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Abstract

Identifying new intrusions and developing effective sig-
natures that detect them is essential for protecting com-
puter networks. We presentNemean, a system for au-
tomatic generation of intrusion signatures from honeynet
packet traces. Our architecture is distinguished by its em-
phasis on amodular design frameworkthat encourages
independent development and modification of system
components andprotocol semantics awarenesswhich al-
lows for construction of signatures that greatly reduce
false alarms. The building blocks of our architecture
include transport and service normalization, intrusion
profile clustering and automata learning that generates
connection and session aware signatures. We demon-
strate the potential of Nemean’s semantics-aware, re-
silient signatures through a prototype implementation.
We use two datasets to evaluate the system: (i) a pro-
duction dataset for false-alarm evaluation and (ii) a hon-
eynet dataset for measuring detection rates. Signatures
generated by Nemean for NetBIOS exploits had a 0%
false-positive rate and a 0.04% false-negative rate.

1 Introduction

Computer network security is a multidimensional activ-
ity that continues to grow in importance. The preva-
lence of attacks in the Internet and the ability of self-
propagating worms to infect millions of Internet hosts
has been well documented [30, 34]. Developing tech-
niques and tools that enable more precise and more rapid
detection of such attacks presents significant challenges
for both the research and operational communities.

Network-security architectures often include network
intrusion detection systems (NIDS) that monitor packet
traffic between networks and raise alarms when mali-
cious activity is observed. NIDS that employmisuse-
detectioncompare traffic against a hand-built database
of signatures or patterns that identify previously docu-

mented attack profiles [3, 18]. While the effectiveness
of a misuse-detector is tightly linked to the quality of its
signature database, competing requirements make gen-
erating and maintaining NIDS signatures difficult. On
one hand, signatures should bespecific: they should only
identify the characteristics of specific attack profiles. The
lack of specificity leads to false alarms—one of the ma-
jor problems for NIDS today. For example, Sommer
and Paxson argue that including context, such as the vic-
tim’s response, in NIDS signatures reduces false alarm
rates [28]. On the other hand, signatures should begen-
eral so that they match variants of specific attack pro-
files. For example, a signature that does not account for
transport or application-level semantics can lead to false
alarms [6, 22, 32]. Thus, a balance between specificity
and generality is an important objective for signatures.

We present the design and implementation of an ar-
chitecture calledNemean1 for automatic generation of
signatures for misuse-detection. Nemean aims to create
signatures that result in lower false-alarm rates by bal-
ancing specificity and generality. We achieve this bal-
ance by includingsemantics awareness, or the ability to
understand session-layer and application-layer protocol
semantics. Examples of session layer protocols include
NetBIOS and RPC, and application layer protocols in-
clude SMB, TELNET, NTP and HTTP. Increasingly, pre-
processors for these protocols have become integral parts
of NIDS. We argue that these capabilities are essential for
automatic signature generation systems for the following
reasons:

1. Semantics awareness enables signatures to be gen-
erated for attacks in which the exploit is a small part
of the entire payload.

2. Semantics awareness enables signatures to be gen-
erated for multi-step attacks in which the exploit
does not occur until the last step.

3. Semantics awareness allows weights to be assigned
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to different portions of the payload (e.g., times-
tamps, sequence numbers, or proxy-cache headers)
based upon their significance.

4. Semantics awareness helps produce generalized
signatures from a small number of input samples.

5. Semantics awareness results in signatures that are
easy to understand and validate.

Our architecture contains two components: adata ab-
straction componentthat normalizes packets from indi-
vidual sessions and renders semantic context and asig-
nature generation componentthat groups similar ses-
sions and uses machine-learning techniques to gener-
ate signatures for each cluster. The signatures produced
are suitable for deployment in a NIDS [3, 18, 31]. We
address specificity by producing both connection-level
and session-level signatures. We address generality by
learning signatures from transport-normalized data and
consideration of application-level semantics that enables
variants of attacks to be detected. Therefore, we argue
that Nemean generatesbalancedsignatures. At present,
Nemean’s goal is to provide an automated mechanism
to build accurate signatures that keep pace with exploits
and network viruses released everyday and is not meant
to “automate real-time deployment” of signatures. We
discuss this issue in greater detail in Section 3.3.

The input to Nemean is a set of packet traces collected
from a honeynet deployed on an unused IP address space.
Any data observed at a honeynet [7]2 is anomalous, thus
mitigating both the problem of privacy and the problem
of separating malicious and normal traffic.3 We assume
that the honeynet is subject to the same attack traffic as
standard hosts and discuss the ramifications of this as-
sumption in Section 8.

To evaluate Nemean’s architecture, we developed a
prototype implementation of each component. This im-
plementation enables automated generation of signatures
from honeynet packet traces. We also developed a sim-
ple alert generation tool for off-line analysis, which com-
pares packet traces against signatures. While we demon-
strate that our current implementation is extremely effec-
tive, the modular design of the architecture enables any
of the individual components to be easily replaced. We
expect that further developments will tune and expand
individual components resulting in more timely, precise
and effective signatures. From a broader perspective,
we believe that our results demonstrate the importance
of Nemean’s capability in a comprehensive security ar-
chitecture. Section 3 describes the architecture and Sec-
tions 4 and 5 present our prototype implementation of
Nemean.

We performed two evaluations of our prototype. First,
we calculated detection and misdiagnosis counts using

packet traces collected at two unused /19 address ranges
(16K total IP addresses) from two distinct Class B net-
works allocated to our campus. We collected session-
level data for exploits targeting ports 80 (HTTP), 139
and 445 (NetBIOS/SMB). Section 6 describes the data
collection environment. We use this packet trace data as
input to Nemean to produce a comprehensive signature
set for the three target ports. In Section 7, we describe
the major clusters and the signatures produced from this
data set. Leave-out testing results indicate that our sys-
tem generates accurate signatures for most common in-
trusions, including Code Red, Nimda, and other popular
exploits. We detected 100% of the HTTP exploits and
99.96% of the NetBIOS exploits with 0 misdiagnoses.
Next, we validated our signatures by testing for false
alarms using packet traces of all HTTP traffic collected
from our department’s border router. Nemean produced
0 false alarms for this data set. By comparison, Snort [3]
generated over 1,000 false alarms on the same data set.
These results suggest that even with a much smaller sig-
nature set, Nemean achieves detectability rates on par
with Snort while identifying attacks with superior pre-
cision and far fewer false alarms.

2 Related Work

Sommer and Paxson [28] proposed adding connection-
level context to signatures to reduce false positives in
misuse-detection. Handleyet al. described transport-
level evasion techniques designed to elude a NIDS as
well as normalization methods that disambiguate data
before comparison against a signature [6]. Similar work
described common HTTP evasion techniques and stan-
dard URL morphing attacks [22]. Vignaet al. [32]
described several mutations and demonstrated that two
widely deployed misuse-detectors were susceptible to
such mutations. The works of Handleyet al. and Vigna
et al. highlight the importance of incorporating seman-
tics into the signature generation process.

Honeypots are an excellent source of data for intrusion
and attack analysis. Levinet al. described how honey-
pots extract details of worm exploits that can be analyzed
to generate detection signatures [13]. Their signatures
were generated manually.

Several automated signature generation systems have
been proposed. Table 1 summarizes the differences be-
tween Nemean and the other signature-generation sys-
tems. One of the first systems proposed was Honey-
comb developed by Kreibich and Crowcroft [11]. Like
Nemean, Honeycomb generated signatures from traffic
observed at a honeypot via its implementation as a Hon-
eyd [20]4 plugin. At the heart of Honeycomb is the
longest common substring(LCS) algorithm that looks for
the longest shared byte sequences across pairs of con-



Traffic source Generates Contextual Semantics Signature Generation Target
Signatures Aware Algorithm Attack Class

Nemean Honeypots Yes(Generates connection- and Yes (MSG) Clustering General
session- level signatures) and automata learning

Autograph DMZ No (Generates No (COPP) partitioning Worm
byte-level signatures) content blocks

Earlybird DMZ No (Generates No Measuring Worm
byte-level signatures) packet-content prevalence

Honeycomb Honeypots No (Generates No Pairwise LCS General
byte-level signatures) across connections

Figure 1: Comparison of Nemean to other signature-generation systems.

nections. However, since Honeycomb does not consider
protocol semantics, its pairwise LCS algorithm outputs
a large number of signatures. It is also frequently dis-
tracted by long irrelevant byte sequences in packet pay-
loads, thus reducing its capability for identifying attacks
with small exploit strings, exemplified in protocols such
as NetBIOS. We discuss this in greater detail in Sec-
tion 7.4.

Kim and Karp [10] described the Autograph system
for automated generation of signatures to detect worms.
Unlike Honeycomb and Nemean, Autograph’s input are
packet traces from a DMZ that includes benign traffic.
Content blocks that match “enough” suspicious flows
are used as input to COPP, an algorithm based on Ra-
bin fingerprints that searches for repeated byte sequences
by partitioning the payload into content blocks. Like
Honeycomb, Autograph does not consider protocol se-
mantics. We argue that such approaches, while attrac-
tive in principle, seem viable for a rather limited spec-
trum of observed attacks and are prone to false positives.
This also makes Autograph more susceptible to muta-
tion attacks [6, 22, 32]. Finally, unlike byte-level signa-
tures produced by Autograph, Nemean can produce both
connection-level and session-level signatures.

Another system developed to generate signatures for
worms, Earlybird [27], measured packet-content preva-
lence at a single monitoring point such as a network
DMZ. By counting the number of distinct sources and
destinations associated with strings that repeat often in
the payload, Earlybird distinguished benign repetitions
from epidemic content. Like Autograph, Earlybird also
produced byte-level signatures and was not aware of pro-
tocol semantics. Hence Earlybird has the same disadvan-
tages compared to Nemean as Autograph.

Pouget and Dacier [19] analyzed honeypot traffic to
identify root causes of frequent processes observed in a
honeypot environment. They first organized the observed
traffic based on the port sequence. Then, the data was
clustered using association-rules mining [1]. The result-
ing clusters were further refined using “phrase distance”.
Pouget and Dacier’s technique is not semantics aware.

Julisch [8] also clustered alarms for the purpose of dis-
covering the root-cause of an alarm. After clustering
the alarms, Julisch’s technique generated ageneralized

alarm for each cluster. Intuitively, generation of gener-
alized alarms is similar to the automata-learning step of
our algorithm. However, the goals and techniques used
in our work are different than the ones used by Julisch.

In [4], Christodorescuet al. presented a semantics-
aware methodology to detect malicious traits in x86 bi-
naries. Their approach is semantics aware because their
algorithm incorporates semantics of x86 instructions that
are executed. In contrast, Nemean incorporates seman-
tics of various protocols in parsing application level
packet content. Hence, the malware-detection algorithm
presented in [4] and the signature-generation algorithm
of Nemean consider semantics at different levels.

Anomaly detectionis an alternative approach for mali-
cious traffic identification in a NIDS. Anomaly detectors
construct a model of acceptable behavior and then flag
any deviations from the model as suspicious. Anomaly-
detection techniques for detecting port scans have been
explored in [9, 29]. Balancing specificity and generality
has proven extraordinarily difficult in anomaly-detection
systems, and such systems often have a high false-alarm
rate. This paper focuses on misuse-detection, and we will
not discuss anomaly-detecting techniques further.

3 Nemean Architecture

As shown in Figure 2, Nemean’s architecture is divided
into two components: the data abstraction component
and the signature generation component. The input to
Nemean is a packet trace collected from a honeynet.
Even when deployed on a small address space (e.g., a /24
containing 256 IP addresses), a honeynet can provide a
large volume of data without significant privacy or false
positives concerns.

3.1 Data Abstraction Component

The Data Abstraction Component (DAC) aggregates and
transforms the packet trace into a well-defined data struc-
ture suitable for clustering by a generic clustering mod-
ule without specific knowledge of the transport proto-
col or application-level semantics. We call these aggre-
gation unitssemi-structured session trees (SSTs). The
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Figure 2: Components and data flow description of the Nemean architecture.

components of the DAC can then be thought of in terms
of the data flow through the module as shown in Fig-
ure 2. While we built our own DAC module, in principle
it could be implemented as an extension to a standard
NIDS, such as a Bro policy script [18].

Transport normalizationdisambiguates obfuscations
at the network and transport layers of the protocol stack.
Our DAC reads packet traces through thelibpcap
library. This can either be run online or offline on
tcpdump traces. This step considers transport-specific
obfuscations like fragmentation reassembly, duplicate
suppression, and checksums. We describe these in
greater detail in Section 4.

Theaggregationstep groups packet data between two
hosts into sessions. The normalized packet data is first
composed and stored asflows. Periodically, the DAC
expires flows and converts them intoconnections. A
flow might be expired for two reasons: a new connec-
tion is initiated between the same pair of hosts and ports
or the flow has been inactive for a time period greater
than a user defined timeout (1 hour in our experimental
setup). Flows are composed of packets, but connections
are composed of request-response elements. Each con-
nection is stored as part of asession. A session is a se-
quence of connections between the same host pairs.

Service-specific information in sessions must be nor-
malized before clustering for two reasons. First, clas-
sification of sessions becomes more robust and cluster-
ing algorithms can be independent of the type of ser-
vice. Second, the space of ambiguities is too large to pro-
duce a signature for every possible encoding of attacks.
By decoding service-specific information into a canon-
ical form, normalization enables generation of a more
compact signature set. A detection system must then
first decode attack payloads before signature matching.
This strategy is consistent with that employed by popu-
lar NIDS [3]. We describe the particular normalizations
performed in greater detail in Section 4.

The DAC finally transforms the normalized sessions
into XML-encoded SSTs suitable for input to the clus-
tering module. This step also assigns weights to the

elements of the SST to highlight the most important
attributes, like the URL in an HTTP request, and de-
emphasize the less important attributes, such as en-
crypted fields and proxy-cache headers in HTTP packets.
Nemean’s current weight assignment is simply based on
our expert knowledge of protocols and prevalent attacks.
It should be noted that the weights are not tuned to reflect
a specific attack, but are meant to be sufficiently general
and reflect high level behavior drawn from a large class
of attacks. We expect that these might need to periodi-
cally adjusted to accommodate significant changes in ex-
ploit patterns.

3.2 Signature-Generation Component

The clustering module groups sessions and connections
with similar attack profiles according to a similarity met-
ric. We assume that sessions grouped together will corre-
spond to a single attack type or variants of a well-known
attack while disparate clusters represent distinct attacks
or attack variants that differ significantly from some orig-
inal attack. Effective clustering requires two properties
of the attack data. First, data that correspond to an attack
and its variants should be measurably similar. A clus-
tering algorithm can then classify such data as likely be-
longing to the same attack. Second, data corresponding
to different attacks must be measurably dissimilar so that
a clustering algorithm can separate such data. We be-
lieve that the two required properties are unlikely to hold
for data sets that include significant quantities of non-
malicious or normal traffic. Properties of normal traffic
vary so greatly as to make effective clustering difficult
without additional discrimination metrics. Conversely,
malicious data contains identifiable structure even in the
presence of obfuscation and limited polymorphism. Ne-
mean’s use of honeynet data enables a reasonable num-
ber of meaningful clusters to be produced. While each
cluster ideally contains the set of sessions or connec-
tions for some attack, we also presume that this data will
contain minor obfuscations, particularly in the sequential
structure of the data, that correspond to an attacker’s at-



tempts to evade detection. These variations provide the
basis for our signature generation component.

The automata learning module constructs an attack
signature from a cluster of sessions. A generator is im-
plemented for a target intrusion detection system and
produces signatures suitable for use in that system. This
component has the ability to generate highly expressive
signatures for advanced systems, such as regular expres-
sion signatures with session-level context that are suit-
able for Bro [18, 28]. Clusters that contain many non-
uniform sessions are of particular interest. These differ-
ences may indicate either the use of obfuscation transfor-
mations to modify an attack or a change made to an exist-
ing attack to produce a new variant. Our signature gen-
eration component generalizes these transformations to
produce a signature that is resilient to evasion attempts.
Generalizations enable signatures to match malicious se-
quences that were not observed in the training set.

3.3 Current Limitations

New worms, viruses, and variants of existing malware
appear in the Internet everyday [16], and standard col-
lections of signatures are not able to keep pace. Thus,
the immediate goal for Nemean is to address this gap by
automating signature generation. Nemean does not ad-
dress automating the real-time deployment of signatures.
Given our emphasis on accurate, efficient signatures and
not on timeliness, the current Nemean design includes
the following simple manual selection process:
• Selecting either or both of the generated session and

connection-level signatures for a given cluster. For multi-
step attacks such a Welchia, there is a benign connection
(a GET / request) that precedes the attack sequence. In
this case, the operator simply chooses either the connec-
tion signatures for the following steps of Welchia and/or
the session signature, but whitelists the signature corre-
sponding to the benign first step. We provide results from
both connection and session-level signatures for each at-
tack in our evaluation but remove the benign connection
corresponding to Welchia. This was not an issue for other
attacks.
• A sanity check to ensure that a signature corresponds

to an attack cluster and not a misconfiguration or inten-
tional data pollution. While this is not an issue in our
evaluation dataset, we consider this necessary for an op-
erational deployment. One of the interesting aspects of
our semantics-aware approach is that it results in signa-
tures with semantic context that are easily parsed. Mis-
configuration could likely be separated by picking from
clusters with a large number of sources sent to a large
number of destinations5. However, fully-automating Ne-
mean and making it immune to data pollution remains an
area of future work.

One reason for this requirement is that unlike systems
such as EarlyBird and Autograph, the target of attacks
we seek to address is much broader than flash worms.
It includes everyday targeted attacks, viruses spreading
through network shares and botnet sweeps that occur be-
low the noise thresholds and look similar to misconfig-
uration. We expect intentional data pollution through
large botnets to be an issue for aforementioned systems
as well.

4 DAC Implementation

We have implemented prototypes of each Nemean com-
ponent. While the Nemean design provides flexibility
to handle any protocol, we focus our discussion on two
specific protocol implementations, HTTP (port 80) and
NetBIOS/SMB (ports 139 and 445), since these two ser-
vices exhibit great diversity in the number and types of
exploits.
• Transport-Level Normalization: Transport-level

normalization resolves ambiguities introduced at the net-
work (IP) and transport (TCP) layers of the protocol
stack. We check message integrity, reorder packets as
needed, and discard invalid or duplicate packets. The
importance of transport layer normalizers has been ad-
dressed in the literature [6, 21]. Building a normalizer
that perfectlyresolves all ambiguities is a complicated
endeavor, especially since many ambiguities are operat-
ing system dependent. We can constrain the set of nor-
malization functions for two reasons. First, we only con-
sider traffic sent to honeynets, so we have perfect knowl-
edge of the host environment. This environment remains
relatively constant. We do not need to worry about am-
biguities introduced due to DHCP or network address
translation (NAT). Second, Nemean’s current implemen-
tation analyzes network traces off-line which relaxes its
state holding requirements and makes it less vulnerable
to resource-consumption attacks.

Attacks that attempt to evade a NIDS by introducing
ambiguities to IP packets are well known. Examples of
such attacks include simpleinsertion attacksthat would
be dropped by real systems but are evaluated by NIDS,
andevasion attacksthat are the reverse [21]. Since Ne-
mean obtains traffic promiscuously via a packet sniffer
(just like real a NIDS), these ambiguities must be re-
solved. We focus on three common techniques used by
attackers to elude detection.

First, an invalid field in a protocol header may cause
a NIDS to handle the packet differently than the desti-
nation machine. Handling invalid protocol fields in IP
packets involves two steps: recognizing the presence of
the invalid fields and understanding how a particular op-
erating system would handle them. Our implementation
performs some of these validations. For example, we



1. Build the multisetC of all normalized connections.
2. ClusterC into exclusive partitionsCL = {ξi}.
3. Produce a connection-level signatureφξ for each cluster by generalizing cluster data.
4. Build the multisetS′ of all sessions. Each sessions′ ∈ S′ is a sequence of identifiers denoting the connection
clusters that contain each connection in the session.
5. ClusterS′ into partitionsΨ = {ψi}.
6. Produce a session-level signatureLψ for each cluster, generalizing the observed connection orderings.
7. Produce a NIDS signature. The signature is a hierarchical automaton where each transition in the session-level
signature requires that the connection-level signature for the identified connection cluster accepts.

Figure 3: Multi-level Signature Generalization (MSG) algorithm. Section 5 provides more complete details.

drop packets with an invalid IP checksum or length field.

Second, an attacker can use IP fragmentation to
present different data to the NIDS than to the desti-
nation. Fragmentation introduces two problems: cor-
rectly reordering shuffled packets and resolving over-
lapping segments. Various operating systems address
these problems in different ways. We adopt thealways-
favor-old-datamethod used by Microsoft Windows. A
live deployment must either periodically performactive-
mapping[26] or match rules with passive operating sys-
tem fingerprinting. The same logic applies for frag-
mented or overlapping TCP segments.

Third, incorrect understanding of the TCP Control
Block (TCB) tear-down timer can cause a NIDS to im-
properly maintain state. If it closes a connection too
early it will lose state. Likewise, retaining connections
too long can prevent detection of legitimate later connec-
tions. Our implementation maintains connection state for
an hour after session has been closed. However, sessions
that have been closed or reset are replaced earlier if a new
connection setup is observed between the same host/port
pairs.

• Service-Level Normalization: We provide a brief
discussion of the implementation of service normalizers
for two popular protocols: HTTP and NetBIOS/SMB.

Ambiguities in HTTP sessions are primarily intro-
duced due to invalid protocol parsing or invalid decod-
ing of protocol fields. In particular, improper URL de-
coding is a point of vulnerability in many intrusion de-
tection systems. Modern web servers allow substitution
of encoded characters for ASCII characters in the URL
and are often exploited as means for evasion of com-
mon NIDS signatures. Our DAC correctly decodes sev-
eral observed encodings such as hex encoding and its
variants, UTF-8 encoding, bare-byte encoding, and Mi-
crosoft Unicode encoding. Regardless of its encoding,
the DAC presents a canonical URL in ASCII format to
the clustering module. Currently, our implementation
does not handle all obvious HTTP obfuscations. For ex-
ample, we do not process pipelined HTTP/1.1 requests.
Such requests need to be broken into multiple connec-

tions for analysis. We plan to incorporate this function-
ality into our system in the future.

NetBIOS is a session-layer service that enables ma-
chines to exchange messages using names rather than
IP addresses and port numbers. SMB (Server Message
Block) is a transport-independent protocol that provides
file and directory services. Microsoft Windows ma-
chines use NetBIOS to exchange SMB file requests. Net-
BIOS/SMB signature evasion techniques have not been
well studied, possibly due to the lack of good NIDS rules
for their detection. A full treatment of possible Net-
BIOS/SMB ambiguities exceeds the scope of this paper.

5 Multi-level Signature Generalization

We designed theMulti-level Signature Generalization
(MSG)algorithm to automatically produce signatures for
normalized session data. The signatures must balance
specificity to the exploits observed in the data with gen-
erality, the ability to detect attack variants not previously
observed. We use machine-learning algorithms, includ-
ing clustering and finite state machine generalization, to
produce signatures that are well-balanced.

Due to the hierarchical nature of the session data, we
construct signatures for connections and sessions sepa-
rately. First, we cluster all connections irrespective of the
sessions that contain them and generalize each cluster to
produce a signature for each connection cluster. Second,
we cluster sessions based upon their constituent connec-
tions and then generalize the clusters. Finally, we com-
bine the session and connection signatures to produce
a hierarchical automaton signature, where each connec-
tion in a session signature must match the correspond-
ing connection signature. Figure 3 presents a high-level
overview of the algorithm.

Steps 1 and 2: Generating connection clusters.Let
S be the multiset of normalized sessions produced by the
data abstraction component. Denote each sessions ∈ S
as an ordered list of connections:s = c1.c2. · · · .cns

. Let
Conn(s) = {ci}i=1...ns

be the multiset of connections
in s andC =

⊎
s∈S Conn(s) be the multiset of all con-



nections in the normalized data, where⊎ denotes multi-
set union. LetCL = {ξi}i=1...m be anexclusive clus-
tering of C into m clustersξi. Clustering inserts every
element into a partition, so

⊎m
i=1

ξi = C. Exclusive clus-
tering requires that no partitions overlap, soξi ∩ ξj = ∅
for i 6= j. It immediately follows that there exists a well-
defined functionΓ : C → CL defined asΓ(c) = ξ if
c ∈ ξ that returns the cluster containingc. Section 5.1
presents the implementation of the clustering algorithm.

Step 3: Building connection-level signatures.
Learning algorithms generalize the data in each cluster
to produce signatures that match previously unseen con-
nections. LetΣ be the alphabet of network events com-
prising connection data. A learning algorithm is a func-
tionLearn : P(Σ∗) → P(Σ∗) that takes a set of strings
φ̂ξ =

⋃
c∈ξ c and returns a regular languageφξ ⊇ φ̂ξ.

Section 5.2 presents the generalization algorithms used
in our work. We recognizeφξ with a regular automaton
that is the connection-level signature for clusterξ.

Steps 4 and 5: Generating session clusters.Rewrite
the existing sessions to produce a new setS′.

S′ =
⊎

s=c1.··· .cns
∈S

[
s′ = Γ(c1). · · · .Γ(cns

)
]

From an implementation perspective, eachΓ(ci) in a
rewritten session is simply an integer index indicating
which connection cluster contains the original connec-
tion. Intuitively, we allow any connectionci compris-
ing part of sessions to be replaced with any connection
c′i ∈ Γ(c1) identified by clustering as similar. LetΨ be a
clustering ofS′.

Steps 6 and 7: Building session-level signatures.As
with connection-level generalization, construct a regu-
lar languageLψ for each clusterψ ∈ Ψ that accepts
the sessions inψ and variants of those sessions. Again,
we recognize the language with a finite automaton. The
connection cluster identifiersΓ(c) label transitions in the
session-level automata. The resulting signature is thus
hierarchical: traversing a transition in the session signa-
ture requires connection data matching the signature for
the connection cluster.

5.1 Star Clustering Implementation

We cluster connections and sessions using the same al-
gorithm. We implemented the on-line star clustering al-
gorithm, which clusters documents based upon a similar-
ity metric [2]. This algorithm has advantages over more
commonly-known techniques, such as thek-means fam-
ily of algorithms [14]. For example, star clustering is ro-
bust to data ordering. Conversely,k-means produces dif-
ferent clusters depending upon the order in which data is
read. Moreover, we need not knowa priori how many
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Figure 4: Welchia session level signature. For brevity,
we label a single transition with both a request and a re-
ply.

clusters are expected. Although it seems suitable, we
make no claims that star is the optimal clustering algo-
rithm for our purposes, and we expect to consider other
algorithms in future work.

Star clustering builds astar coverover a partially-
connected graph. Nodes in the graph each represent one
or more items with semantically equivalent data. We ar-
bitrarily choose one item at each node to be therepresen-
tative item. A link exists between two nodes if the sim-
ilarity between the corresponding representative items is
above a designated threshold. Astar clusteris a collec-
tion of nodes in the graph such that each node connects
to the cluster center node with an edge. A star cover is
a collection of star clusters covering the graph so that
no two cluster centers have a connecting edge. In the
original algorithm, a non-center node may have edges to
multiple center nodes and thus appear in multiple clus-
ters. We implemented a modified algorithm that inserts
a node only into the cluster with which it has strongest
similarity to produce an exclusive clustering.

Item similarity determines how edges are placed in the
graph. We implemented two different similarity metrics
to test sensitivity:cosine similarity[2] and hierarchi-
cal edit distance. The cosine similarity metric has lower
computational complexity than hierarchical edit distance
and was used for our experiments in Section 7.

Cosine similarity computes the angle between two
vectors representing the two items under comparison.
For each connectionA, we build a vectorDA giving the
distribution of bytes, request types, and response codes
that appeared in the network data. For sessions, the vec-
tor contains the distribution of connection cluster iden-
tifiers. If θ is the angle between vectorsDA andDB

representing itemsA andB, then:

cos θ =
DA ·DB

‖DA‖ ‖DB‖

where ‘·’ represents inner product and‖v‖ is the vector
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Figure 5: Nimda, Windows Media Player Exploit, and Deloder connection level signatures. The “*” transitions in the
Nimda signature match anyσ ∈ Σ∗.

norm. All vector values are non-negative, so0 ≤ θ ≤
π/2 and1 ≥ cos θ ≥ 0. The similarity between items is
the valuecos θ, with cos θ = 1 indicating equality.

Hierarchical-edit distance is a variation on the tradi-
tional edit-distance metric [2] which measures the cost of
transforming one string into another using insert, delete,
and replace operations. In contrast to the traditional edit-
distance metric, the hierarchical-edit distance metric pre-
serves connection ordering information within each ses-
sion and differentiates between the various data fields
within each connection. We believed these properties of
the hierarchical-edit distance metric would make it a bet-
ter similarity metric for clustering than the cosine metric.
Our experiments revealed that while both distance met-
rics work quite well, cosine is less sensitive to the thresh-
old parameters used in partitioning clusters. Hence, we
use cosine distance in this paper’s experiments and de-
scribe the hierarchical edit distance metric in the ex-
panded technical report [35].

Using a similarity metric, we construct the partially-
connected similarity graph. An edge connects a pair of
nodes if the similarity of the representative sessions is
above a threshold, here 0.8. We then build a star cover
over the similarity graph. Each star cluster is a group of
similar sessions that presumably are variants of the same
exploit. The cluster set is then passed to the generaliza-
tion module to produce the automaton signature.

5.2 Cluster Generalization and Signature
Generation

Signature generation devises a NIDS signature from a
cluster of similar connections or sessions. We generalize
variations observed in a cluster’s data. Assuming effec-
tive clustering, these variations correspond to obfusca-
tion attempts or differences among variants of the same
attack. By generalizing the differences, we produce a
resilient signature that accepts data not necessarily ob-
served during the training period.

The signature is a finite state automaton. We first con-
struct a probabilistic finite state automaton (PFSA) ac-
cepting exactly the event sequences contained in a clus-
ter, with edge weights corresponding to the number of
times an edge is traversed when accepting all cluster data
exactly once. PFSA learning algorithms [24] then use
stochastic measures to generalize the data variations ob-
served in a cluster. In this work, we generalized HTTP
connection-level signatures with thesk-stringsmethod
[24], an algorithm that merges states when they are
probabilistically indistinguishable. Session-level clus-
ters were generalized withbeam search[17]. Our algo-
rithm uses both sk-strings andsimulated beam anneal-
ing [23] to generalize NetBIOS signatures. These gen-
eralizations add transitions into the state machine to ac-
commodate such variations as data reordering and alter-
ation of characters in an attack string. Likewise, repeated
strings may be generalized to allow any number of re-
peats.

We further generalize signatures at points of high data



variability. Subsequence creationconverts a signature
that matches a sequence of session data into a signa-
ture that matches a subsequence of that data by insert-
ing “gaps” that accept any sequence of arbitrary sym-
bols. We insert gaps whenever observing four or more
patterns with a common prefix, common suffix, and one
dissimilar data element. For example, letA,B ∈ Σ∗

andv, w, x, y ∈ Σ. If the signature acceptsAvB, AwB,
AxB, andAyB, then we replace those four sequences
with the regular expressionA[.∗]B. Intuitively, we have
identified a portion of the signature exhibiting large vari-
ation and allow it vary arbitrarily in our final signature.
Nemean’s generalized signatures can thus detect varia-
tions of observed attacks.

Figure 4 shows a session-level signature for Welchia, a
worm that exploits a buffer overflow. Nemean’s general-
ization produced a signature that matches a wide class of
Welchia scans without losing the essential buffer over-
flow information characteristic to the worm. Figure 5
shows connection-level signatures for Nimda, a Win-
dows Media Player exploit, and the Deloder NetBIOS
worm. The connection-level Nimda signature is an ex-
ample of a signature for an exploit with high diversity. In
particular, note that the subsequence creation generaliza-
tion allows this signature to match a wide class of Nimda
attacks. The Windows Media Player exploit is represen-
tative of an HTTP exploit where the size of the exploit
URL is small. Previous signature generation techniques,
such as Honeycomb, fail for small URLs. The Deloder
signature demonstrates the capability of Nemean to gen-
erate signatures for exploits using more complex proto-
cols like NetBIOS/SMB.

6 Data Collection

The data used for our evaluation comes from two
sources: (i) honeypot packet traces collected from un-
used address space that we used to build signatures
and evaluate the detection capability of Nemean and
(ii) packet traces collected from our departmental border
router that we used to test the resilience of our signatures
to false positives.
• Production Traffic: Obtaining packet traces for

live network traffic is a challenge due to privacy con-
cerns. While network operators are amenable to sharing
flow level summaries, anonymizing payloads remains an
unsolvable problem and as such its hard to obtain packet
traces with application payloads.

We were able to obtain access to such data from our
department’s border router. The network is a sparsely
allocated, well managed /16 network with approximately
24 web servers and around 400 clients. We were able
to passively monitor all outgoing and incoming HTTP
packets on this network for an 8 hour period. Table 1

provides a summary of this dataset.
• Honeypot Traffic: Traffic from two unused /19

IP address blocks totaling 16K addresses from address
ranges allocated to our university was routed to our
honeynet monitoring environment. To normalize the
traffic received by our infrastructure a simple source-
filtering rule was employed: one destination IP address
per source. Connections to additional destination IP ad-
dresses were dropped by the filter.

These filtered packets were subsequently routed to one
of two systems based upon type-of-service. HTTP re-
quests were forwarded to a fully patched Windows 2000
Server running on VMware. The NetBIOS/SMB traffic
was routed to a virtual honeypot system similar to Hon-
eyd. We routed NetBIOS/SMB packets to an active re-
sponder masquerading as an end host offering NetBIOS
services rather than to the Windows 2000 Server for two
reasons [33]. First, the fully patched Windows 2000
Server often rejected or disconnected the session before
we had enough information to classify the attack vector
accurately. This could be due to invalid NetBIOS names
or user/password combinations. Our active responder ac-
cepted all NetBIOS names and user/password combina-
tions. Second, Windows 2000 servers limit the number
of simultaneous network share accesses which also in-
hibit connection requests from succeeding.

We collected two sets of traces, a short term training
set (2 days) and a longer testing set (7 days) to evaluate
Nemean detection capability as summarized in Table 2.
The reduction in the volume of port 80 traffic moving
from the 2-day to the 5-day dataset is not uncommon in
honeynets due to the bursty nature of this traffic often
associated with botnet activity [16].

7 Evaluation

We tested the effectiveness of Nemean’s HTTP and Net-
BIOS signatures and examined the session clusters used
to produce these signatures. Section 7.1 reveals the major
classes of attacks in our recorded data and quantitatively
measures the clusters produced by the clustering mod-
ule. We performed an evaluation of the detection and
false positive rates of Nemean’s signatures and compare
our results with Snort’s HTTP capabilities. Finally, we
provide a qualitative discussion of our experience with
Honeycomb.

7.1 Evaluating the Clusters

• HTTP Clusters: Figure 6 provides an overview of
the major HTTP clusters in our learning data set. Web-
DAV scans account for the majority of the attacks in
our data set. WebDAV is a collection of HTTP exten-
sions that allow users to collaboratively edit and man-



Data Flow No. Clients No. Servers No. Sessions No. Connections
Internal clients -> External servers 380 4,422 16,826 106,456
External clients -> Internal servers 18,634 24 28,491 87,545

Table 1: Production data summary (HTTP: 8 hours, 16GB).

Learning Data (2 days) Test data (7 days)
Port Packets Sources Connections Sessions Packets Sources Connections Sessions
80 278,218 10,859 25,587 12,545 100,291 12,925 12,903 5,172
139 192,192 1,434 3,415 1,657 6,764,876 539,334 1,662,571 24,747
445 1,763,276 14,974 35,307 19,763 6,661,276 383,358 1,171,309 37,165

Table 2: Honeypot data summary.

age documents in remote web servers. Popular WebDAV
methods used in exploits include OPTIONS, SEARCH,
and PROPFIND and are supported by Microsoft IIS web
servers. Scans for exploits of WebDAV vulnerabilities
are gaining in popularity and are also used by worms
like Welchia. Nimda attacks provide great diversity in
the number of attack variants and HTTP URL obfusca-
tion techniques. These attacks exploit directory traver-
sal vulnerabilities on IIS servers to accesscmd.exe or
root.exe. Figure 5 contains a connection-level signa-
ture for Nimda generated by Nemean. Details of other
observed exploits, such as Frontpage, web crawlers and
open-proxy, are provided in [35].
• NetBIOS Clusters: Worms that are typically better

known as email viruses dominate the NetBIOS clusters.
Many of these viruses scan for open network shares and
this behavior dominated the observed traffic. They can
be broadly classified into three types:

1. Hidden and open share exploits: This includes
viruses, including LovGate [5], NAVSVC, and De-
loder [12], that use brute force password attacks to look
for open folders and then deposit virus binaries in startup
folders.

2. MS-RPC query exploits: Microsoft Windows pro-
vides the ability to remotely access MSRPC services
through named pipes such asepmapper (RPC End-
point Mapper),srvsvc (Windows Server Service), and
samr (Windows Security Account Manager). Viruses
often connect to the MSRPC services as guest users and
then proceed to query the system for additional informa-
tion that could lead to privileged user access. For exam-
ple, connecting to thesamr service allows the attacker
to obtain an enumeration of domain users,

3. MS-RPC service buffer overflow exploits:The most
well-known of these exploits are theepmapper ser-
vice which allows access to the RPC-DCOM exploit [15]
used by Blaster and the more recentlsarpc exploit
used by Sasser [25]. We provide more details in the tech-
nical report [35].
• Cluster Quality: We quantitatively evaluated the

quality of clusters produced by the star clustering algo-
rithm using two common metrics:precisionandrecall.
Precision is the proportion of positive matches among all
the elements in each cluster. Recall is the fraction of pos-
itive matches in the cluster among all possible positive
matches in the data set. Intuitively, precision measures
the relevance of each cluster, while recall penalizes re-
dundant clusters.

We first manually tagged each session with conjec-
tures as shown in Figure 6. Conjectures identified ses-
sions with known attack types and it is possible for a
session to be marked with multiple conjectures. It is im-
portant to note that these conjectures were not used in
clustering and served simply as evaluation aids to esti-
mate the quality of our clusters.

The conjectures allow us to computeweighted preci-
sion (wp)and weighted recall (wr)for our clustering.
As sessions can be tagged with multiple conjectures, we
weight the measurements based upon the total number
of conjectures at a given cluster of sessions. We compute
the valueswp andwr as follows: LetC be the set of all
clusters,J be the set of all possible conjectures, andcj
be the set of elements in clusterc labeled with conjecture
j. Then |cj | is the count of the number of elements in
clusterc with conjecturej.
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CLUSTER 1: 9175 Unique client IPs, 10515 Sessions
Identified as Options : 10515 (100%)

CLUSTER 2: 597 Unique client IPs, 735 Sessions
Identified as Nimda : 735 (100%)
Identified as Code Blue : 15 ( 2%)

CLUSTER 4: 742 Unique client IPs, 808 Sessions
Identified as Welchia : 808 (100%)
Identified as Search : 794 ( 98%)

CLUSTER 3: 201 Unique client IPs, 226 Sessions
Identified as Search : 99 ( 44%)
Identified as Web Crawler : 5 ( 2%)

CLUSTER 5: 51 Unique client IPs, 52 Sessions
Identified as Nimda : 52 (100%)

CLUSTER 17: 47 Unique client IPs, 102 Sessions
Identified as Propfind : 102 (100%)
Identified as Options : 102 (100%)

CLUSTER 8: 20 Unique client IPs, 20 Sessions
Identified as Nimda : 20 (100%)

CLUSTER 7: 11 Unique client IPs, 11 Sessions
Identified as Windows Media Exploit: 11 (100%)

CLUSTER 6: 10 Unique client IPs, 10 Sessions
Identified as Search : 10 (100%)

CLUSTER 9: 8 Unique client IPs, 8 Sessions
Identified as Code Red Retina : 8 (100%)
Identified as Search : 5 ( 63%)

CLUSTER 11: 6 Unique client IPs, 6 Sessions
Identified as Propfind : 6 (100%)
Identified as Options : 6 (100%)

CLUSTER 19: 5 Unique client IPs, 5 Sessions
Identified as Propfind : 5 (100%)
Identified as Options : 5 (100%)

CLUSTER 12: 3 Unique client IPs, 3 Sessions
Identified as Propfind : 3 (100%)
Identified as Options : 3 (100%)

CLUSTER 10: 2 Unique client IPs, 2 Sessions
Identified as FrontPage Exploit : 2 (100%)

CLUSTER 16: 2 Unique client IPs, 3 Sessions
Identified as Kazaa : 3 (100%)

CLUSTER 13: 1 Unique client IPs, 2 Sessions
Identified as Web Crawler : 1 ( 50%)

CLUSTER 14: 1 Unique client IPs, 1 Session
Identified as Real Media Player : 1 (100%)

CLUSTER 15: 1 Unique client IPs, 1 Session
Identified as Propfind : 1 (100%)
Identified as Options : 1 (100%)

CLUSTER 18: 1 Unique client IPs, 1 Session
Identified as Open Proxy : 1 (100%)

Figure 6: HTTP Port 80 cluster report.

In the formulas above,
∑

k∈J |ck| ≥ |c| and∑
k∈J |Ck| ≥ |C| as sessions may have multiple conjec-

tures. Figure 7 presents graphs indicating how precision
and recall vary with the clustering similarity threshold.
Recall that in the star clustering algorithm, an edge is
added between two sessions in the graph of all sessions
only if their similarity is above the threshold. Although
less true for NetBIOS data, the similarity threshold does
not have a significant impact on the quality of the result-
ing clustering. Clustering precision drops as the thresh-
old nears 0 because the star graph becomes nearly fully
connected and the algorithm cannot select suitable clus-
ter centers. Recall that no cluster centers can share an
edge, so many different clusters merge together at low
threshold values. At the clustering threshold used in
our experiments (0.8), precision scores were perfect or
nearly perfect.

7.2 Signature Effectiveness

Intrusion detection signatures should satisfy two basic
properties. First, they should have a high detection rate;
i.e., they should not miss real attacks. Second, they
should generate few false alarms. Our results will show
that Nemean has a 99.9% detection rate with 0 false
alarms. Two additional metrics evaluate the quality of

the alarms raised by an IDS. Precision empirically evalu-
ates alarms by their specificity to the attack producing the
alarm. Noise level counts the number of alarms per inci-
dent and penalizes redundant alarms. In these tests, we
use Snort as a baseline for comparison simply because
that is the most widely adopted intrusion detection sys-
tem. We used the latest version of Snort available at the
time, Snort-2.1.0 with the HTTP pre-processor enabled,
and its complete associated ruleset. In some sense, Snort
is the strawman because of its well-known susceptibility
to false-positives. We use this because of our inability to
compare with Honeycomb (see Section 7.4) and because
there is no source code publicly available for Earlybird
or Autograph [10,27].
• 99.9% Detection Rate:We evaluated the detection

rate of Nemean signatures usingleave-out testing, a com-
mon technique in machine learning. We used the hon-
eynet data set described in Table 2 to automatically cre-
ate connection-level and session-level signatures for the
clusters identified in a training data set. We measured
the detection rate of the signatures by running signature
matching against data in a different trace collected from
the same network (see Table 2).

Connection-level HTTP signatures detected 100.0%
of the attacks present, and the somewhat more restric-
tive session-level signatures detected 97.7%. We did not
evaluate session-level signatures for Nimda because the
extreme variability of Nimda attacks made such signa-
tures inappropriate. Table 3 shows the number of occur-
rences of the HTTP attacks and the number detected by
Nemean signatures. For comparison, we provide detec-
tion counts for Snort running with an up-to-date signa-
ture set. Snort detected 99.7% of the attacks.

The detection rate of NetBIOS attacks is similarly very
high: we detected 100.0% of the attacks present. Ta-
ble 4 contains the detection rates for NetBIOS/SMB sig-
natures. Snort provides only limited detection capabil-
ity for NetBIOS attacks, so a comparison was infeasible.
All signatures were connection-level because the defin-
ing characteristic of each attack is a string contained in a
single connection. The structure of connections within a
session is irrelevant for such attacks.
• Zero misdiagnoses or false alarms:We qualify in-

correct alerts on the honeynet data as misdiagnoses. Al-
though not shown in Table 3, all Nemean HTTP signa-
tures generated 0 misdiagnoses on the honeynet trace.
Misdiagnosis counts for NetBIOS/SMB on the honeynet
data were also 0, as shown in Table 4. We also measured
false alarm counts of Nemean HTTP signatures against
16GB of packet-level traces collected from our depart-
ment’s border router over an 8 hour time period. The
traces contained both inbound and outbound HTTP traf-
fic. We evaluated both Nemean and Snort against the
dataset.
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Figure 7: Effect of clustering similarity threshold upon weighted precision and weighted recall. Note that the y-axis
begins at 0.6.

Nemean
Signature Present Conn Sess Snort

Options 1172 1172 1160 1171
Nimda 496 496 N/A 495
Propfind 229 229 205 229
Welchia 90 90 90 90
Win Media Player 89 89 89 89
Code Red Retina 4 4 4 0
Kazaa 2 2 2 2

Table 3: Session-level HTTP signature detection counts
for Nemean signatures and Snort Signatures. We show
only exploits occurring at least once in the training and
test data.

Signature Present Detected Misdiagnoses
Srvsvc 19934 19930 0
Samr 8743 8741 0
Epmapper 1263 1258 0
NvcplDmn 62 61 0
Deloder 30 30 0
LoveGate 1 0 0

Table 4: Detection and misdiagnosis counts for
connection-level Nemean NetBIOS signatures. This data
includes both port 139 and port 445 traffic.

Nemean results are highly encouraging: 0 false
alarms. Snort generated 88,000 alarms on this dataset,
almost all of which were false alarms. The Snort false
alarms were produced by a collection of overly general
signatures. In fairness, we note that Snort had a larger
signature set which made it more prone to false posi-
tives. Our Snort signature set included about 2200 sig-
natures, whereas Nemean’s database of HTTP and Net-
BIOS signatures contained only 22 connection-level and
7 session-level signatures. Snort has a high signature
count because it is meant to detect classes of attacks be-

Signature No. Alerts
Non-RFC HTTP Delimiter 32246
Bare Byte Unicode Encoding 28012
Apache Whitespace (TAB) 9950
WEB-MISC /doc/ Access 9121
Non-RFC Defined Character 857
Double-Decoding Attack 365
IIS Unicode Codepoint Encoding 351

Table 5: Snort false alarm summary for over 45,000
HTTP sessions collected from our department’s border
router.

Alert Category No. Signatures No. Alerts
WEB-MISC 13 466
WEB-CGI 25 919
WEB-IIS 8 164
WEB-ATTACKS 6 15
WEB-PHP 4 18
WEB-FRONTPAGE 4 61
Others (P2P, Crawlers) 5 5426

Table 6: Summary of remaining Snort alerts.

yond those seen by Honeynets.
Table 5 provides a summary of the Snort alarms gener-

ated on an 8 hour trace of overwhelmingly benign HTTP
traffic collected at our department’s border router. Re-
ducing Snort’s alarm rate would require reengineering of
many signatures. Additionally, the overly general signa-
ture provides little specific information about the type of
exploit that may be occurring.

We assume that in a real network deployment of Snort
the most noisy signatures such as those in Table 5 would
be disabled. A more reasonable estimate of the expected
false alarm rates might be obtained from the remaining
alerts shown in Table 6. The remaining alerts come from
60 signatures and are responsible for 1643 alerts (exclud-



ing Others). While we did not inspect each of these in-
dividually for true positives due to privacy concerns with
the dataset, sampling revealed that they are mostly false
alarms. Traffic classified as Others were legitimate alerts
fired on benign P2P traffic and traffic from web crawlers.

Our university filters NetBIOS traffic at the campus
border, so we were unable to obtain NetBIOS data for
this experiment.
• Highly specific alarms: Although the decision is

ultimately subjective, we believe our signatures generate
alerts that are empirically better than alerts produced by
packet-level systems such as Snort. Typical Snort alerts,
such as “Bare Byte Unicode Encoding” and “Non-RFC
HTTP Delimiter”, are not highly revealing. They report
the underlying symptom that triggered an alert but not
the high-level reason that the symptom was present. This
is particularly a problem for NetBIOS alerts because all
popular worms and viruses generate virtually the same
set of alerts. We call theseweak alertsand describe them
in more detail in the technical report [35]. Nemean, via
connection-level or session-level signatures, has a larger
perspective of a host’s intentions. As a result, we gener-
ate alerts specific to particular worms or known exploits.
• Low noise due to session-level signatures:More-

over, Nemean provides better control over the level of
noise in its alarms. Packet-level detection systems such
as Snort often raise alerts for each of multiple packets
comprising an attack. A security administrator will see
a flurry of alerts all corresponding to the same incident.
For example, a Nimda attack containing an encoded URL
will generate URL decoding alarms in Snort and alerts
for WEB-IIS cmd.exe access. Sophisticated URL de-
coding attacks could later get misdiagnosed as Nimda
alerts and be filtered by administrators. Our normalizer
converts the URL to a canonical form to accurately detect
Nimda attacks. Since Nemean aggregates information
into connections or sessions and generates alerts only on
the aggregated data, the number of alerts per incident is
reduced.

In summation, we believe these results demonstrate
the strength of Nemean. It achieves detection rates sim-
ilar to Snort with dramatically fewer false alarms. The
alerts produced by Nemean exhibit high quality, specify-
ing the particular attack detected and keeping detection
noise small.

7.3 Signature Generation Efficiency

Although our current implementation operates offline on
collected data sets, we intend for Nemean to be used in
online signature generation. Online systems must be ef-
ficient, both so that new signatures can be rapidly con-
structed as new attacks begin to appear and so that the
system can operate at network speeds with low compu-

tational demands. Figure 8 shows Nemean’s overheads
on the 2-day training data set containing about 200,000
HTTP packets and 2,000,000 NetBIOS packets. To-
tal data processing time is divided into the three stages
of data abstraction, clustering, and automaton general-
ization plus an additional preprocessing step that trans-
lated SSTs produced by the DAL into the input for-
mat of our clustering module. The HTTP connection-
level automaton generalization step used the sk-strings
algorithm. The session-level generalization used beam
search, with nearly 100% of the cost arising from one
cluster of Nimda sessions. At 200,000 packets, the cost
of session-level generalization was 587 seconds. Net-
BIOS signature generalization used simulated beam an-
nealing at the connection-level only, with no construction
of session-level signatures.

Nemean is efficient. We are able to generate signa-
tures for 2 days worth of NetBIOS data, totaling almost 2
million packets, in under 70 seconds. Even our most ex-
pensive operation, session-level generalization of HTTP
data, required less than 10 minutes of computation. The
design of our system helps keep costs low. By processing
only data collected on a honeynet, the overall volume of
data is significantly reduced. Deploying Nemean as an
online signature generator would require limited system
resources and can easily operate at the speeds of incom-
ing data.

7.4 Honeycomb Comparison

Honeycomb was one of the first efforts to address the
problem of automatic signature generation from honey-
pot traces. We performed a comparison between Nemean
and Honeycomb on identical traces as a means to further
understand the benefits of semantics awareness in auto-
mated signature generators. This evaluation was compli-
cated by two issues: first, we transformed Honeycomb’s
Honeyd plug-in implementation into a standalone appli-
cation by feeding it the input traffic from a pcap loop.
Second, since Honeycomb was developed as a proof-of-
concept tool, it turned out to be incapable of processing
large traces6. In our experience, Honeycomb’s process-
ing time grows quadratically with each connection since
it performs pairwise comparison across all connections,
and running it on a relatively small trace of 3000 packets
took several hours on a high performance workstation.
As a result, our evaluation is a qualitative comparison of
Honeycomb signatures and its performance on a small
trace with 126 HTTP connections.

Honeycomb produced 202 signatures from the input
trace. While there were several perfectly functional sig-
natures, there were also a surprisingly large number of
benign strings that were identified by the LCS algorithm.
Some of these were small strings such as “GET” or
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Honeycomb Signature Exploit Deficiency
1. /MSADC/root.exe?/c+dir HTTP/1.0 |0D 0A| Nimda Redundant7

Host: www|0D 0A|Connection: close|0D 0A 0D|

2. /root.exe?/c+dir HTTP/1.0|0D 0A|Host: www|0D 0A|
Connection: close|0D 0A 0D|

1. SEARCH / HTTP/1.1|0D 0A|Host: 128.1 WebDAV Restrictive8

1. |0D 0A|Connection: Keep-Alive|0D 0A 0D| None Benign
2. HTTP /1

Table 7: Example signatures produced by Honeycomb on an HTTPtrace with 126 connections.

“HTTP” that are clearly impractical and just happened
to be the longest common substring between unrelated
sessions. Communication with the Honeycomb author
revealed these were part of normal operation and the
typical way to suppress these are to whitelist signatures
smaller than a certain length. There were also much
longer strings in the signature set, such as proxy-headers
that also do not represent real attack signatures. It seems
that the only way to avoid these kinds of problems is
through manual grooming of signatures by an expert with
protocol knowledge. It should be noted that while Ne-
mean also requires a sanity check process, this affects
Honeycomb to a much greater extent because of its ten-
dency to generate a large number of signatures.

The summary of the comparison of signatures pro-
duced by Honeycomb versus those produced by Nemean
is as follows:

1. Honeycomb produces a large number of signatures
that lack specificity due to pairwise connection
comparison. Nemean’s algorithm generalizes from
a cluster that includes several connections resulting
in a smaller, balanced signature set.

2. Pairwise LCS employed by Honeycomb often
leads to redundant (non-identical) signatures, which
would generate multiple alarms for the same attack.
Again, Nemean’s algorithm generalizes from clus-
ters and its semantics awareness makes it far less
prone to redundant signature production.

3. Honeycomb signatures are often too restrictive. As
a result, we require several restrictive signatures to
capture all instances of a particular attack and this
could lead to false negatives. Nemean’s generation
of balanced signatures make them less susceptible
to false negatives.

4. Honeycomb’s lack of semantics awareness leads to
signatures consisting of benign substrings. These
lead to false positives and explains why Honeycomb
is unable to produce precise signatures for protocols
such as NetBIOS, MS-SQL and HTTP attacks, such
as Nimda, where the exploit content is a small por-
tion of the entire attack string. Nemean’s semantics
awareness addresses the issue of benign substrings.

We present examples of signatures that we obtained
from Honeycomb that demonstrate these weaknesses in
Table 7.

8 Discussion

A potential vulnerability of Nemean is its use of hon-
eynets as a data source. If attackers become aware of
this, they could either attempt to evade the monitor or to
pollute it with irrelevant traffic resulting in many unnec-
essary signatures. Evasion can be complicated by peri-
odic rotation of the monitored address space. Intentional



pollution is a problem for any automated signature gener-
ation method and we intend to address it in future work.

Three issues may arise when deploying Nemean on a
live network. First, live networks have real traffic, so we
cannot assume that all observed sessions are malicious.
To produce signatures from live traffic traces containing
mixed malicious and normal traffic, we must first sep-
arate the normal traffic from the malicious. Flow-level
anomaly detection or packet prevalence techniques [27]
could help to identify anomalous flows in the complete
traffic traces. Simple techniques that flag sources that
horizontally sweep the address space, vertically scan sev-
eral ports on a machine, and count the number of rejected
connection attempts could also be used.

Second, Nemean must generate meaningful signatures
for Snort, Bro, or other NIDS. Snort utilizes an HTTP
preprocessor to detect HTTP attacks and does not pro-
vide support for regular expressions. Converting Ne-
mean signatures to Bro signatures is straightforward
since Bro allows for creation of policy scripts that sup-
port regular expressions.

Third, while it is not the focus of the current imple-
mentation, the limited manual selection required sug-
gests that automating deployment of Nemean signatures
should be realizable. This resiliency of Nemean sig-
natures to false positives makes it quite attractive as
a means to automate defense against flash worms that
propagate rapidly. The data abstraction component’s
modules work without any changes on live traces. The
star clustering algorithm is also designed to perform
incremental clustering and work in an online fashion.
Anomaly detection techniques could be employed in par-
allel with Nemean to flag compelling clusters for worm
outbreaks. Automatically generated Nemean signatures
for these clusters could then be rapidly propagated to
NIDS to defend against emergent worms.

9 Conclusions

We have described the design and implementation of
Nemean, a system for automated generation of bal-
anced NIDS signatures. One of the primary objectives
of this system is to reduce false alarm rates by creat-
ing signatures that are semantics aware. Nemean’s ar-
chitecture is comprised of two major components: the
data-abstraction component and the signature-generation
component. This modular design supports and encour-
ages independent enhancement of each piece of the ar-
chitecture. Nemean uses packet traces collected at hon-
eynets as input since they provide an unfettered view of
a wide range of attack traffic.

We evaluated a prototype implementation of Nemean
using data collected at two unused /19 subnets. We col-
lected packet traces for two services for which we devel-

oped service normalizers (HTTP and NetBIOS/SMB).
Running Nemean over this data resulted in clusters for
a wide variety of worms and other exploits. Our evalu-
ation suggests that simple similarity metrics, such as the
cosine metric, can provide clusters with a high degree of
precision. We demonstrated the signature generation ca-
pability of our system and discussed optimizations used
by our automata learning module, such as structure ab-
straction and subsequence creation. We showed that Ne-
mean generated accurate signatures with extremely low
false alarm rates for a wide range of attack types, includ-
ing buffer overflows (Welchia), attacks with large diver-
sity (Nimda), and attacks for complicated protocols like
NetBIOS/SMB.

In future work, we intend to hone the on-line capabili-
ties of Nemean and to assess its performance over longer
periods of time in live deployments. We will also con-
tinue to evaluate methods for clustering and learning with
the objective of fine tuning the resulting signature sets.
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Notes
1The first labor of the Greek hero Heracles was to rid the Nemean

plain of a fierce creature known as the Nemean Lion. After slaying the
beast, Heracles wore its pelt as impenetrable armor in his future labors.

2A honeynet is a network of high-interaction honeypots.
3A negligible amount of non-malicious traffic on our honeynetwas

caused by misconfigurations and was easily separated from the mali-
cious traffic.

4Honeyd is a popular open-source low-interaction honeypot tool
that simulates virtual machines over unused IP address space.

5The check for destinations avoids hotspot misconfiguration.
6An observation which was confirmed through personal communi-

cation with C. Kreibich, one of the authors of Honeycomb.
7Signature 2 is a more general version of signature 1 which is re-

dundant.
8The Host field should be ignored. The signature would miss at-

tacks from sources with prefixes other than 128.1.
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