A Framework for Malicious Workload Generation

Joel Sommers

Vinod Yegneswaran

Paul Barford

_University of Wisconsin—Madison
jsommers,vinod,pb@cs.wisc.edu

ABSTRACT

Malicious traffic from self-propagating worms and denial-
of-service attacks constantly threatens the everyday oper-
ation of Internet systems. Defending networks from these
threats demands appropriate tools to conduct comprehen-
sive vulnerability assessments of networked systems. This
paper describes MACE, a unique environment for recreat-
ing a wide range of malicious packet traffic in laboratory
testbeds. MACE defines a model for flexible composition
of malicious traffic that enables both known attacks (such
as the Welchia worm) and new attack variants to be cre-
ated. We implement this model in an extensible library for
attack traffic specification and generation. To demonstrate
the capability of MACE, we provide an analysis of stress
tests conducted on a popular firewall and two popular net-
work intrusion detection systems. Our results expose po-
tential weaknesses of these systems and reveal that modern
firewalls and network intrusion detection systems could be
easily overwhelmed by simple attacks launched from a small
number of hosts.

Categories and Subject Descriptors: C.2.0 [Computer-
Communication Networks]: General—Security and protec-
tion (e.g., firewalls); C.4 [Performance of Systems]: Perfor-
mance attributes

General Terms: Measurement, Performance, Security
Keywords: Traffic Generation, Network Intrusions

1. INTRODUCTION

Network outages due to self-propagating worms and denial-
of-service attacks have been widely reported over the past
few years. Despite efforts by the research and operational
communities to mitigate these threats, many Internet sys-
tems remain vulnerable. One reason for this insecurity is
that systems and protocols are often not designed with de-
liberate consideration of threat models. An example that
has received recent attention is the TCP initial sequence
number protocol vulnerability that has the potential to in-
flict chaos by disrupting BGP sessions in the backbone of

Permission to make digital or hard copies of all or part of this work for

the Internet [5]. Another reason is that system behavior
under heavy load is often unpredictable. Although scaling
properties of commercial software systems and routing hard-
ware are quite impressive, they are typically not developed
with malicious traffic conditions in mind. For example, the
case study by Ogielsky et al. reports on how software bugs
combined with load introduced by the unprecedented spa-
tial diversity of Code-Red worm traffic and elevated BGP
activity led to widespread cascading outages [10].

The potency of Internet worms and viruses has contin-
ued to evolve since the Code-Red outbreak. Examples in-
clude high-speed worms such as SQL-Slammer and more
recently multi-modal worms/viruses such as Agobot which
package exploits for many known vulnerabilities. We have
also witnessed the Witty worm which exploits vulnerable
network stacks in firewalls. Witty targets all destination
ports equally, hence it cannot be neutralized by simple tech-
niques like port blocking at network gateways. These at-
tacks underscore the need for scalable intrusion detection
systems to protect large networks by performing signature
matching at Internet gateways. They also galvanize the need
for better tools for evaluating the resiliency of routers, mid-
dleboxes and intrusion detection systems.

This work has two primary objectives. The first is to
create a performance benchmarking tool that enables as-
sessment of quality of service degradation (the effect of mal-
traffic on good traffic) and resilience of middleboxes and
network intrusion detection systems (NIDS) over a range of
malicious traffic volumes. The state of the art for bench-
marking firewalls and NIDS is still considered nascent, and
there are no universally accepted standards. Current best
practice is to gather and use malware itself. This approach
is limited in its ability to scale traffic volume and compose
previously unseen attack traffic. A flexible research-oriented
toolkit for producing maltraffic is therefore a critical compo-
nent for the development and standardization of benchmarks
for NIDS and firewalls. Our second objective is to recreate
attack traffic scenarios in a laboratory setting for black-box
testing of protocol suites, software, and hardware systems.
This capability will enable us to move toward quantitative
measurement and assessment of claims regarding the degree
to which individual network devices contribute to large-scale
correlated failures.

personal or classroom use is granted without fee provided that copies are This paper describes the design and implementation of
not made or distributed for profit or commercial advantage and that copies 5, flexible, extensible toolkit called the Malicious trAffic
bear this notice and the full citation on the first page. To copy otherwise, to Composition Environment (MACE). MACE provides the

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
IMC’04, October 25-27, 2004, Taormina, Sicily, Italy.
Copyright 2004 ACM 1-58113-821-0/04/001(%5.00.

basic building blocks for recreating a large set of known at-
tacks. MACE satisfies the following requirements:

1. Generate a large, diverse set of attacks,

2. Generate and control benign background traffic,

3. Compose attacks in a high-level language.

The MACE model decomposes attacks into three compo-
nents: exploit, propagation and obfuscation. To our knowl-
edge, MACE is the first tool to adopt an extensible approach
to systematic attack synthesis through a modular attack
composition framework. MACE enables resiliency of sys-
tems to resource exploits and traffic mix to be evaluated.
MACE is distinguished from efforts like Thor which focus
on obfuscation methods and individual session morphing [6].
Results from such work can be easily folded into MACE.

We discuss the MACE framework in greater detail and
provide example attack traffic configurations in § 3. In § 4
we demonstrate MACE by providing a case study of a pop-
ular firewall (a Cisco PIX) and two NIDS (Snort and Bro)
under varying traffic mixes. Our results reveal that modern
firewalls and NIDS could be easily overwhelmed by simple
attacks launched from a small number of hosts. In most
instances, the resilience of the devices to particular attacks
varies with respect to the degree of connection state main-
tained by each device. The case study also illustrates the
capabilities of MACE as a performance benchmarking tool.

2. RELATED WORK

Internet traffic generation for measuring application and
network device performance has been well-studied. Harpoon
reproduces network traffic in an application-oblivious man-
ner [17]. Numerous application-aware traffic generators like
SURGE produce workloads to stress-test web servers [9].
These tools are complementary to MACE and can be used
to generate legitimate (benign) background traffic.

Taxonomies of malicious traffic inform the design and de-
velopment of the MACE attack types and propagation mod-
els. One such taxonomy of DDoS attack characteristics is
provided in [15]. A similar taxonomy of Internets worms
based upon target discovery, carriers, activations, payloads
and attackers is proposed in [18]. Our study is also related
to the work by Lippman et al. which provides a dataset for
evaluation of NIDS [14].

Our laboratory measurement of the performance of a fire-
wall middlebox is complementary to the work of Allman,
who measured the performance of an operational middlebox
infrastructure in [7].

MACE is intended for black-box evaluation of network
infrastructure resiliency and is not tuned to exploit specific
implementation features of NIDS or firewalls. Related ef-
forts [11, 13] have focused on carefully designed attacks on
known or suspected algorithms or implementations.

Two other analogs to our work are Mucus [16] and Nes-
sus [3]. Mucus is a tool for black-box testing of NIDS sys-
tems. As a benchmarking tool for NIDS systems, Mucus’
evaluation criteria are alert correctness and alert quality.
Nessus is a tool for penetration testing of network hosts.
MACE differs considerably from both of these tools in its
objectives. The MACE framework for malicious traffic gen-
eration accommodates its use both for penetration testing
or as a NIDS benchmarking tool. Our goals of performance
benchmarking NIDS and middleboxes do not require a com-
plete database or accurate replication of specific attacks.
While it is unnecessary, for example, to faithfully replicate
all variants of the Beagle worm, it is desirable to have rep-
resentatives from all classes of attacks. Finally, since the

83

MACE model isolates obfuscation and propagation from ex-
ploit signatures, it can generate attacks that are not present
in current vulnerability databases. Building a library of
known exploits, obfuscations, and propagation models en-
ables attacks composed of any permutation of these sub-
components. The spectrum of attacks is limited by the set
of available subcomponents.

3. MACE FRAMEWORK

We begin by defining the abstract model for MACE. We
then describe implementation details of the MACE toolkit
with examples of attack instances and show how they can
be composed.

3.1 Abstract Model Definition

The conceptual model for MACE is illustrated in Figure 1.
It provides flexibility in specifying the base characteristics
of malicious traffic which we define as the following:

e Exploit Model — set of vulnerabilities that are part of
the attack sequence.

e Obfuscation Model — morphs in the header or payload
to enable the exploit to elude NIDS. These could either
be at the network layer or at the application layer.

e Propagation Model — order in which victims are cho-
sen to be attacked.

e Background Traffic Model — legitimate traffic flow in
the network.

malicious traffic composition environment

exploit obfuscation propagation

welchia spoofed source horizontal sweep
examples blaster url rewriting coordinated scan
synflood fragmentation random

d
attack vector 1 attack vector n

background traffic
(Harpoon, SURGE, etc.)

test
objectives

test
traffic

Figure 1: The MACE architecture. Test objectives
inform the selection and composition of exploit, ob-
fuscation, and propagation components into a series
of attack vectors. Existing tools such as Harpoon
produce the desired benign background traffic.

3.2 Model Realization

The modular MACE library consists of the exploit, obfus-
cation, and propagation components defined by the model,
as well as a number of functions to support interpretation,
execution, and exception handling of attack profiles. Our
objective is not to provide a complete attack database, but
rather to support a set of basic building blocks that can be
used to create both known and custom attack vectors.

MACE is currently implemented in the Python program-
ming language. The dynamicism of a language like Python
is important for MACE as it enables sequences of exploits
or obfuscations to be fabricated on-the-fly. Python has li-
braries that support many application layer protocols, such
as HTTP, NNTP, and SMTP, allowing application-specific
exploits to be easily created. For evolving scalability require-
ments, we plan to migrate key components of the library to
C, extending the capabilities of the Python interpreter much
in the way ns-2 [4] extends Tcl/Tk.

The building blocks of MACE include the following;:
Payload Construction Elements - Payload elements in MACE
are defined as character arrays. In practice, these are often
payloads from various higher level protocols such as HTTP,
NetBIOS/SMB or DCE RPC. The following example defines
an HTTP GET request for the file index.html.

[httprequest, (’method’:’GET’, ’absolute_path’:’/index.html’)]

Header Construction Elements - Attack traffic often requires
the use of raw sockets to construct custom TCP, UDP and IP
headers. The header construction elements in MACE mod-
ify specific attributes without exposing the entire header to
the user. The following example illustrates the definition
of a TCP SYN packet. The source and destination IP ad-
dresses and ports are defined by the propagation elements.
Other unspecified fields are appropriately filled with default
or random values.

[rawtcp, (’th_flags’:’TH_SYN’)]

Obfuscation Elements - The obfuscation elements can be
specified at the network layer or at the application layer.
An example of network layer obfuscation is IP fragmen-
tation. Examples of application layer obfuscation include
HTTP URL encoding techniques such as Bare-byte or Uni-
code encoding used by worms such as Nimda [8]. The fol-
lowing example applies a Unicode obfuscator to the example
HTTP request given above:

[httprequest, {’method’:’GET’,

’absolute_path’:URLObfuscator.uencode(’/index.html’) }]

Propagation Elements - MACE supports different propaga-
tion models via AddressPool objects. Each AddressPool is
instantiated with a list of CIDR prefixes and port ranges,
along with an indication of how to generate addresses from
the given pool. Address pools may be traversed randomly,
horizontally (sequentially across IP addresses, sequentially
across ports), vertically (sequentially across ports, sequen-
tially across IP addresses), or by a more complex methodol-
ogy definable by the user. The following example illustrates
an address pool defined to perform a vertical sweep of the
target IP address 10.42.1.1.

target_pool = AddressPool (AddressPool.Vertical, ’10.42.1.1:1-655367)

3.3 Example Test Scenarios

We focus on four attack vectors:

e SYN flood: A standard denial-of-service attack that
overwhelms the target system by sending a large num-
ber of TCP SYN packets.

o Welchia: A ping followed by a series of HT'TP requests
designed to exploit a buffer overflow in the WebDAV
module of Microsoft’s IIS web server [1].

e Rose: An attack that exploits poorly implemented
handling of IP fragments. Two small fragments are
sent, one with an offset of 0 and one with a large
offset. Some network stacks reserve memory for the
fragment hole, so a series of Rose packets can exhaust
memory [12].

e Blaster: An attack that exploits a buffer overflow in
Microsoft Windows RPC service (epmapper) [2].

The four attack profiles are realized in the example code
fragment shown in Figure 2. Attack profiles are defined
by their vulnerability exploit and propagation method. A
full exploit is a sequence of gemerator and walidator steps,
along with parameters. A generator builds packet traffic

using the payload and header construction and obfuscation
building blocks. A validator collects and processes responses
from the attack target, verifying that the generated traffic
evoked an appropriate response. Each step in an attack
vector is executed as long as they are successful. An exploit
step may simply be “create a TCP packet with the SYN flag
set” (line 1). Other steps might be as complicated as “create
an HTTP GET request for the document ‘/’ and validate
that the HT'TP response contained a 200 (success) code and
that it was produced by a Microsoft web server” (lines 6-7).
Some generator steps are not followed by validation, e.g., the
Rose attack where validation is unnecessary (lines 12-15).
Since generators and validators are simply Python functions,
it is easy to define new exploit steps. Propagation models for
the attack profiles are defined by one or more address pools
(lines 23-25). Finally, attacks are sent using the send_once
or send_periodic functions (lines 27-28). send_periodic is
a convenience function used to produce attack traffic for a
given duration (delaying a specified amount of time between
successive call to send_once).

synflood = [[rawtcp, { ’th_flags’:TH_SYN}]] 1
2

bad_string = ’...’ # the buffer overflow string - not defined here 3
welchia = [4
[ping 1, 5

[httprequest, { ’method’:’GET’ }, 6
httpvalidate, { ’Server’:’Microsoft-IIS/5.0°], 7

[httprequest, { ’method’:’SEARCH’ }, 8
httpvalidate, { ’code’:411, ’Server’:’Microsoft-IIS/5.0°} 1, 9

[httprequest, { ’method’:’SEARCH’, ’absolute_path’:bad_string }]] 10

11

rosepayload = *\0’ * 32 # just a small fragment 12
rose = [13
[rawudp, { ’frag_offset’:0, ’frag_flag’:IP_MF, ’payload’:payload } 1, 14

[rawudp, { ’frag_offset’:8100, ’payload’:payload } 1 1 # 64800 byte offset 15

16

bindreq = ’...’ # the DCE RPC bind request - not defined here 17
overflow = ’...’ # the buffer overflow exploit request - not defined here 18
blaster = [19
[dcerpcbind, { ’bindreq’:bindreq }, dcerpcbindack, { ’bindreq’:bindreq } 1, 20

[dcerpcreq, { ’payload’:overflow } 1 1 21

22

src_pool = AddressPool(AddressPool.Vertical, ’10.42.0.0/16:1-65536) 23
dst_pool = AddressPool(AddressPool.Random, ’10.52.128.0/20:1024-65536") 24
http_pool = AddressPool(AddressPool.Horizontal, *10.52.128.0/20:80°) 25
26

send_once(src_pool, dst_pool, rose) 27
send_periodic(src_pool, http_pool, welchia, duration=60, delay=0.001) 28

Figure 2: A MACE code fragment, similar to what
was used in our experiments.

4. SECURITY SYSTEM PERFORMANCE
EVALUATION

To demonstrate MACE’s capability, we examined perfor-
mance characteristics of three standard network security sys-
tems: a firewall middlebox and two network intrusion detec-
tion systems running on commodity hardware.

4.1 Test Environment

The firewall we tested is a Cisco PIX 515e. It contains
three Fast Ethernet interfaces, 64MB of RAM, a 433 MHz
Intel Pentium II, and runs version 6.2(2) of the PIX Firewall
operating system. It is a typical device deployed as the first
line of defense for edge networks, implementing basic packet
filtering and network address translation (NAT). The net-
work intrusion detection systems were Bro (version 0.8a79)
and Snort (version 2.1.1). Bro generally maintains signif-
icant connection state, while Snort does not. Each NIDS
ran on a separate workstation with a 2 GHz Intel Pentium
4 processor and 1 GB of RAM. FreeBSD 5.1 was installed

mace traffic
legitimate requests———
—~—— legitimate responses|

Snort external network

[= g Cisco = g
T Adtech SX-14 = =
5

doobaseTx PiXatse - = g /g/ E

100baseTX 00baseTX S 3 g

1 - delay 8 LN
> i emulator x X

internal network Cisco Cisco Cisco

watfc generators 12000 12000 6500 remote hosts
Figure 3: Experimental Environment. Legitimate
and malicious traffic originate from the internal net-
work and are directed toward the external network.
The PIX firewall separates the inside and outside

networks and performs network address translation.

on each machine'. For each NIDS, we used a default set
of rules. Our Snort instance used the default snort.conf
included with the software and Bro used the mt policy.

The PIX and NIDS were configured in a testbed as shown
in Figure 3. The setup mimics an edge network connected
to an ISP, with legitimate background traffic and attacks
focused on a remote network. The PIX resided between the
edge (“internal”) network and the ISP (“external”) network.
The internal network contained traffic generators for MACE
and background traffic, and the two NIDS. All network traf-
fic received from or sent to the PIX was duplicated on the
links connected to the NIDS. In the external network, we
used a hardware propagation delay emulator (Adtech SX-14)
between two backbone-class routers (Cisco 12000) to create
a round-trip time of roughly 100 milliseconds between the
traffic generators and the target servers. We used popular
enterprise-scale switches (Cisco 6500) to aggregate traffic at
the endpoints.

On each host in the internal network, we created 212 alias
addresses and on the remote hosts we created 2% aliases.
The PIX performed network and port address translation
between hosts on the internal network and a pool of 28 ad-
dresses routable across the external network. Also, the PIX
performs an implicit packet filtering based on its NAT con-
figuration: it only performs NAT or port address translation
(PAT) for local addresses that are part of its configuration.
Packets from any other source address are dropped.

Using two levels of benign background traffic, we gener-
ated attack traffic using a set of five exploits and six levels
of offered load. Two levels of background traffic, “low” and
“high”, were generated using Harpoon [17] and were tuned
to averages of 20 Mbps and 70 Mbps, respectively. Source
and destination addresses for legitimate traffic were chosen
randomly from the pool of 2'2 source addresses and the pool
of 2% destination addresses. The six levels of attack load
were generated by using one to five hosts running MACE.
For each exploit, the MACE processes on a single host were
configured to generate roughly 1 Mbps of traffic, regardless
of background traffic level.

The exploits we used were (1) Welchia worm traffic, (2)
SYN flood denial-of-service attack, (3) a SYN flood with
spoofed source addresses, (4) the Rose fragment attack, and
(5) a multi-modal attack consisting of the previous four ex-
ploits plus Blaster worm traffic. Each host running MACE

!On each host we modified the kernel parameter
debug.bpf_bufsiz from 4096 bytes to 524,288 bytes, as sug-
gested in the Bro documentation. Snort presumably can
benefit from this change as well so we applied the change to
each NIDS host.

85

used a source address pool of 2'2, as described above. For
the SYN floods and Rose attack, we horizontally traversed
the source address pool. For the two worm exploits, we
randomly (uniformly) sampled the source address pool. All
attack traffic was directed toward a single address on the
remote network.

4.2 Test Measurements

For the 52 distinct experiments, we measured CPU and
memory utilization at all three systems every five seconds.
We also measured packet counts in and out of the PIX every
five seconds and the number of reported packet drops using
SNMP, and took packet traces on either side of the PIX. At
the two NIDS hosts, we verified and used the capabilities
of each software package to report received packet volume
and the number of dropped packets. Packets are dropped by
each system due to overflow of the queue of incoming packets
received by the packet filter (each NIDS uses the Berkeley
Packet Filter and libpcap for packet capture). For packet
drops at each NIDS, we did not discriminate between benign
and malicious traffic. For the PIX, we used the packet traces
to measure drops of benign packets. Each experiment was
run for six minutes, including a one minute warm-up phase
from which measurements are discarded.

4.3 Results

Figure 4 shows average CPU utilization and Figure 5
shows packet loss measurements for each experiment. The
two columns in each figure correspond to low and high back-
ground traffic levels, and the three rows display results for
each device. The first feature to notice in the plots is the di-
versity of responses of each system to distinct MACE attack
profiles. Except for a few cases, there is also a noticeable,
and sometimes very large, divergence between the first two
data points. These points correspond to zero malicious traf-
fic and a single MACE host. We discuss detailed results for
each device class (firewall and NIDS) below.

4.3.1 Effects on the PIX firewall

For the PIX, the Rose attack has the least effect on perfor-
mance. When processing fragmented packets, the PIX keeps
a queue of (by default) 200 fragments in order to reassemble
them before forwarding them to the remote network. If the
missing fragments do not arrive in a configurable amount of
time (the default is 5 seconds), the fragments are dropped.
For the Rose attack, the fragment queue becomes full shortly
after starting MACE. When fragments arrive that cannot
be queued, they are dropped. Although there is no frag-
mented legitimate traffic in our setup, these packets would
very likely be dropped even with an attack rate of just over
40 Rose packets per second. Also, queues for each inter-
face and the fragment reassembly queue share a common
buffer pool. Since there are fewer buffers available during a
Rose attack, interface queues are more likely to fill, causing
additional packet drops?.

The non-spoofed SYN flood is the attack with the most
impact on the PIX. Since the PIX is performing NAT, it
must maintain state for each connection. Even with a single
MACE host, all 64 MB of system memory is used after a

2The PIX documentation notes that it is possible to set the
fragment reassembly maximum queue length to be equal to
the total number of buffers available. The documentation
warns that such a configuration would enable fragment at-
tacks to be effective denial-of-service attacks.

low background load high background load

(=] (=]
8 4 8
= |9 Welchia A——A = o Welchia A A—b—8
< A SYN floo A s A SYN floo o—
'% 1+ N 199 (spoofed)—" _—° % T+ gYNHooﬂ,és@%fe/d)/o’/ N
S o |* Rose A _—° S o |x Rose a=—— o
= © ¢ multimodal /O & = © ¢ multphodal ——
z N ° = z | ﬁ/ﬁ
] Q/ %ﬂ:/ 8 a==x x x x x
§8 4 L=—1 §9 -
=X)
Qo | = x X —pIX Firewall Qo i PIX Firewall
T T T T T T T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
load load
o o
S A——0—=08 S f—0O0——0——
S o Welchia A — =
s A SYN floo o -0 g a — %
i<} 4 (=} . PR P
2 s r‘ooﬂ/@ofed) 8’40 g ;§/§4§/X
£8 o mutiiodal £g e
5° ° +—"F| 3¢
s A — £ o Welchia
8 o= —+ F—x—>| 8, |a SYNfloog
38 7 ‘Zx/ 38 7;: RYN flood (spoofed)
o J Bro o o moit Bro
T T T T T T T T T T T T
0 1 3 4 5 0 4 5
load load
§ g i et et T
g e
© ©
No £g 4 —o0
£3 £3 o—o0—"°
- - _—
: P s
100¢
ég ég —;r g‘éé\le ‘oog (spoofed)
° o do i Snort
T T T T T T T T T T T T
0 1 2 3 4 5 0 1 3 4 5

load

Figure 4: CPU utilization measurements. Results
for the PIX, Bro and Snort are in top, middle, and
bottom rows, respectively. Left and right columns
show results for low and high background traffic
loads, respectively. Load levels along the x-axis cor-
respond to number of MACE hosts used in each test.
Each MACE host generates roughly 1 Mbps of traf-
fic regardless of attack or background traffic level.

low background load high background load

o] & +/lesFﬁvau o 3 Welchia R Frewal
w® / T »© |+ SYN Hoog (spoofed) o —>x
2 B + g X Rose
=9 4 = o o multimodal X __—+
g | 2 o Welchia g N4 —

e 2 8¥NTloog e M +—
8 + SYN flood (spoofed) 8
X Rose &
7 <© multimodal 7
B e S A m— B e S A m—
0 1 2 3 4 5 0 1 2 3 4 5
load load
1o Welchia 1o Welchia

8 -2 S¥N oo Bro 8 -2 S¥N ooy Bro

» + SYN flood (spoofed) » + SYN flood (spoofed)
o 15 RoStmodal a—2a| 85 5 Rose oqa a—=a
-9 4 multimodal — A - - multimodal
£¥ S g a—a"
o 7 o 7
so 5o A/
ax ad / . 2
Bl N b — T
o ,?4$_?—:‘—Té$ o 7?4%’—7‘%:$_‘:‘
0 1 2 3 4 5 0 1 2 3 4 5
load load
“|o Welchia “|o Welchia
8 -5 S¥Nflood Snort 8 2 gWN ooy Snort
« + SYN flood (spoofed) » + SYN flood (spoofed)
8 -|x Rose 8 |x Rose
=g -{© mulimodal =g -{© mulimodal
g g
g 4 X é F——5—2% g _ §’_'$" =53
2] | /@ 2] / =
° =2 ? ? ¢ ¢ ° = 7 — \
0 1 2 3 4 5 0 1 2 3 4 5

load

Figure 5: Packet loss measurements. Results for
the PIX, Bro and Snort are in top, middle, and bot-
tom rows, respectively. Left and right columns show
results for low and high background traffic loads, re-
spectively. Plots for the PIX show packet drops for
benign traffic only, while plots for Bro and Snort
show aggregate packet drops. Load levels along the
x-axis correspond to number of MACE hosts used
in each test. Each MACE host generates roughly 1
Mbps of traffic regardless of attack or background
traffic level.

86

short while because of this state requirement®. While there
is still some memory available for buffering packets as they
flow through the system, this memory pool is now much
smaller and consequently, the PIX has diminished ability
to absorb bursts of packets. This situation does not oc-
cur with the spoofed SYN flood, since the source addresses
do not conform to the NAT configuration at the PIX and
are dropped. In our traces, we see persistent dropping of
legitimate packets during the non-spoofed SYN flood and
multimodal experiments (in both low and high background
traffic regimes) and aggregate traffic rates through the PIX
clearly show the well-known poor performance of TCP in
the face of such high packet loss: for the low background
SYN flood experiment using only one MACE host, the in-
bound (external to internal) packet rate through the PIX
for the spoofed SYN flood is nearly twice that of the non-
spoofed SYN flood. For experiments with more than one
MACE process, the results are more dramatic. In summary,
maintaining state and managing system resources under a
low rate non-spoofed SYN flood is difficult even for a spe-
cialized device. Considering the rate at which resources con-
sumed by the embryonic connections are reclaimed by the
PIX, there is probably a “sweet spot” at which SYNs can be
sent at a low enough rate to cause problems for good traffic,
but are not at a high enough rate to easily detect.

The Welchia and Blaster worms, as with other worms,
are typically short flows, so even with a low attack rate the
primary effect on the PIX is an increased rate of connec-
tion initiations. To the PIX (without any special packet
filters installed) these worms look like benign traffic and are
treated the same as all other legitimate packets. In our ex-
periments, the PIX appears to be sufficiently provisioned to
handle the increased volume.

Finally, it is interesting to note that while all Rose and
spoofed SYN flood packets are dropped by the PIX, these
attacks have peculiar effects on CPU usage. Without de-
tailed internal information of the PIX, we can only surmise
that the path for handling IP fragments is significantly faster
than the process of matching a source address to the NAT
configuration at the PIX (though, as pointed out above,
there is a potential denial-of-service problem related to frag-
ment processing).

Summary: (1) Non-spoofed low-rate SYN floods are effec-
tive resource exploits leading to significant service degra-
dation, and (2) Obfuscations via packet fragmentation are
effective resource exploits against poorly configured systems.

4.3.2 Effects on Bro and Snort

There is a sharp contrast between behavior of Bro and
Snort. For example, the Rose attack has little effect on Bro,
but an enormous impact on Snort. Since Bro and Snort
receive raw packets from the network interface, they must
perform reassembly of fragments. Bro is clearly able to han-
dle fragments more efficiently than Snort, even though Snort
maintains much less overall state than Bro.

For Bro as with the PIX, the non-spoofed SYN flood has
the greatest impact on CPU load and packet loss. For the

3There are timeouts defined in the PIX to reclaim resources
used by idle and half-closed connections, and a feature called
“floodguard” which essentially prioritizes which resources
to reclaim in order to deal with resource shortages. Our
experiments are shorter than either one of the default values
for these timeouts (1 hour for idle connections, 10 minutes
for half-closed connections).

non-spoofed SYN flood, Bro maintains state for all attack-
induced connections. Although Bro periodically expires idle
connection state, the rate of SYNs in our experiment was
high enough that Bro eventually exhausted available mem-
ory*. Since the table of known connections continues to grow
during this attack, connection state lookups are more costly.
The resulting effect on packet drops is clearly shown in the
center column graphs of Figure 5. The reason the spoofed
SYN flood has relatively little impact on Bro is that the
PIX silently blocks the spoofed SYNs so Bro will never see
a SYN/ACK response. Apparently this lack of response al-
lows Bro to flush the embryonic connection state in a more
efficient manner.

Except for the Welchia attack, Snort performs similarly
under all attacks. The SYN floods, Rose, and multimodal

attacks each contain packet-level attacks in contrast to Welchia,

which (at least from the perspectives of IP and TCP) looks
like legitimate background traffic to Snort®. Efficiently pro-
cessing ill-formed packets and pathological packet sequences
is clearly a requirement and a challenge for NIDS.

With respect to packet loss, Bro and Snort again exhibit
contrasting behavior. Except for the Welchia attack, Snort
consistently drops roughly 20-30% of all packets once MACE
traffic is introduced. Bro, despite maintaining significant
connection-level state, drops a relatively small proportion of
packets except for the non-spoofed SYN flood attack. For
both NIDS, any significant level of packet dropping will af-
fect the ability of the tool to detect ongoing attacks. Ad-
ditionally, knowledge of packet dropping behavior could be
exploited by an attacker to launch a relatively benign low-
rate attack in order to mask one that is more insidious.
Summary: (1) Multiple attack vectors are effective resource
exploits leading to packet loss, implying degraded detection
rates, and (2) The marginal impact of resource exploits does
not appear to be greater for NIDS maintaining connection
state.

5. CONCLUSIONS AND FUTURE WORK

The escalation of malicious activity in the Internet mo-
tivates the need for better tools to measure the resiliency
of routers and middleboxes to malicious traffic. To address
this need, we propose MACE, a framework for malicious
network traffic generation. The MACE architecture is com-
posed of three building blocks: exploits, obfuscators, and
propagation elements. These components define and create
malicious traffic for use in laboratory testing of routers and
network security infrastructure. We provided experimen-
tal results of measurements conducted on a popular firewall
and two network intrusion detection systems to document
the varying responses of these systems to malicious traffic.
Our results show that relatively low rates of attack traffic
can exploit the overheads of maintaining connection state or
inefficient processing of certain packets.

A tool like MACE can be used for testing and refining the
operation of network systems, but if in the wrong hands,
could be used for generating malicious traffic in the live In-
ternet. Our plan for making MACE available to a wider

“We also experimented with the reduce-memory policy
script with Bro, which caused an increase in CPU usage
and higher packet loss rates for all attacks.

®The default configuration of Snort lacks specialized rules
for processing HT'TP traffic. Enabling HTTP-specific rules
causes higher CPU load and packet drops for all attack pro-
files.

87

community is to supply the code only to legitimate researchers
and, to the best of our ability, keep careful documentation
regarding who has copies of the code. Despite these pre-
cautions, there remains the possibility that MACE could be
misused. While MACE cannot self-propagate, it could be
used for seeding new worms.

We plan to expand the list of exploit and obfuscation
building blocks within MACE and to make improvements to
the volume of exploit traffic that MACE is able to produce.
We believe these enhancements will facilitate the laboratory
emulation of large-scale failure scenarios using more elabo-
rate physical and logical topologies and a greater diversity
of network devices.

6. ACKNOWLEDGEMENTS
We thank Somesh Jha, Jon Giffin, Shai Rubin and the

anonymous reviewers for helpful comments.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0335234 and by
support from Cisco Systems. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Science Foundation or Cisco Systems.

7. REFERENCES

[1] Microsoft Security Bulletin MS03-007. http://www.microsoft-
.com/technet/security /bulletin/MS03-007.mspx, 2003.

[2] Microsoft Security Bulletin MS03-026. http://www.microsoft-
.com/technet/security /bulletin/MS03-026.mspx, 2003.

[3] Nessus. http://www.nessus.org, 2004.

[4] The Network Simulator — ns-2. http://www.isi.edu/nsnam/ns,

2004.

NISCC Vulnerability Advisory 236929.

http://www.uniras.gov.uk/vuls/2004/236929/, 2004.

[6] THOR: A Tool to Test Intrusion Detection Systems by
Variations of Attacks. http://thor.cryptojail.net/, 2004.

[7] M. Allman. On the Performance of Middleboxes. In Proceedings
of ACM SIGCOMM Internet Measurement Conference, 2003.

[8] E. J. Aronne. The Nimda worm: An overview.

http://www.sans.org/rr/papers/36/95.pdf, 2001.

P. Barford and M. Crovella. Generating Representative Web

Workloads for Network and Server Perfromance Evaluation. In

Proceedings of ACM SIGMETRICS, 1998.

J. Cowie, A. Ogielsky, B. Premore, and Y. Yuan. Global

Routing Instabilities Triggered by CodeRed II and Nimda

Worm Attacks.

http://www.renesys.com/projects/bgp-instability, 2001.

S. Crosby and D. Wallach. Denial of service via algorithmic

complexity attacks. In USENIX Security, 2003.

Gandalf. IP Fragmentation —— > The Rose Attack.

http://www.securityfocus.com/archive/1/359144, 2004.

W. Lee, J. B. Cabrera, A. Thomas, N. Baliwalli, S. Saluja, and

Y. Zhang. Performance Adaptation in Real-Time Intrusion

Detection Systems. In Proceedings of RAID, 2002.

R. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall,

D. McClung, D. Weber, S. E. Webster, D. Wyschogrod, R. K.

Cunningham, and M. A. Zissman. Evaluating Intrusion

Detection Systems: 1998 DARPA Off-line Intrusion Detection

Evaluation. In Proceedings of IEEE Security Symposium,

1998.

J. Mirkovic and P. Reiher. A Taxonomy of DDoS Attack and

DDoS Defence Mechanisms. ACM SIGCOMM Computer

Communication Review, 32(2), 2004.

D. Mutz, G. Vigna, and R. Kemmerer. An Experience

Developing an IDS Simulator for the Black-Box Testing of

Network Intrusion Detection Systems. In Proceedings of

ACSAC, 2003.

J. Sommers and P. Barford. Self-Configuring Network Traffic

Generation. In Proceedings of ACM SIGCOMM Internet

Measurement Conference, 2004.

N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A

Taxonomy of Computer Worms. In Proceedings of CCS

Worms, 2003.

[5

[9

(10]

(11]
(12]

(13]

(14]

(18]

(16]

(17]

(18]

