for two popular protocols: HTTP and NetBIOS/SMB.  construct signatures for connections and sessions sepa-
Ambiguities in HTTP sessions are primarily intro- rately. First, we cluster all connections irrespectivenef t
duced due to invalid protocol parsing or invalid decod-sessions that contain them and generalize each cluster to
ing of protocol fields. In particular, improper URL de- produce a signature for each connection cluster. Second,
coding is a point of vulnerability in many intrusion de- we cluster sessions based upon their constituent connec-
tection systems. Modern web servers allow substitutiortions and then generalize the clusters. Finally, we com-
of encoded characters for ASCII characters in the URLbine the session and connection signatures to produce
and are often exploited as means for evasion of coma hierarchical automaton signature, where each connec-
mon NIDS signatures. Our DAC correctly decodes sev+ion in a session signature must match the correspond-
eral observed encodings such as hex encoding and itag connection signature. Figurk 3 presents a high-level
variants, UTF-8 encoding, bare-byte encoding, and Mi-overview of the algorithm.
crosoft Unicode encoding. Regardless of its encoding, Steps 1 and 2: Generating connection clusterd.et
the DAC presents a canonical URL in ASCII format to .S be the multiset of normalized sessions produced by the
the clustering module. Currently, our implementationdata abstraction component. Denote each sess®ib
does not handle all obvious HTTP obfuscations. For ex-as an ordered list of connections= cy.c3. - - - .cy,,. Let
ample, we do not process pipelined HTTP/1.1 requestsConn(s) = {c;};,_, ,. be the multiset of connections
Such requests need to be broken into multiple connedn s andC' = i, Conn(s) be the multiset of all con-



nections in the normalized data, wheyelenotes multi-
set union. LelCL = {&},_, ,, be anexclusive clus-
tering of C into m clustersg;. Clustering inserts every
elementinto a partition, d¢);" , & = C. Exclusive clus-
tering requires that no partitions overlap,&a &; = 0
fori #£ j. Itimmediately follows that there exists a well-
defined functionl’ : C — CL defined ad'(c¢) = ¢ if
c € & that returns the cluster containimg SectiorT 5L
presents the implementation of the clustering algorithm. ‘

Step 3: Building connection-level signatures.
Learning algorithms generalize the data in each cluster
to produce signatures that match previously unseen con-
nections. Let be the alphabet of network events com- Figure 4: Welchia session level signature. For brevity,
prising connection data. A learning algorithm is a func-We label a single transition with both a request and a re-
tion Learn : P(X*) — P(X*) that takes a set of strings PIY-

#e = U, c and returns a regular language 2 ¢e.

SEARCH / SEARCH /AAAAAAAAAAAAA [more]

SEARCH /AAAAAAAAAAAAA [more] ISEARCH /AAAAAAAAAAAAA [more]
400 400

SEARCH /AAAAAAAAAAAAA [more]

Sectio presents the generalization algorithms useglusters are expected. Although it seems suitable, we

in our work. We recognize, with a regular automaton make no claims that star is the optimal clustering algo-

that is the connection-level signature for cluster rithm for our purposes, and we expect to consider other

Steps 4 and 5: Generating session clusterRewrite  algorithms in future work.
the existing sessions to produce a new$et Star clustering builds atar coverover a partially-
connected graph. Nodes in the graph each represent one

S = H—J [s’ =T(¢1).- - .F(cns)] or more items with semantically equivalent data. We ar-

s=C. .y €S bitrarily choose one item at each node to bertdpresen-

tative item A link exists between two nodes if the sim-

From an implementation perspective, edcfr;) in @  jjarity between the corresponding representative items is
rewritten session is simply an integer index indicatingapove a designated threshold.sfar clusteris a collec-
which connection cluster contains the original connec+jon of nodes in the graph such that each node connects
tion. Intuitively, we allow any connection; compris-  tg the cluster center node with an edge. A star cover is
ing part of session to be replaced with any connection g collection of star clusters covering the graph so that
c; € I'(c1) identified by clustering as similar. Le&tbe a  ng two cluster centers have a connecting edge. In the
clustering ofSs". original algorithm, a non-center node may have edges to

Steps 6 and 7: Building session-level signatures  multiple center nodes and thus appear in multiple clus-
with connection-level generalization, construct a regu-ers. We implemented a modified algorithm that inserts
lar languageL,;, for each cluster) € W that accepts g node only into the cluster with which it has strongest
the sessions ig» and variants of those sessions. Again, similarity to produce an exclusive clustering.
we recognize the language with a finite automaton. The |tem similarity determines how edges are placed in the
connection cluster |dent|f|e&§(0) label transitions in the graph_ We imp|emented two different S|m||ar|ty metrics
session-level automata. The resulting signature is thug test sensitivity: cosine similarity[2] and hierarchi-
hierarchical: traversing a transition in the session signacal edit distance The cosine similarity metric has lower
ture requires connection data matching the signature fogomputational complexity than hierarchical edit distance
the connection cluster. and was used for our experiments in Secfibn 7.

Cosine similarity computes the angle between two
vectors representing the two items under comparison.
For each connectioA, we build a vectoD 4 giving the
We cluster connections and sessions using the same dlistribution of bytes, request types, and response codes
gorithm. We implemented the on-line star clustering al-that appeared in the network data. For sessions, the vec-
gorithm, which clusters documents based upon a similartor contains the distribution of connection cluster iden-
ity metric [2]. This algorithm has advantages over moretifiers. If 6 is the angle between vectof34, and Dp
commonly-known techniques, such as thmeans fam-  representing itemd and B, then:
ily of algorithms [14]. For example, star clustering is ro- Da-D
bust to data ordering. Converselymeans produces dif- cosf = A8
ferent clusters depending upon the order in which data is IDAIID5]
read. Moreover, we need not knawpriori how many  where *’ represents inner product ari@|| is the vector

5.1 Star Clustering Implementation
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norm. All vector values are non-negative, o< # < 5.2 Cluster Generalization and Signature
m/2 andl > cosf > 0. The similarity between items is Generation
the valuecos 6, with cos § = 1 indicating equality.
Signature generation devises a NIDS signature from a
cluster of similar connections or sessions. We generalize
Hierarchical-edit distance is a variation on the tradi-variations observed in a cluster's data. Assuming effec-
tional edit-distance metric [2] which measures the cost ofive clustering, these variations correspond to obfusca-
transforming one string into another using insert, deletetion attempts or differences among variants of the same
and replace operations. In contrast to the traditional editattack. By generalizing the differences, we produce a
distance metric, the hierarchical-edit distance metre pr resilient signature that accepts data not necessarily ob-
serves connection ordering information within each sesserved during the training period.
sion and differentiates between the various data fields The signature is a finite state automaton. We first con-
within each connection. We believed these properties oftruct a probabilistic finite state automaton (PFSA) ac-
the hierarchical-edit distance metric would make it a bet-cepting exactly the event sequences contained in a clus-
ter similarity metric for clustering than the cosine metric ter, with edge weights corresponding to the number of
Our experiments revealed that while both distance mettimes an edge is traversed when accepting all cluster data
rics work quite well, cosine is less sensitive to the thresh-exactly once. PFSA learning algorithms [24] then use
old parameters used in partitioning clusters. Hence, weatochastic measures to generalize the data variations ob-
use cosine distance in this paper’s experiments and deserved in a cluster. In this work, we generalized HTTP
scribe the hierarchical edit distance metric in the ex-connection-level signatures with thsi-stringsmethod
panded technical report [35]. [24], an algorithm that merges states when they are
probabilistically indistinguishable. Session-level Elu
ters were generalized witheam searclil7]. Our algo-
Using a similarity metric, we construct the partially- rithm uses both sk-strings arsmulated beam anneal-
connected similarity graph. An edge connects a pair ofnd [23] to generalize NetBIOS signatures. These gen-
nodes if the similarity of the representative sessions igralizations add transitions into the state machine to ac-
above a threshold, here 0.8. We then build a star covegommodate such variations as data reordering and alter-
over the similarity graph. Each star cluster is a group ofation of characters in an attack string. Likewise, repeated
similar sessions that presumably are variants of the sam&rings may be generalized to allow any number of re-
exploit. The cluster set is then passed to the generalizg€ats.
tion module to produce the automaton signature. We further generalize signatures at points of high data



variability. Subsequence creatigonverts a signature provides a summary of this dataset.
that matches a sequence of session data into a signa-e Honeypot Traffic: Traffic from two unused /19
ture that matches a subsequence of that data by inser? address blocks totaling 16K addresses from address
ing “gaps” that accept any sequence of arbitrary sym+anges allocated to our university was routed to our
bols. We insert gaps whenever observing four or moréhoneynet monitoring environment. To normalize the
patterns with a common prefix, common suffix, and onetraffic received by our infrastructure a simple source-
dissimilar data element. For example, &tB € ¥* filtering rule was employed: one destination IP address
andv,w,z,y € X. If the signature accept$v B, AwB, per source. Connections to additional destination IP ad-
AxB, and Ay B, then we replace those four sequencesdresses were dropped by the filter.
with the regular expressioA[.x] B. Intuitively, we have These filtered packets were subsequently routed to one
identified a portion of the signature exhibiting large vari- of two systems based upon type-of-service. HTTP re-
ation and allow it vary arbitrarily in our final signature. quests were forwarded to a fully patched Windows 2000
Nemean’s generalized signatures can thus detect varigerver running on VMware. The NetBIOS/SMB traffic
tions of observed attacks. was routed to a virtual honeypot system similar to Hon-
Figurd4 shows a session-level signature for Welchia, &yd. We routed NetBIOS/SMB packets to an active re-
worm that exploits a buffer overflow. Nemean’s general-sponder masquerading as an end host offering NetBIOS
ization produced a signature that matches a wide class afervices rather than to the Windows 2000 Server for two
Welchia scans without losing the essential buffer over+easons [33]. First, the fully patched Windows 2000
flow information characteristic to the worm. FiguUike 5 Server often rejected or disconnected the session before
shows connection-level signatures for Nimda, a Win-we had enough information to classify the attack vector
dows Media Player exploit, and the Deloder NetBlOSaccurately. This could be due to invalid NetBIOS names
worm. The connection-level Nimda signature is an ex-or user/password combinations. Our active responder ac-
ample of a signature for an exploit with high diversity. In cepted all NetBIOS names and user/password combina-
particular, note that the subsequence creation generalizéions. Second, Windows 2000 servers limit the number
tion allows this signature to match a wide class of Nimdaof simultaneous network share accesses which also in-
attacks. The Windows Media Player exploit is represen-ibit connection requests from succeeding.
tative of an HTTP exploit where the size of the exploit We collected two sets of traces, a short term training
URL is small. Previous signature generation techniquesset (2 days) and a longer testing set (7 days) to evaluate
such as Honeycomb, fail for small URLs. The Deloder Nemean detection capability as summarized in Thble 2.
signature demonstrates the capability of Nemean to geriFhe reduction in the volume of port 80 traffic moving
erate signatures for exploits using more complex protofrom the 2-day to the 5-day dataset is not uncommon in
cols like NetBIOS/SMB. honeynets due to the bursty nature of this traffic often
associated with botnet activity [16].

6 Data Collection

7 Evaluation
The data used for our evaluation comes from two

sources: (i) honeypot packet traces collected from unWe tested the effectiveness of Nemean’s HTTP and Net-
used address space that we used to build signaturddOS signatures and examined the session clusters used
and evaluate the detection capability of Nemean ando produce these signatures. Secliah 7.1 reveals the major
(i) packet traces collected from our departmental bordeclasses of attacks in our recorded data and quantitatively
router that we used to test the resilience of our signaturemeasures the clusters produced by the clustering mod-
to false positives. ule. We performed an evaluation of the detection and
e Production Traffic: ~Obtaining packet traces for false positive rates of Nemean'’s signatures and compare
live network traffic is a challenge due to privacy con- our results with Snort's HTTP capabilities. Finally, we
cerns. While network operators are amenable to sharingrovide a qualitative discussion of our experience with
flow level summaries, anonymizing payloads remains arHoneycomb.
unsolvable problem and as such its hard to obtain packet
traces with application pgyloads. 7.1 Evaluating the Clusters
We were able to obtain access to such data from our
department’s border router. The network is a sparsely HTTP Clusters: Figure[® provides an overview of
allocated, well managed /16 network with approximatelythe major HTTP clusters in our learning data set. Web-
24 web servers and around 400 clients. We were abl®AV scans account for the majority of the attacks in
to passively monitor all outgoing and incoming HTTP our data set. WebDAV is a collection of HTTP exten-
packets on this network for an 8 hour period. TdHle 1sions that allow users to collaboratively edit and man-



Data Flow No. Clients | No. Servers| No. Sessions| No. Connections
Internal clients > External serverg 380 4,422 16,826 106,456
External clients > Internal servers 18,634 24 28,491 87,545

Table 1: Production data summary (HTTP: 8 hours, 16GB).

Learning Data (2 days) Test data (7 days)
Port Packets | Sources| Connections | Sessions|| Packets | Sources| Connections | Sessions
80 278,218 | 10,859 25,587 12,545 100,291 | 12,925 12,903 5,172
139 192,192 1,434 3,415 1,657 || 6,764,876| 539,334 1,662,571 24,747
445 | 1,763,276 14,974 35,307 19,763 || 6,661,276| 383,358 1,171,309| 37,165

Table 2: Honeypot data summary.

age documents in remote web servers. Popular WebDAWjuality of clusters produced by the star clustering algo-
methods used in exploits include OPTIONS, SEARCH,rithm using two common metricprecisionandrecall.

and PROPFIND and are supported by Microsoft IIS webPrecision is the proportion of positive matches among all
servers. Scans for exploits of WebDAV vulnerabilities the elements in each cluster. Recall is the fraction of pos-
are gaining in popularity and are also used by wormstive matches in the cluster among all possible positive
like Welchia. Nimda attacks provide great diversity in matches in the data set. Intuitively, precision measures
the number of attack variants and HTTP URL obfusca-the relevance of each cluster, while recall penalizes re-
tion techniques. These attacks exploit directory traverdundant clusters.

sal vuInerab|I|_t|es on IS servers to acce_mij. exe or We first manually tagged each session with conjec-
root . exe. Figureld contains a connection-level signa-y,res as shown in Figuf@ 6. Conjectures identified ses-
ture for Nimda generated by Nemean. Details of othelgjyns with known attack types and it is possible for a

observed exploits, such as Frontpage, web crawlers anghqgjon to be marked with multiple conjectures. It is im-

open-proxy, are provided in [35]. portant to note that these conjectures were not used in

* NetBIOS Clusters: Worms that are typically better cjustering and served simply as evaluation aids to esti-
known as email viruses dominate the NetBIOS clustersmate the quality of our clusters.

Many of these viruses scan for open network shares and

this behavior dominated the observed traffic. They can . The conjecture_s allow us to computeighted prect-
be broadly classified into three types: sion (wp)and weighted recall (wr)for our clustering.

) . . As sessions can be tagged with multiple conjectures, we
1. Hidden and open share exploit§his includes 99 P J

. . . weight the measurements based upon the total number
viruses, including LovGate [5], NAVSVC, and De- g P

of conjectures at a given cluster of sessions. We compute
loder [12], that use brute force password attacks to Iool*he valuessp andwr as follows: LetC' be the set of all

for open folders and then deposit virus binaries in startun. ;sters 7 be the set of all possible conjectures, and
y ) Ay

folders. o ] be the set of elements in clustelabeled with conjecture
2. MS-RPC query exploitVlicrosoft Windows pro- ;- Then|c;| is the count of the number of elements in
vides the ability to remotely access MSRPC services,stere with conjecture;.

through named pipes such apnmapper (RPC End-
point Mapper)sr vsvc (Windows Server Service), and
sanr (Windows Security Account Manager). Viruses

often connect to the MSRPC services as guest users and wp = 3 el 5 ( = @)
then proceed to query the system for additional informa- S IO o\ ey lex| Iel
tion that could lead to privileged user access. For exam- 1 S e

jeJ 17

ple, connecting to theanr service allows the attacker =
to obtain an enumeration of domain users,

3. MS-RPC service buffer overflow exploithe most

IC] ceC ZkeJ lex|

well-known of these exploits are thepmapper ser- le] ] ]
vice which allows access to the RPC-DCOM exploit [15] wr = Z <m Z (m m))
used by Blaster and the more recérstar pc exploit ceeC jes ket ’
used by Sasser [25]. We provide more details in the tech- _ 1 ( || lcs |2)
nical report [35]. Ol 22 N\ ke s lerl 3 1G5

e Cluster Quality: We quantitatively evaluated the



CLUSTER 1: 9175 Uni li IPs, 10515 Sessi i il iri
|Gont 111 ed s opti ang o oMt RS 1000 Bt S00% the alarms raised by an IDS. Precision empirically evalu-
TER 2:

et 211 ed ae N Cllent IPs, 738 e boos ates alarms by their specificity to the attack producing the
cLusra e e e el ient I1Ps, 808 Sessi ok alarm. Noise level counts the number of alarms per inci-
|dentified as Vel chia B8 {oaa dent and penalizes redundant alarms. In these tests, we
R it i ed a9 conrape client 1Ps, 226 Sess) o0 use Snort as a baseline for comparison simply because
ausrem e A e A ent 1Ps. | 52 Sessions that is the most widely adopted intrusion detection sys-
cLusranbled ag N e e client 1Ps, © 102 2ese) ot tem. We used the latest version of Snort available at the
Lo g a2 onoPhnad P 10s oo time, Snort-2.1.0 with the HTTP pre-processor enabled,
GLUSTER 8. g aﬁoNiU?rjjg“e ol ' ent IPs, zozﬁefibgg}; and its complete associated ruleset. In some sense, Snort
ST hent 111 ed as W ndans Ned: a Exploi t: 15 (1005 is the strawman because of its well-known susceptibility
Rt 111 ed as sonranc client 1Ps. 10, Beas o0 to false-positives. We use this because of our inability to
T i h7i ed as o e R ma = . B 3eRsho0s compare with Honeycomb (see Sectiod 7.4) and because
Identified as Search : 5 (1639 there is no source code publicly available for Earlybird
e T [ oAwgmhuoz |
CLUSTER 19: 5 Uni que client IPs, 5 Sessi ons ¢ 99.9% Detection Rate:We evaluated the detection
L oent i f1eg a2 BrePinad S B E 7% rate of Nemean signatures usiegve-out testinga com-
T 2l led as Propfiocl 1ent 1Ps. 3 Cese s mon technique in machine learning. We used the hon-
cLusTaR e B O e elient IPs, 2 seseons eynet data set described in TaBle 2 to automatically cre-
USR8 B8 e P nt I bs, 3 2eseions ate connection-level and session-level signatures for the
austeRyy o0 a8 e lient 1P, 2 SeL200% clusters identified in a training data set. We measured
ausren o0 2 e T ent 1 ps, , L.{ 50% the detection rate of the signatures by running signature
CLUS:TZEE:%H:: :lz‘rﬁg!p?%j'cﬁ e, s %e%%ggzﬁ matching against data in a different trace collected from
Identified as Options : 1 (100% the same network (see Table 2).
ot T ed as cpanmrony o P 000 Connection-level HTTP signatures detected 100.0%

of the attacks present, and the somewhat more restric-
tive session-level signatures detected 97.7%. We did not
evaluate session-level signatures for Nimda because the
extreme variability of Nimda attacks made such signa-
In the formulas above,}", ;|ck] > |c| and turesinappropriate. Tablé 3 shows the number of occur-
> res|Ck| > |C| as sessions may have multiple conjec-rences of the HTTP attacks and the number detected by
tures. Figur€l7 presents graphs indicating how precisiofNemean signatures. For comparison, we provide detec-
and recall vary with the clustering similarity threshold. tion counts for Snort running with an up-to-date signa-
Recall that in the star clustering algorithm, an edge isture set. Snort detected 99.7% of the attacks.
added between two sessions in the graph of all sessions The detection rate of NetBIOS attacks is similarly very
only if their similarity is above the threshold. Although high: we detected 100.0% of the attacks present. Ta-
less true for NetBIOS data, the similarity threshold doesble[d contains the detection rates for NetBIOS/SMB sig-
not have a significant impact on the quality of the result-natures. Snort provides only limited detection capabil-
ing clustering. Clustering precision drops as the threshity for NetBIOS attacks, so a comparison was infeasible.
old nears 0 because the star graph becomes nearly fullll signatures were connection-level because the defin-
connected and the algorithm cannot select suitable clugng characteristic of each attack is a string contained in a
ter centers. Recall that no cluster centers can share aingle connection. The structure of connections within a
edge, so many different clusters merge together at lovgession is irrelevant for such attacks.
threshold values. At the clustering threshold used in e Zero misdiagnoses or false alarmsWe qualify in-
our experiments (0.8), precision scores were perfect ocorrect alerts on the honeynet data as misdiagnoses. Al-
nearly perfect. though not shown in Tabld 3, all Nemean HTTP signa-
tures generated 0 misdiagnoses on the honeynet trace.
Misdiagnosis counts for NetBIOS/SMB on the honeynet
data were also 0, as shown in Table 4. We also measured
Intrusion detection signatures should satisfy two basidalse alarm counts of Nemean HTTP signatures against
properties. First, they should have a high detection rate1l6GB of packet-level traces collected from our depart-
i.e,, they should not miss real attacks. Second, theyment's border router over an 8 hour time period. The
should generate few false alarms. Our results will showtraces contained both inbound and outbound HTTP traf-
that Nemean has a 99.9% detection rate with O falsdic. We evaluated both Nemean and Snort against the
alarms. Two additional metrics evaluate the quality ofdataset.

Figure 6: HTTP Port 80 cluster report.

7.2 Signature Effectiveness
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Figure 7: Effect of clustering similarity threshold uponigteted precision and weighted recall. Note that the y-axis
begins at 0.6.

Nemean Signature No. Alerts
Signature Present || Conn | Sess| Snort Non-RFC HTTP Delimiter 32246
Options 1172 || 1172 | 1160 | 1171 Bare Byte Unicode Encoding 28012
Nimda 496 496 | N/A 495 Apache Whitespace (TAB) 9950
Propfind 229 229 | 205 229 WEB-MISC /doc/ Access 9121
Welchia 90 90 90 90 Non-RFC Defined Character 857
Win Media Player 89 89 89 89 Double-Decoding Attack 365
Code Red Retina 4 4 4 0 1IS Unicode Codepoint Encoding 351
Kazaa 2 2 2 2

Table 5: Snort false alarm summary for over 45,000
Table 3: Session-level HTTP signature detection countH{TTP sessions collected from our department’s border
for Nemean signatures and Snort Signatures. We showouter.

only exploits occurring at least once in the training and

test data. Alert Category No. Signatures| No. Alerts
WEB-MISC 13 466
Signature | Present || Detected | Misdiagnoses WEB-CGI 25 919
Srvsvc 19934 19930 0 WEB-IIS 8 164
Samr 8743 8741 0 WEB-ATTACKS 6 15
Epmapper 1263 1258 0 WEB-PHP 4 18
NvcplDmn 62 61 0 WEB-FRONTPAGE 4 61
Deloder 30 30 0 Others (P2P, Crawlers 5 5426
LoveGate 1 0 0

Table 6: Summary of remaining Snort alerts.

Table 4: Detection and misdiagnosis counts for
connection-level Nemean NetBIOS signatures. This data

includes both port 139 and port 445 traffic. yond those seen by Honeynets.
Tabld® provides a summary of the Snort alarms gener-

ated on an 8 hour trace of overwhelmingly benign HTTP

Nemean results are highly encouraging: 0 falsetraffic collected at our department’s border router. Re-
alarms. Snort generated 88,000 alarms on this dataseducing Snort's alarm rate would require reengineering of
almost all of which were false alarms. The Snort falsemany signatures. Additionally, the overly general signa-
alarms were produced by a collection of overly generakure provides little specific information about the type of
signatures. In fairness, we note that Snort had a largeexploit that may be occurring.
signature set which made it more prone to false posi- We assume that in a real network deployment of Snort
tives. Our Snort signature set included about 2200 sigthe most noisy signatures such as those in Tdble 5 would
natures, whereas Nemean’s database of HTTP and Nelbe disabled. A more reasonable estimate of the expected
BIOS signatures contained only 22 connection-level andalse alarm rates might be obtained from the remaining
7 session-level signatures. Snort has a high signaturalerts shown in Tabld 6. The remaining alerts come from
count because it is meant to detect classes of attacks b60 signatures and are responsible for 1643 alerts (exclud-



ing Others). While we did not inspect each of these in-tational demands. Figufé 8 shows Nemean’s overheads
dividually for true positives due to privacy concerns with on the 2-day training data set containing about 200,000
the dataset, sampling revealed that they are mostly false TTP packets and 2,000,000 NetBIOS packets. To-

alarms. Traffic classified as Others were legitimate alert$al data processing time is divided into the three stages
fired on benign P2P traffic and traffic from web crawlers. of data abstraction, clustering, and automaton general-

Our university filters NetBIOS traffic at the campus ization plus an additional preprocessing step that trans-
border, so we were unable to obtain NetBIOS data folated SSTs produced by the DAL into the input for-
this experiment. mat of our clustering module. The HTTP connection-

e Highly specific alarms: Although the decision is level automaton generalization step used the sk-strings
ultimately subjective, we believe our signatures generat@lgorithm. The session-level generalization used beam
alerts that are empirically better than alerts produced byearch, with nearly 100% of the cost arising from one
packet-level systems such as Snort. Typical Snort alertg;luster of Nimda sessions. At 200,000 packets, the cost
such as “Bare Byte Unicode Encoding” and “Non-RFC of session-level generalization was 587 seconds. Net-
HTTP Delimiter”, are not highly revealing. They report BIOS signature generalization used simulated beam an-
the underlying symptom that triggered an alert but notnealing at the connection-level only, with no construction
the high-level reason that the symptom was present. Thief session-level signatures.
is particularly a problem for NetBIOS alerts because all Nemean is efficient. We are able to generate signa-
popular worms and viruses generate virtually the saméures for 2 days worth of NetBIOS data, totaling almost 2
set of alerts. We call theseeak alertsand describe them million packets, in under 70 seconds. Even our most ex-
in more detail in the technical report [35]. Nemean, viapensive operation, session-level generalization of HTTP
connection-level or session-level signatures, has afdargealata, required less than 10 minutes of computation. The
perspective of a host’s intentions. As a result, we generdesign of our system helps keep costs low. By processing
ate alerts specific to particular worms or known exploits.only data collected on a honeynet, the overall volume of

e Low noise due to session-level signaturesviore-  data is significantly reduced. Deploying Nemean as an
over, Nemean provides better control over the level ofonline signature generator would require limited system
noise in its alarms. Packet-level detection systems suctesources and can easily operate at the speeds of incom-
as Snort often raise alerts for each of multiple packetdng data.
comprising an attack. A security administrator will see
a flurry of alerts all corresponding to the same incident. .

For example, a Nimda attack containing an encoded URL7'4 Honeycomb Comparison
will generate URL decoding alarms in Snort and alertsHoneycomb was one of the first efforts to address the
for WEB-IIS cnd. exe access. Sophisticated URL de- problem of automatic signature generation from honey-
coding attacks could later get misdiagnosed as Nimdot traces. We performed a comparison between Nemean
alerts and be filtered by administrators. Our normalizerang Honeycomb on identical traces as a means to further
converts the URL to a canonical form to accurately detectinderstand the benefits of semantics awareness in auto-
Nimda attacks. Since Nemean aggregates informatiomated signature generators. This evaluation was compli-
into connections or sessions and generates alerts only Qiyted by two issues: first, we transformed Honeycomb’s
the aggregated data, the number of alerts per incident igjoneyd plug-in implementation into a standalone appli-
reduced. cation by feeding it the input traffic from a pcap loop.

In Summation, we believe these results demonstratgecond, since Honeycomb was deve|oped as a proof-of-
the Strength of Nemean. It achieves detection rates Sirrboncept t00|, it turned out to be incapab|e of processing
ilar to Snort with dramatica”y fewer false alarms. The |arge trace% In our experience, Honeycomb’s process-
alerts produced by Nemean exhibit high quality, specify-ing time grows quadratically with each connection since
ing the particular attack detected and keeping detectiof performs pairwise comparison across all connections,
noise small. and running it on a relatively small trace of 3000 packets
took several hours on a high performance workstation.
As a result, our evaluation is a qualitative comparison of
Honeycomb signatures and its performance on a small
Although our current implementation operates offline ontrace with 126 HTTP connections.
collected data sets, we intend for Nemean to be used in Honeycomb produced 202 signatures from the input
online signature generation. Online systems must be eftrace. While there were several perfectly functional sig-
ficient, both so that new signatures can be rapidly connatures, there were also a surprisingly large number of
structed as new attacks begin to appear and so that th®enign strings that were identified by the LCS algorithm.
system can operate at network speeds with low compuSome of these were small strings such as “GET” or

7.3 Signature Generation Efficiency
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Figure 8: Time to construct signatures for HTTP and NetBl@&gdbased upon the number of packets in the data set.
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input format of our clustering module. HTTP session-lewghature generalization required 587 seconds at 200,000

packets.
Honeycomb Signature Exploit Deficiency

1. /MBADC root.exe?/ c+dir HTTP/ 1.0 |0D OA| Nimda | Redundarit

Host: www|OD OA|Connection: close|OD OA 0D|
2. Jroot.exe?/ c+dir HTTP/ 1. 0/0D OA|Host: www|OD OA

Connection: close|OD OA 0D
1. SEARCH / HTTP/1.1| 0D OA| Host: 128.1 WeDbDAV | Restrictivé
1. |0D OA|Connection: Keep-Alive|lOD OA 0D None Benign
2. HITP /1

Table 7: Example signatures produced by Honeycomb on an HFEEE with 126 connections.

“HTTP” that are clearly impractical and just happened

to be the longest common substring between unrelated
sessions. Communication with the Honeycomb author
revealed these were part of normal operation and the
typical way to suppress these are to whitelist signatures
smaller than a certain length. There were also much

3. Honeycomb signatures are often too restrictive. As
a result, we require several restrictive signatures to
capture all instances of a particular attack and this
could lead to false negatives. Nemean’s generation
of balanced signatures make them less susceptible
to false negatives.

longer strings in the signature set, such as proxy-headers

that also do not represent real attack signatures. It seems4.

that the only way to avoid these kinds of problems is
through manual grooming of signatures by an expert with
protocol knowledge. It should be noted that while Ne-
mean also requires a sanity check process, this affects
Honeycomb to a much greater extent because of its ten-
dency to generate a large number of signatures.

The summary of the comparison of signatures pro-
duced by Honeycomb versus those produced by Nemean
is as follows:

1. Honeycomb produces a large number of signature
that lack specificity due to pairwise connection
comparison. Nemean'’s algorithm generalizes from
a cluster that includes several connections resultin%
in a smaller, balanced signature set.

. Pairwise LCS employed by Honeycomb often A

Honeycomb’s lack of semantics awareness leads to
signatures consisting of benign substrings. These
lead to false positives and explains why Honeycomb
is unable to produce precise signatures for protocols
such as NetBIOS, MS-SQL and HTTP attacks, such
as Nimda, where the exploit content is a small por-
tion of the entire attack string. Nemean’s semantics
awareness addresses the issue of benign substrings.

We present examples of signatures that we obtained

from Honeycomb that demonstrate these weaknesses in

Ta

blelT.

Discussion

potential vulnerability of Nemean is its use of hon-

leads to redundant (non-identical) signatures, whicheynets as a data source. If attackers become aware of
would generate multiple alarms for the same attackthis, they could either attempt to evade the monitor or to
Again, Nemean’s algorithm generalizes from clus- pollute it with irrelevant traffic resulting in many unnec-
ters and its semantics awareness makes it far lessssary signatures. Evasion can be complicated by peri-

prone to redundant signature production.

odic rotation of the monitored address space. Intentional



pollutionis a problem for any automated signature genereped service normalizers (HTTP and NetBIOS/SMB).
ation method and we intend to address it in future work. Running Nemean over this data resulted in clusters for

Three issues may arise when deploying Nemean on a wide variety of worms and other exploits. Our evalu-
live network. First, live networks have real traffic, so we ation suggests that simple similarity metrics, such as the
cannot assume that all observed sessions are maliciousosine metric, can provide clusters with a high degree of
To produce signatures from live traffic traces containingprecision. We demonstrated the signature generation ca-
mixed malicious and normal traffic, we must first sep- pability of our system and discussed optimizations used
arate the normal traffic from the malicious. Flow-level by our automata learning module, such as structure ab-
anomaly detection or packet prevalence techniques [274traction and subsequence creation. We showed that Ne-
could help to identify anomalous flows in the complete mean generated accurate signatures with extremely low
traffic traces. Simple techniques that flag sources thafalse alarm rates for a wide range of attack types, includ-
horizontally sweep the address space, vertically scan sewag buffer overflows (Welchia), attacks with large diver-
eral ports on a machine, and count the number of rejectesdity (Nimda), and attacks for complicated protocols like
connection attempts could also be used. NetBIOS/SMB.

Second, Nemean must generate meaningful signatures In future work, we intend to hone the on-line capabili-
for Snort, Bro, or other NIDS. Snort utilizes an HTTP ties of Nemean and to assess its performance over longer
preprocessor to detect HTTP attacks and does not prgeriods of time in live deployments. We will also con-
vide support for regular expressions. Converting Ne-tinue to evaluate methods for clustering and learning with
mean signatures to Bro signatures is straightforwardhe objective of fine tuning the resulting signature sets.
since Bro allows for creation of policy scripts that sup-
port regular expressions.

Third, while it is not the focus of the current imple- 10  Acknowledgements
mentation, the limited manual selection required sug-
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Notes

1The first labor of the Greek hero Heracles was to rid the Nemean
plain of a fierce creature known as the Nemean Lion. Afteristathe
beast, Heracles wore its pelt as impenetrable armor in hisdlabors.

2A honeynet is a network of high-interaction honeypots.

3A negligible amount of non-malicious traffic on our honeyneis

caused by misconfigurations and was easily separated frerméti-
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(AusCERT2004Brisbane, Australia, May 2004.

N. Provos. A virtual honeypot framework. IBSENIX Security
SymposiumSan Diego, CA, August 2004.

cious traffic.

“Honeyd is a popular open-source low-interaction honeypot t
that simulates virtual machines over unused IP addres&spac

5The check for destinations avoids hotspot misconfiguration

6An observation which was confirmed through personal communi

cation with C. Kreibich, one of the authors of Honeycomb.

T. Ptacek and T. Newsham. Insertion, evasion and denisér-
vice: Eluding network intrusion detection. Technical rep&e-
cure Networks, January 1998.

R. F. Puppy. A look at Whisker's anti-IDS tactics.
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Signature 2 is a more general version of signature 1 whick-is r
dundant.

8The Host field should be ignored. The signature would miss at-
tacks from sources with prefixes other than 128.1.
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