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Abstract. Stateful security policies—which specify restrictions on be-
havior in terms of temporal safety properties—are a powerful tool for
administrators to control the behavior of untrusted programs. However,
the runtime overhead required to enforce them on real programs can be
high. This paper describes a technique for rewriting programs to incorpo-
rate runtime checks so that all executions of the resulting program either
satisfy the policy, or halt before violating it. By introducing a rewriting
step before runtime enforcement, we are able to perform static analysis
to optimize the code introduced to track the policy state. We developed
a novel analysis, which builds on abstraction-refinement techniques, to
derive a set of runtime policy checks to enforce a given policy—as well as
their placement in the code. Furthermore, the abstraction refinement is
tunable by the user, so that additional time spent in analysis results in
fewer dynamic checks, and therefore more efficient code. We report ex-
perimental results on an implementation of the algorithm that supports
policy checking for JavaScript programs.

1 Introduction

In this paper, we describe a technique that in-lines enforcement code for a broad
class of stateful security policies. Our algorithm takes a program and a policy,
represented as an automaton, and re-writes the program by inserting low-level
policy checks to ensure that the policy is obeyed. Our key insight is that meth-
ods adapted from abstraction-refinement techniques [6] used in software model
checking can be applied to optimize the in-lined code. From a security perspec-
tive, our approach means that some programs cannot be verified entirely a priori,
but it allows us to ensure that any program that is executed will always satisfy
the policy. Additionally, by bounding the size of the abstraction used in the op-
timization phase, the tradeoff between static analysis complexity and optimality
of the in-lined code can be fine-tuned. The simplicity of this approach is attrac-
tive, and allows our algorithm to benefit from advances in the state-of-the-art
in automatic program abstraction and model checking.

We implemented our approach for JavaScript, and applied it to several real-
world applications. We found the abstraction-refinement approach to be effective
at reducing the amount of instrumentation code necessary to enforce stateful



policies. In many cases, all of the instrumentation code can be proven unneces-
sary after the analysis learns a handful (one or two) facts about the program
through counterexamples. In such cases, the analysis has established that the
program is safe to run as is, and thus there is no runtime overhead. In cases
where the program definitely has a policy violation that the analysis uncovers,
instrumentation is introduced to exclude that behavior (by causing the program
to halt before the policy is violated), again using only a few facts established by
static analysis.
To summarize, our contributions are:

— A language-independent algorithm for weaving stateful policies into pro-
grams, to produce new programs whose behavior is identical to the original
on all executions that do not violate the policy.

— A novel application of traditional software model-checking techniques that
uses runtime instrumentation to ensure policy conformity whenever static
analysis is too imprecise or expensive. The degree to which the analysis relies
on static and dynamic information is tuneable, which provides a trade-off in
runtime policy-enforcement overhead.

— A prototype implementation of our algorithm for JavaScript, called JAM,
and an evaluation of the approach on real JavaScript applications. The eval-
uation validates our hypothesis that additional time spent in static analysis,
utilizing the abstraction-refinement capabilities of our algorithm, results in
fewer runtime checks. For five of our twelve benchmark applications, learn-
ing just four predicates allows JAM to place an optimal number of runtime
checks necessary to enforce the policy.

The rest of the paper is laid out as follows. Section 2 gives an overview of the
algorithm. Section 3 presents the technical details of the analysis and discuss
JAM. Section 4 evaluates the performance of JAM over a set of real applications.
Section 5 discusses related work.

2 Overview

We propose a hybrid approach to enforcing policies over code from an untrusted
source. Our solution is to perform as much of the enforcement as possible stati-
cally, and to use runtime checks whenever static analysis becomes too expensive.
This approach allows us to avoid overapproximations on code regions that are
difficult to analyze statically. Furthermore, varying the degree to which the anal-
ysis relies on runtime information allows us to control the cost of static analysis
at the expense of performing additional runtime checks. While this approach
means that many programs cannot be verified against a policy a priori before
execution, an interpreter provided with the residual information from the static
analysis can prevent execution of any code that violates the policy. In fact, as
we show in Section 3, the target program can often be rewritten to in-line any
residual checks produced by the static analysis, sidestepping the need for explicit
support from the interpreter.
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Fig. 1. Workflow overview of our approach.

Figure 1 presents an overview of our approach. The security policy is first
encoded as a temporal safety property over the states of the target program.
The algorithm then begins like other software model checkers by first performing
predicate abstraction [13] over the target code, and checking the resulting model
for a reachable policy-violating state [21]. Our algorithm differs from previous
techniques in how the results of the model checker are used; when the model
checker produces an error trace, there are a few possibilities.

1. If the trace is valid, then our algorithm places a dynamic check in the target
code to prevent it from being executed on any concrete path.
2. If the trace is not valid, then the algorithm can either:
(a) Refine the abstraction and continue model checking.
(b) Construct a dynamic check that blocks execution of the trace only when
the concrete state indicates that it will violate the policy.

Item (i) has the effect of subtracting a known violating trace from the behav-
iors of the program, and in general, some number of similar behaviors, thereby
decreasing the size of the remaining search space. For an individual counterexam-
ple, item (ii)(a) follows the same approach used in traditional counterexample-
guided abstraction refinement-based (CEGAR) software model checking. Item
(ii)(b) ensures that a potentially-violating trace identified statically is never exe-
cuted, while avoiding the expense of constructing a proof for the trace. However,
the inserted check results in a runtime performance penalty—thus, the choice
corresponds to a configurable tradeoff in analysis complexity versus runtime
overhead.

To illustrate our approach, consider the program listed in Figure 2(a). This
code is a simplified version of the sort of dispatching mechanism that might
exist in a command-and-control server [25] or library, and is inspired by common
JavaScript coding patterns. The function execute takes an instruction code and
data argument, and invokes an underlying system API according to a dispatch
table created by the program’s initialization code.

We will demonstrate enforcement of the policy given in Figure 2(c), which is
meant to prevent exfiltration of file and browser-history data. Observe that we
specify this policy, which corresponds to a temporal safety property, using an
automaton that summarizes all of the “bad” paths of a program that might lead
to a violation. Thus, policies encode properties on individual paths of a program,



1 policy = 0;
2 api[0] = readFile;
3 api[1] = sendPacket;
1 apil0] = readFile; 4 fun éxecu‘FeFinstr, data) {
2 api[1] = sendPacket; 5 if (api[instr] == readFile
3 fun execute(instr, data) { 6 && policy == 0) policy++;
4 ) apilinstr] (data) ; 7 if (api[instr] == sendPacket
5 8 && policy == 1) halt();
6 while(*) { 9 apilinstr] (data);
7 instr, data = read(); 10}
8 execute(instr, data);
9} (b) Safe code (previously safe parts
(a) Original code (P). ommitted). Shaded lines contain two

checks inserted by our algorithm; our
analysis prevented an additional check
before line 9.
call readHistory

T — call sendPacket
_—
———
U call readFile U
* *

(¢) Security policy that says “do not read from a file or the
history and subsequently write to the network.”

Fig. 2. Dangerous code example.

api[0] = readFile; api[0] = readFile;
apil[1] = sendPacket; api[1] = sendPacket;
instr, data = read(); instr, data = read();
execute(0, data); execute(0, data);
assume{api[0] == readFile} assume{api[0] == readHistory}
api[instr] (data); apilinstr] (data);
instr, data = read(); instr, data = read();
execute(1l, data); execute(1l, data);
assume{api[1] == sendPacket} assume{api[1] == sendPacket}
apil[instr] (data); api[instr] (data);

(1) (2)

Fig. 3. Counterexamples returned from the example in Figure 2. (2) is invalid, and
leads to a spurious runtime check.

and we intuitively think of policy violation as occurring when a subsequence
of statements in a path corresponds to a word in the language of the policy
automaton. The example in Figure 2(c) is representative of the policies used by
our analysis, and meant to convey the important high-level concepts needed to
understand our approach. For more details about specific policies, see Section 3.

To verify this policy against the program, we proceed initially with software
model checking. The first step is to create an abstract model of the program
using a finite number of relevant predicates [13]. We begin with three predi-
cates, corresponding to the states relevant to the policy: QFunc = readHistory,
@Func = readFile, and @QFunc = sendPacket. We assume the existence of a
special state variable @QFunc, which holds the current function being executed;
each of these predicates queries which function is currently being executed. With
these predicates, the software model checker will return the two counterexamples
shown in Figure 2.



(1) is valid — it corresponds to a real policy violation. Our analysis updates
the program’s code by simulating the violating path of the policy automaton
over the actual state of the program. This is demonstrated in Figure 2(b); the
automaton is initialized on line 1, and makes a transition on lines 6 and 8 after
the program’s state is checked to match the labels on the corresponding policy
transitions. When the transition to the final state is taken, the program halts.

(2) is not valid—the assumption that api[0] == readHistory never holds.
However, for the analysis to prove this, it would need to learn a predicate that
encodes this fact, and build a new, refined abstraction on which it can per-
form a new statespace search. If the user deems this too expensive, then the
analysis can simply insert another runtime check before line 7 corresponding to
the first transition in the policy automaton, which increments policy whenever
apilinstr] holds readHistory. This approach will result in a secure program,
but will impose an unnecessary runtime cost: every time execute is called, this
check will be executed but the test will never succeed. Alternatively, the analysis
can learn the predicates {api[instr] = readHistory, instr = 0}, and proceed
with software model checking as described above. This will result in the more
efficient code shown in Figure 2(b).

3 Technical Description

Our analysis takes a program P and a policy, and produces a new program P’
by inserting policy checks at certain locations in P needed to ensure that the
policy is not violated. In this section, we describe the policies that we support,
as well as the algorithm for inserting policy checks. The algorithm we present
has several important properties that make it suitable for practical use:

1. Upon completion, it has inserted a complete set of runtime checks necessary
to enforce the policy: any program that would originally violate the policy
is guaranteed not to violate the policy after rewriting. Runs that violate the
policy must encounter a check, and are halted before the violation occurs.

2. The policy checks inserted will not halt execution unless the current execu-
tion of the program will inevitably lead to a policy violation. In other words,
our approach does not produce any false positives.

3. The running time of the main algorithm is bounded in the size of the program
abstraction, which is controllable by the user. This approach yields a trade-
off between program running time and static-analysis complexity.

4. JAM always terminates in a finite number of iterations.

We begin with a description of our problem, and proceed to describe our
language-independent algorithm for solving it (Section 3.1). The algorithm relies
only on standard semantic operators, such as symbolic precondition and abstract
statespace search. In Section 3.2, we discuss our implementation of the algorithm
for JavaScript.



3.1 Runtime Checks for Safety Properties

Preliminaries. A run of a program P executes a sequence of statements, where
each statement transforms an element o € Xp (or state) of P’s state space to
a new, not necessarily distinct, state o’. For the purposes of this section, we do
not make any assumptions about the form of P’s statements or states. We use
a labeling function ¢ for each statement s in P, so that ¢(s) denotes a unique
integer. Let a state trace be a sequence of states allowed by P, and let 7p C X*
be the complete set of possible state traces of P.

The policies used by our analysis are based on temporal safety properties.
A temporal safety property encodes a finite set of sequences of events that are
not allowed in any execution of the program. We represent these properties
using automata.! The events that appear in our policies correspond to concrete
program states, and we do not allow non-trivial cycles among the transitions in
the automaton.

Definition 1 (Temporal safety automaton). A temporal safety automaton & is
an automaton @ = (Q, Qs, 9, Qr, L) where

— @ is a set of states (with Qs C @ and Q¢ C Q the initial and final states,
respectively). Intuitively, each ¢ € @ represents sets of events that have
occurred up to a certain point in the execution.

— 6 CQ x L xQ is a deterministic transition relation that does not contain
any cycles except for self-loops.

— L is a logic whose sentences represent sets of program states, i.e., ¢ € L
denotes a set [¢] C X.

For a given (q,¢,q’) € 9§, the interpretation is that execution of a statement
from a program state o where ¢ holds (i.e., o € [¢]) causes the temporal safety
automaton to transition from ¢ to ¢'. Self-loops are necessary to cover state-
ments that do not affect the policy state, but other types of cycles can prevent
our algorithm from terminating in a finite number of iterations. This leads to
the definition of property matching: a program P matches a temporal safety
automaton @, written P |= ¢, if it can generate a state trace that matches a
word in the language of the automaton. For a formal definition of matching, see
Definition 5 in Appendix A.

Our problem is based on the notion of property matching. Given a program P
and temporal safety automaton @, we want to derive a new program P’ that: (i)
does not match @, (ii) does not contain any new state traces, and (iii) preserves
all of the state traces from P that do not match @. A formal definition of this
problem is given in Appendix A.

Policy Checks from Proofs. Our algorithm is shown in Algorithm 1, and
corresponds to the workflow in Figure 1. SafetyWeave takes a program P, a
finite set of predicates FE from L, a bound on the total number of predicates k,
and a temporal safety automaton policy @. We begin by using predicate set E

! This formalism is equivalent to past-time LTL.



Algorithm 1 SafetyWeave(P, E, k, D)
Require: £ >0
Require: ¢ € F for all (q,¢,q') €6
repeat
Pg < Abs(P, E) {Build abstraction}
7 « IsReachable(Pg, @)
if m = NoPath then
return P
else if isValid(7) then
{Build runtime policy check; rewrite P to enforce it}
Uh «— BuildPolicy(P, w, ®)
P «— Enforce(P,¥5)
else
{Refine the abstraction}
if |E| < k then
E — E U NewPreds()
else
{We have reached saturation of the abstraction set E'}
{Build runtime policy check; rewrite P to enforce it}
¥F «— BuildPolicy(P, 7, ®)
P «— Enforce(P,¥5)
end if
end if
until forever

to build a sound abstraction of P [13] (this functionality is encapsulated by Abs
in Algorithm 1). Note that F must contain a certain set of predicates, namely
¢; for each (q;,¢i,q.) € d%. The abstraction is then searched for traces from
initial states to bad states (encapsulated by IsReachable), which correspond to
final states in @. If such a trace 7 is found, it is first checked to see whether it
corresponds to an actual path through P (performed by IsValid). If it does, or if
we cannot build an abstraction that does not contain 7, then a runtime policy
check ¥ is derived (encapsulated by BuildPolicy) and added to P (performed
by Enforce). W], identifies a concrete instance of .

If m does not correspond to an actual policy-violating path of P, and we
have fewer than k predicates, then the abstraction is refined by learning new
predicates (encapsulated by NewPreds). Otherwise, we add a runtime check to
prevent the concrete execution of 7. This process continues until we have either
proved the absence of violating paths (via abstraction refinement), or added a
sufficient set of runtime checks to prevent the execution of possible violating
paths.

Termination. SafetyWeave is guaranteed to terminate in a finite number of
iterations, due to the following properties: (i) the algorithm will stop trying to
prove or disprove the validity of a single trace after a finite number of iterations,
due to the bounded abstraction size (| F| is limited by k). (i) In the worst case,
it must insert a policy check for each transition in @ before every statement in



P. Once P is thus modified, IsReachable will not be able to find a violating trace
7, and will terminate.

Abstracting P (Abs). On each iteration, an abstraction Pg is built from
the predicate set E' and the structure of P. Pr has two components: a control
automaton G¢ and a data automaton Gp. Each automaton is a nested word
automaton (NWA) [2] whose alphabet corresponds to the set of statements used
in P. G¢ overapproximates the set of all paths through P that are valid with
respect to P’s control structure (i.e., call/return nesting, looping, etc.), whereas
G p overapproximates the paths that are valid with respect to the data semantics
of P. In G¢, states correspond to program locations, and each program location
corresponds to the site of a potential policy violation, so each state is accepting.
In the data automaton, states correspond to sets of program states, and transi-
tions are added according to the following rule: given two data-automaton states
q and ¢’ representing ¢ and ¢', respectively, the Gp contains a transition from
q to ¢’ on statement s whenever ¢ A Pre(s,¢’) is satisfiable, where Pre is the
symbolic precondition operator. We then have that L(G¢) N L(Gp) represents
an overapproximation of the set of valid paths through P; this is returned by Abs.

Appendix A contains full definitions for G¢ and G p, and Section 3.2 discusses
an implementation of Pre for JavaScript.

Proposition 1 L(Gp) corresponds to a superset of the traces of P that might
match @.

Checking the Abstraction (IsReachable). Given an automaton-based ab-
straction Pg = G¢ N Gp, IsReachable finds a path in Pg that matches ®.
This operation is encapsulated in the operator Ny specified in Definition 2. In
essence, Definition 2 creates the product of two automata—Pg and @. However,
the product is slightly non-standard because Pgp has an alphabet of program
statements, whereas @ has an alphabet of state predicates. Note that when we
refer to the states of Pg in Definition 2, we abuse notation slightly by only us-
ing the program state component from Gp, and dropping the program location
component from Ge¢.

Definition 2 (Policy Automaton Intersection Npo1). Given a temporal safety
automaton ¢ = (Qé,Qf,é‘P,Q?) and an NWA G = (QG,QE,JG,Q?) whose
states correspond to sets of program states, G Npo1 ¢ is the nested word au-
tomaton (@, Qs,0,Q¢), where

— @ has one element for each element of Q¢ x Q2.

— Qs ={(6,¢%) | ¢* € Q?,6 € Q%}, i.e., an initial state is initial in both G p
and .

— 0 = (0in,0ca,0re) are the transition relations with alphabet S. For all
(q®,¢",q'?) € 62, and ¢, ¢’ € QF such that ¢ A Pre(s, ¢’ A ¢") is satisfiable,
we define each transition relation using the transitions in 6¢ = (6,65, 06%):

e §iu: when (¢, s,¢') € 05, we update i, with: ((¢, %), s, (¢',¢'?)).
® ot when (¢, s,¢") € 6S., we update 6., with: ((¢,q?), s, (¢',¢'?)).



e J,0: when (¢,¢",s,¢') € 0¢,

(¢/7q/¢)) for all q//@ c QQS'
- Qr={(¢,¢") 1 ¢* € Q‘f’,qﬁ € Q?}, i.e., a final state is final in @ and G.

we update d, with: ((¢,q%), (¢, "), s,

The words in L(Pg Npol $) are the sequences of statements (traces) in P that
respect the sequencing and nesting specified in the program, and may lead to
an error state specified by @. As long as G¢ and Gp overapproximate the valid
traces in P, we are assured that if an erroneous trace exists, then it will be in
L(Pg Npo1 @). Additionally, if L(Pg Npet $) = &, then we can conclude that P
cannot reach an error state.

Checking Path Validity (IsValid); Refining the Abstraction (NewPreds).
Given a trace m € L(Pg), we wish to determine whether 7 corresponds to a
possible path through P (i.e., whether it is walid). This problem is common to
all CEGAR-based software model checkers [3,17], and typically involves pro-
ducing a formula that is valid iff 7 corresponds to a real path. We discuss an
implementation of IsValid for JavaScript in Section 3.2.

Because Pg overapproximates the error traces in P, two conditions can hold

for a trace w. (i) The sequence of statements in 7w corresponds to a valid path
through P that leads to a violation according to @, or it cannot be determined
whether 7 is a valid trace or not. (i) The sequence of statements in 7 can be
proven to be invalid. In the case (i), a runtime check is added to P to ensure that
the error state is not entered at runtime (see the following section for a discussion
of this scenario). In the case of (i), Pg is refined by adding predicates to Gp
(encapsulated in the call to NewPreds). Standard techniques from software model
checking may be applied to implement NewPreds, such as interpolation [26] and
unsatisfiable-core computation [17]; we discuss our JavaScript-specific implemen-
tation in Section 3.2.
Deriving and Enforcing Dynamic Checks. The mechanism for deriving
dynamic checks that remove policy-violating behavior is based on the notion
of a policy-violating witness. A policy-violating witness is computed for each
counterexample trace produced by the model checker that is either known to
be valid, or cannot be validated using at most k predicates. A policy-violating
witness must identify at runtime the concrete instance of the trace = produced
by the model checker before it violates the policy @. To accomplish this, we
define a policy-violating witness as a sequence containing elements that relate
statements to assertions from @. The fact that a check is a sequence, as opposed
to a set, is used in the definition of Enforce.

Definition 3 (Policy-violating witness). A policy-violating witness ¥F € (N x
L)* for a trace 7 and policy @ is a sequence of pairs relating statement elements
in 7 to formulas in £. We say that 7’ = WZ (or n’ matches ¥F) if there exists a
subsequence 7 of 7’ that meets the following conditions:

1. The statements in 7" match those in ¥Z: |7”| = |¥Z|, and for all (¢, ¢;) € ¥,
(i) is in 7.

2. Immediately befre P executes a statement s corresponding to the i** entry
of UF (i.e. (1(s), ¢:i)), the program state satisfies ¢;.



Suppose that & = (Q%,Q%, 6%, Q?) is a temporal safety automaton, and 7 is a
path that causes P to match ¢. Deriving W3 proceeds as follows: because 7 is
a word in L(Pg = Gp N G¢), there must exist some subsequence s;, S, - . - Si,,
of m that caused transitions between states in @ that represent distinct states in
@. We use those statements, as well as the transition symbols [¢i]i€{i17i27__,’i7n}
from @ on the path induced by those statements, to build the j** element of vz
by forming pairs (i, ¢;), where the first component ranges over the indices of
Si1Sig « v« Sipy -

More precisely, for all i € iy, g, ..., i, there must exist (g;, ¢;,q.) € 6% and
(¢, q:), 8, (¢, q})) € 67EMwar? guch that ¢’ A ¢; is satisfiable (recall the Nye) from
Definition 2). Then:

Wg = [(iil 5 ¢1)7 (ii27¢2)7 DR (sz7¢m)]

Intuitively, ¥} captures the statements in 7 responsible for causing @ to take
transitions to its accepting state, and collects the associated state assertions to
form the policy-violating witness.

We now turn to Enforce, which takes a policy-violating witness ¥J, and a
program P, and returns a new program P’ such that P’ does not contain a path
7 such that 7 = ¥Z. The functionality of Enforce is straightforward: for each ele-
ment (i, ¢) in ¥Z, insert a guarded transition immediately before =1 (4) to ensure
that ¢ is never true after executing :~1(i). The predicate on the guarded transi-
tion is just the negation of the precondition of ¢ with respect to the statement
1=1(i), and a check that the policy variable (inserted by Enforce) matches the
index of (i,¢) in @. When the guards are true, the statement either increments
the policy variable, or halts if the policy variable indicates that all conditions in
VU7 have passed. A concrete example of this instrumentation in Figure 2.

Note that a given occurrence of statement s in P may be visited multiple
times during a run of P. Some subset of those visits may cause @ to transition
to a new state. In this scenario, notice that our definition of Enforce will insert
multiple guarded transitions before s, each differing on the condition that they
check. Namely, each transition (g, ¢, ¢’) for which s activates will have a distinct
condition for Pre(s, ¢) that either increments the policy variable or halts the
program. Additionally, the check on the policy variable in each guard prevents
the policy variable from being updated more than once by a single check.

Definition 4 (Functionality of Enforce). Given a program P and a dynamic
check ¥F = {(i1,¢1),.--, (in,®n)}, Enforce produces a new program P’ that
first creates a new, unique (for each invocation of Enforce) numeric variable (for
the purposes of this definition, we call this variable policy) initialized to zero,
and then repeats the following steps for each element (i, ¢) € ¥Z:
1. Let ¢pre = Pre(t=1(i), ¢) Apolicy = j, where j is the index of (i, ¢) in &F.
2. Insert a new statement before 1 ~1(i) that either:
— Increments policy whenever ¢pe is true and policy < |¥Z].
— Halts the execution of P’ whenever ¢p is true and policy = |¥F].

When Enforce is called on all counterexample paths returned by Algorithm 1,
then the resulting program will not match &.
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3.2 JavaScript Prototype

We implemented our algorithm for JavaScript, in a tool called JAM. There
are four components to Algorithm 1 that must be made specific to JavaScript:
the control (G¢) and data (Gp) automaton generators (Abs), the path validity
checker (IsValid), and the predicate learner (NewPreds). To build the control
automaton, we used Google’s Closure Compiler [18], which contains methods for
constructing an intraprocedural control flow graph (CFG) for each function in
a program, as well as dataflow analyses for determining some of the targets of
indirect calls. The only language-specific aspect of the data-automaton generator
is the computation of symbolic pre-state for a given statement in P. We use
Maffeis et al.’s JavaScript operational semantics [22], lifted to handle symbolic
term values, and implemented as a set of Prolog rules. Computing a satisfiability
check to build Gp in this setting amounts to performing a query over this Prolog
program, with ground state initialized to reflect the initial state of the program.
To learn new predicates (i.e., to compute NewPreds), we apply a set of heuristics
to the failed counterexample trace that we have developed from our experience
of model checking real JavaScript programs. Our heuristics are based on the
statement that made the trace invalid; the predicate they build depends on
the type of that statement (e.g., if the statement is an if statement, the new
predicate will be equivalent to the statement’s guard expression).
A more detailed description of our JAM is given in Appendix B.

4 Experimental Evaluation

In this section, we summarize the performance and effectiveness of JAM in ap-
plying realistic security policies to ten JavaScript applications (plus alternative
versions of two of them that we seeded with policy-violating code). The results,
summarized in Table 1, demonstrate that the time devoted to static analysis dur-
ing the abstraction-refinement stage often leads to fewer runtime checks inserted
into the subject program. Additionally, because the CEGAR process evaluates
the validity of the potentially-violating execution traces found in the abstract
model, time spent during this stage also yields greater confidence that the in-
serted checks are legitimately needed to prevent policy violations during runtime.

The benchmark applications used to measure JAM’s performance are real
programs obtained from the World Wide Web. Consequently, the policies we
developed typically address cross-domain information-leakage issues and data-
privacy issues that are of concern in that domain. Our measurements indicate
that under such realistic circumstances, (i) JAM is able to identify true vulnera-
bilities while (ii) reducing spurious dynamic checks, and (iii) is able to do so with
analysis times that are not prohibitive. A detailed description of the benchmarks
and the motivation for choosing them can be found in Appendix C.

4.1 Results

Because the goal of the system is to derive a minimal set of runtime checks
needed to ensure adherence to a policy, we sought to measure the benefits of
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Predicates Checks

Benchmark Saturation Execution|Memory
application |Learned|Total| CEGAR|Valid |Spurious|Total| time (s) | (KB)

flickr 2 3 1 0 0 1 138.67| 60737
flickr 1 2 1 0 1 2 74.49| 61472
flickr 0 1 0 1 1 2 24.23| 63520
lbeacon | | o 3 2 o 0 2| 7450] 62215
jssec [ I 20 of o O 0]~ 14.04] 46591
jssec 0 1 0 0 1 1 7.59| 56023

Table 1. Performance of JAM on selected benchmarks. Learned denotes the number
of predicates learned through abstraction refinement, Total to the number of learned
predicates plus those in the initial state from the policy. CEGAR denotes the number
of checks placed before the abstraction size limit is reached, Saturation to those placed
afterwards.

refining the program model against the cost of performing such analysis. This
information was gathered by comparing the running time and result of JAM’s
analysis under varying levels of abstraction refinement, achieved by placing a
limit on the number of predicates learned during the CEGAR analysis before
proceeding to the saturation phase. The validation of counterexamples and learn-
ing of new predicates can be disabled altogether, which establishes the baseline
effectiveness of static analysis without abstraction refinement. Measurements of
JAM’s effectiveness and efficiency with different levels of abstraction refinement
are presented in Table 1; for a complete account of the experimental results,
see Appendix C. In general, we find that more time devoted to static analysis
leads to fewer dynamic checks and greater confidence in the minimality of those
checks.

One dimension on which to evaluate the behavior of JAM is the number
of necessary versus spurious checks that it inserts. All checks that are inserted
during the CEGAR phase are known to be necessary, because the abstract coun-
terexample that gave rise to each such check has been proven valid. In contrast,
spurious checks may be inserted in the saturation phase. We inspected the ap-
plications manually to determine the number of necessary checks (see Table 3 in
Appendix C). Columns 5 and 6 of Table 2 classify the checks identified during
saturation as valid or spurious according to our manual classification. A lower
number of spurious checks inserted under a particular configuration represents
a more desirable outcome vis a vis minimizing runtime overhead.

Reported performance statistics are the averages of multiple runs on a Vir-
tualBox VM running Ubuntu 10.04 with a single 32-bit virtual processor and
4GB memory. The host system is an 8-core HP Z600 workstation with 6GB
memory running Red Hat Enterprise Linux Server release 5.7. Execution time
and memory usage refer to the total CPU time and maximum resident set size
as reported by the GNU time utility version 1.7.

The results for flickr demonstrate the benefit of additional effort spent on
abstraction refinement. Analysis of the unrefined model identifies two potential
violations of the policy, one of which is spurious and the other valid (according
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to our manual classification of checks). When allowed to learn a single predicate,
JAM is able to avoid a spurious trace, and identify the valid counterexample. Al-
lowing JAM to learn two predicates causes it to prove the spurious counterexame
invalid, and rule out the un-needed runtime check.

The policy for the beacon benchmark is more involved—using multiple tran-
sition sequences to characterize the policy violation; it states “a cookie should
never be written after the DOM is inspected using document.getElementById
or document .getElementsByTagName.” This policy represents a cross-domain
information-leakage concern that JAM is able to identify and validate in the first
iteration of the analysis. The jssec application is intended to allow a website
user to open and close a section of the page being viewed. The policy for jssec
states that the only allowable change to a DOM element’s style properties is to
the display attribute; otherwise, the code could change the backgroundImage
attribute, thereby initiating an HTTP call to a remote server. JAM successfully
proves that the program is free of violations by learning the prototype of an
object whose member is the target of an assignment.

5 Related Work

In-Lined Reference Monitors. In-lined reference monitors were first discussed by
Erlingsson and Schneider [8,29] who applied the idea to both Java and x86 byte-
code. Their prototype, SASI, supports security policies as finite-state machines
with transitions denoting sets of instructions (i.e., predicates over instructions)
that may be executed by the untrusted program. Note the distinction from the
policy automata used in our work, where transitions have predicates that refer to
the program state, not just restrictions on the next instruction to execute. SASI
works by inserting policy-automaton-simulation code before every instruction in
the program, and then uses local simplification remove as much of the added
code as possible. This amounts to applying the available local static informa-
tion at each location to evaluate the instruction predicate to the greatest degree
possible; the authors opted not to use global static analysis in the interest of
maintaining a small TCB. In this respect, the primary focus of our work is quite
different from Erlingsson and Schneider’s foundational work.

Since Erlingsson and Schneider’s work, this has been an active area of re-
search. Nachio [9] is an in-lined-monitor compiler for C, where policies are given
as state machines with fragments of imperative code that execute at each state.
The Java-MOP (Monitor-Oriented Programming) system [5] allows users to
choose from a set of temporal logics, domain-specific logics, and languages in
which to express policies. ConSpec [1] performs in-lined reference monitoring
based on policies similar to those used by Erlingsson and Schneider, and takes
the additional step of formally verifying the in-lined monitor. SPoX [15] built
on aspect-oriented programming to implement in-lined reference monitoring for
Java, using as policies automata whose edges are labeled with pointcut expres-
sions. They define a formal semantics for their policies, laying the groundwork
for future work on verified implementations of in-lined reference monitors; this
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feature can also aid in developing analyses for optimizing the in-lined monitor
code, although the authors do not pursue this idea. Sridhar and Hamlen [30]
designed an IRM-compiler for JavaScript bytecodes, and showed how software
model checking can be applied to verify the compiled in-lined monitor code.
Hamlen et al. [16] designed MOBILE, an extension to the .NET runtime that
supports IRMs with the advantage that well-typed MOBILE code is guaranteed
to satisfy the policy it purports to enforce. The primary difference between these
previous efforts and our own is our focus on optimizing in-lined monitor code,
and our use of abstraction-refinement techniques to do this in a tuneable manner.
Clara [4] is a framework for incorporating static analysis into the reference-
monitor in-lining process. The setting in which Clara operates is similar to ours:
an untrusted program and a security policy, represented by a finite-state ma-
chine, are provided, and the goal is to produce a rewritten program that always
obeys the policy. It works on top of an aspect-weaving framework for Java [19]
by first weaving the policy (represented as an aspect) into the program, and
subsequently applying a modular set of static analyses to remove as many join
points as possible. In this regard, Clara is conceptually similar to our work;
it is conceivable that parts of our work could be combined as a path-sensitive,
semantics-driven static-analysis component inside of Clara’s modular framework.
Otherwise, our work differs from Clara in one important respect: the policies we
use provide direct means to refer to the dynamic state of the program, allow-
ing richer and more concise policies. Clara’s dependence on AspectJ limits the
building blocks of expressible policies to a pre-defined set of pointcuts.

JavaScript Policy Enforcement. Several recent projects attempt to identify sub-
sets of JavaScript that are amenable to static analysis. Two early examples are
ADSafe [7] and FBJS [10], which facilitate “mashups” by removing language
elements that make it difficult to isolate the effects of distinct JavaScript pro-
grams executing from the same domain. Maffeis et al. explored a similar ap-
proach [23,24], but took the additional step of formally verifying their subsets
against small-step operational semantics of the ECMAScript specification. More
recently, Google has released Caja [12], uses the object-capability model to pro-
vide isolation. Our work differs from efforts to identify secure JavaScript subsets
for isolation primarily in the class of policies we are able to support. Rather
than sandbox-based object-capability policies, JAM can verify arbitrary safety
properties, including flow-sensitive temporal-safety properties.

Guarnieri and Livshits presented GATEKEEPER, a “mostly static” JavaScript
analysis based on points-to information that is calculated using Datalog inference
rules [14]. Unlike JAM, Gatekeeper is not capable of checking flow-insensitive
policies, and it is not clear how it can be made flow-sensitive without greatly
increasing cost. Kudzu [28] is a JavaScript bug-finding system that uses forward-
symbolic execution. This functionality stands in contrast to JAM, as dangerous
program paths are reported to the user at analysis time, whereas in JAM they
are rewritten to halt at runtime before the dangerous (policy-violating) pay-
load is executed: JAM always inserts sufficient instrumentation to soundly and
completely enforce a given policy.
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Yu et al. proposed a safe browsing framework based on syntax-directed
rewriting of the JavaScript source according to an edit automaton [31]. Their
work is formalized in terms of a JavaScript subset they call CoreScript, which
excludes the same difficult language elements as most other static JavaScript
analyses. While our current implementation does not support the full language
either, this is not a limitation of our approach. The dynamic compoment of our
policy-enforcement method is capable of monitoring the execution of these lan-
guage elements. The syntax-directed nature of their rewriting framework effec-
tively restricts the class of policies it can enforce. More recently, Meyerovich and
Livshits presented ConScript [27], which is an in-browser mechanism for enforc-
ing fine-grained security policies for JavaScript applications. One of the primary
contributions of ConScript is a type system for checking policy-instrumentation
code against several different types of attack on the integrity of the policy. Es-
sentially, ConScript is a system for specifying and implementing advice [20] on
JavaScript method invocations. Thus, ConScript is complementary in function
to JAM: while JAM takes a high-level logical formula that represents a secu-
rity policy, and finds a set of program locations to place policy instrumentation,
ConScript is capable of soundly and efficiently enforcing that instrumentation
on the client side, during execution.
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A Expanded Definitions

Temporal safety automaton matching. In Section 3, we discussed the concept of
a program P matching a temporal safety automaton @. Definition 5 makes this
notion precise.

Definition 5 (Temporal safety autornaton matching.) Given a temporal safety
automaton @, we say that P matches @ (P = @) iff there exists a finite sequence
p=1[p1,--.,pn] € Tp of n states such that:

1. @ contains a transition §; = (gs, ¢s, ¢5) such that p; € [¢s] and ¢, € Q5.
2. For each pair of sequential states p;—1,p;, 0 < ¢ < n, ¢ contains a pair of
transitions:
— 0i—1 = (Qi—1,®i—1,¢;) such that p;_1 € [¢;_1]
— 6; = (¢i, i, ¢i+1) such that p; € [¢4]
3. @ contains a transition dy = (¢}, ¢y, qr) such that p, € [¢] and q; € Q.

The first and third conditions ensure that the initial and final transition require-
ments are obeyed, and the second condition maintains proper sequencing.
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Formal Problem Statement. To precisely define the problem solved by Algo-
rithm 1, we use a relation Cp,eax, Which is defined over pairs of state-sequence
sets: Ty Cprefix 72 if for each p € Tq, either p € 75 or there exists p’ € 73 such that
p' is a prefix of p. We also require a state-projection operator wp : Xp/ — Xp,
which maps a state for P’ into a state for P; if P’ has a variable x that P does
not, then mp(0), for o € Xp/, will contain no mention of x. We can lift 7p to
sequences of states by also compressing into a single state sequential states in
7p (ppr) whose pre-image counterparts in pp differ only in variables exclusive to
P’. We can also lift mp to sets of state sequences in the natural way.

Problem statement. Given a program P and policy @, rewrite P to produce P’
so that P’ [£ @, np(Tp/) Cprefix Tp, and all p € Tp — p(7Tp/) satisty conditions
1-3 of Definition 5.

Because we use temporal safety automata to encode bad sequences of program
states, the goal of safety policy weaving is to ensure that all executions of P fail
to match @; this explains the use of [~ in our definition.

Control and Data Abstractions. In the following, we give precise descriptions of
G¢ and Gp; concrete algorithms for producing these entities for JavaScript are
discussed in Appendix B.

Definition 6 (Control Automaton G¢). Given a program P, the control au-
tomaton G¢ is the nested word automaton G = (Q, Qs,d, Q) where

— @ is a set of states in one-to-one correspondence with program locations
(points between statements in P): for each program location ¢;, there is a
state q; € Q.

— Qs C Q is a set of initial states corresponding to program entry points.

— 0= {(0n C(Q,S,Q),dca C (Q,S,Q),0e C (Q,Q,S,Q)) are the transition
relations. d.; and d,. correspond to call and return edges, where nesting
matters, whereas ¢;, are internal edges, where only the order of statement
execution matters.

— Q5 = Q is the set of accepting states. The language associated with each
state represents a set of (prefixes of) paths through P with valid control
flow, so are accepting in G¢.

Elements in each transition relation are added according to the control structure
of P. This element of the algorithm is specific to the language for which the
algorithm is instantiated.

The data automaton Gp is a nested word automaton of the set of possible
program states; automaton states represent sets of program states, and transi-
tions represent statements from P. An automaton state corresponds to a set of
(possibly negated) predicates from E whose conjunction (or cube) specifies the
states of P represented by that automaton state. A transition in Gp represents
the possible effect of a particular statement on the cube associated with the
source and destination states.
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Definition 7 (Data Automaton Gp). Given a set of predicates E from L, a set
of cubes Ciniy C cubes(E) describing the initial state of P, and a set of statements
S found in P, Gp is a nested word automaton: Gp = (Qg, Qs, (din, 6ca, Ore), Q)
where

— Qg 15 the set of cubes of E, and Q¢ = Q, i.e., all states are “accepting”.

- Qs = Uinit-

— 0 = (6in,0ca, Ore) are the transition relations with alphabet S. &y, is defined
by (¢,8,¢") € bin for all s € S, and for all pairs ¢,¢' € Qp such that
o A Pre(s, @') is satisfiable.

— Although call and return edges are not needed to abstract the data and policy
state directly, they are needed to compute an intersection with G¢; we simply
assume that any computed internal edge for a call statement could be a call
edge, and likewise for return statements and return edges:

dea ={(q,8,¢') | V calls s € P,(q,8,q") € din}
5re :{(q7 q/lv qu/) | V returns s € Pv (q, 8»(]/) S (sinv (QH, 3/7 qm) S 50&1}

In Definition 7 we assume that all states are “accepting”; the set of policy-
violating states are identified when G¢ N Gp is intersected with @ using Npor,
as described in Definition 2. When computing § for Gp, we make use of the
precondition operator Pre. This is the only language-specific element of the data-
automaton abstraction algorithm; Appendix B discusses an implementation of
Pre for JavaScript.

B JavaScript Prototype

We implemented our algorithm for JavaScript, in a tool called JAM. There are
three components to Algorithm 1 that must be made specific to JavaScript:
the control (G¢) and data (Gp) automaton generators (Abs), the path valid-
ity checker (IsValid), and the predicate learner (NewPreds). The only language-
specific aspect of the data-automaton generator is the computation of symbolic
pre-state for a given statement in P. In this section, we describe our imple-
mentation of the control-automaton generator, the symbolic Pre operator, the
path-validity checker, and the predicate learner.

B.1 Building G¢ for JavaScript.

To build the control automaton for a JavaScript program, we utilized Google’s
Closure Compiler [18]. The Closure Compiler contains methods for constructing
an intraprocedural control flow graph (which consists of control-flow graphs)
for each function in a program, as well as dataflow analyses for determining
some of the targets of indirect calls. To construct G¢, we copy the edges of
each CFG as the internal transitions d;,, and begin to build call and return
transitions dca, e from the information given by Closure’s dataflow analysis.
For any indirect-call target for which Closure cannot compute a set of targets,
we conservatively assume that any function body in the code could be the target,
and add appropriate edges to dc, and dye.
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exe(H,L,E,H,L,Va) :-

Scope(H, 1, @this) = Iy is_this (E),
H,1,.@Get(@this) = va scope(H,L, @this’,L1),
H.lthis — H.lova aget (H,L1,’@this’,Va).

E-This

Fig. 4. Translation from operational semantics transition rule to Prolog code for Java-
Script’s this expression.

B.2 Building Gp for JavaScript.

Computing the data automaton requires determining the satisfiability of a for-
mula involving the symbolic pre-state for a particular statement. To compute
Pre, we build on the small-step operational semantics of JavaScript given by
Maffeis et al. [22]. The operational semantics is a set of derivation rules that
constitutes a transition relation — between (Heap-configuration, Scope-pointer,
Program-counter) triples; below, we omit the scope-pointer component, because
it is a technical detail not suited to the level of our discussion. The predi-
cates that we associate with states are quantifier-free first-order formulas with
a free variable that denotes a heap configuration. For example, the following
formula has free variable H for a heap configuration, and specifies a state in
which the x field of the global object contains the string value “Hello world”:
H(#Global).x = “Hello world”.

To perform the needed symbolic analysis for Pre, we “lift” the operational
semantics to handle symbolic term-valued objects, thereby creating a symbolic
transition relation. For example, we can create a heap configuration where the
cell for program variable x is associated with the symbolic term value v, in which
case the transition relation would yield a heap configuration where the cell for
x is associated with term value v 4+ 1 upon executing the statement x = x + 1:

(H(#Global).x = v,x =x+ 1) — (H(#Global).x =v +1, 1)

Using the symbolic transition relation, we can compute everything we need to
build G'p by observing that if starting in a state H that satisfies ¢ and executing
s yields a state Hyv that satisfies ¢, then ¢ A Pre(s, ¢’) is satisfiable. More
precisly:

& A Pre(s,¢) is sat. <= (Hg,s) — (Hyr,s') such that ¢ A ¢’ is sat.

where Hg is the most general heap configuration that satisfies ¢ — removing
any condition from Hyg would cause it to no longer satisfy ¢ (likewise for Hy).

We implemented the symbolic transition relation in Prolog, primarily copy-
ing the structure and naming convention of Maffeis’ operational semantics [22].
Each reduction rule in the operational semantics is given a rule in our Prolog
implementation, and the program state is initialized by creating ground facts
corresponding to heap entries. Figure 4 shows an example translation from re-
duction rule to Prolog rule. The antecedent is translated into the body of an
exe clause, and the consequent becomes the head of a rule. The exe predicate
takes six arguments — aligned with the components in the pre- and post-states
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of the corresponding transition rule from the semantics. We assume a function
PredicateQuery(¢, H) that returns a Prolog query that checks that heap configu-
ration H matches predicate ¢.

We can perform a ¢ APre(s, ¢') satisfiability query needed to construct G p by
creating ground facts that constitute Hy, executing exe(Hg, 1, s, Hyv, I', s’), and
executing the query returned by PredicateQuery(¢’,Hy) to determine whether
the post-state satisfies ¢'.

B.3 IsValid for JavaScript.

IsValid is given a sequence of program statements m and a policy @, and must
check that the program state that holds after executing the statements in 7 ac-
tually violates the policy ¢. We use our Prolog implementation of JavaScript’s
transition relation to implement this check, by creating a Prolog query from a
sequence of exe predicates. More specifically, let 7 = sps7...s, be the coun-
terexample, and ¢;oP;1 - . . Pim, m < n, be the sequence of policy predicates on
the path that caused 7 to match &. The subscripts ig, i1, ..., 4, correspond to
the indices into 7 that caused the matching sequence of transitions in . Then
we construct the following query to check path validity:

exe(HO, L07 S0, H17 Lla *)7 LI} exe(H’iO*l’ L'L.Ofl’ Sig—1, H’LO) Li07 7)’
PredicateQuery(¢io, Hio), - - -, exe(Him—1, Lim—1, Sim—1, Him, Lim, -),
PredicateQuery(dim, Him)-

Intuitively, this query symbolically executes each statement from 7 in turn;
whenever it executes a statement responsible for transitioning an edge in @,
it queries the current heap configuration according to the policy formula ¢; on
that transition. The exe predicates are inserted at all of the indices of the se-
quence of policy predicates ¢;0¢;1 - - - Pim- IsValid returns true if and only if this
query returns true.

B.4 NewPreds for JavaScript.

When IsValid fails, NewPreds uses intermediate data produced by the Prolog
interpreter to learn new predicates for the abstraction. At the moment, our
algorithm for doing so is based on a set of heuristics that we have developed
from our experience of model checking real JavaScript programs. Specifically,
when the Prolog interpreter attempts to answer the query for IsValid, it does
so by attempting to unify the sub-goal for each statement (represented by an
exe predicate) in turn. When the query fails, we take note of the statement m;
whose exe sub-goal caused the failure. The predicate that we learn is based on
the form of m;:

1. If 7; is the guard of an if- or loop-statement, then we assume that the trace
failed because the model was not able to select the correct successor to the
guard, and so we learn a predicate equivalent to the guard expression.
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2. If 7; is a call statement, and the call target in the expression is denoted by
an identifier, then we assume the trace is not valid because it attempts to
enter a function to which the identifier in the call expression cannot point.
We learn a predicate that relates the identifier in the call statement to the
function object in this trace actually pointed to by the identifier.

3. If m; is a call statement, and the call target is denoted by a member lookup
o.f, then we assume that the trace is not valid because it attempts to enter
a function to which the member (e.g., £ in this case) in the call expression
cannot point. We learn a predicate that specifies the prototype of the object
(o in this case). This concept is JavaScript-specific; for more information see
Flanagan’s language manual [11].

4. If (i)-(iii) fail to yield predicates different from those already in our ab-
straction set, then we look for assignment statements that occur before 7,
to variables whose values affect m;. We learn a predicate from each such
assignment statement that specifies each such variable’s value.

Because our algorithm for NewPreds is based on a limited set of heuristics, it
may fail to find a predicate needed to adequately refine the abstraction. In this
case, Algorithm 1 will give up and insert a runtime check, obviating the need
for further refinement and analysis of 7. In future work, we hope to adapt well-
known predicate-learning algorithms [26] to our setting.

C Benchmark Descriptions and Full Experimental
Results

Table 2 lists the full set of results from our experiments. A subset of the results
was presented in Table 1 and discussed in Section 4.

Table 3 lists the characteristics of the benchmarks, as well as the policies
that were applied to them. The line counts represent the number of lines af-
ter a preprocessing step has been applied that normalizes program statements.
The preprocessing step converts complex statements into sequences of simpler
statements that are easier for the subsequent phases of the algorithm to process.
Another attribute of the original source code—reported in Table 3 as “checks
needed”—is the number of actual violating statements in the program as deter-
mined by manual inspection.

A few of the programs, such as jsbeautifier, doubleclick-loader, and
squirrelmail are devoid of any actual vulnerabilities with respect to the applied
policies. These cases are meant to demonstrate the value of JAM as a verification
tool: a developer can describe intended invariants in the form of policies, or a
third-party library can be subjected to a JAM analysis to identify potential
vulnerabilities.

The flickr application is intended to conditionally generate a pop-up win-
dow to allow a user to sign in to the popular photo-sharing site. The policy we
chose to apply to this application states “if window.open is invoked, then the
first argument of the call must exactly equal flickr.com.” JAM is able to identify
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Predicates Checks

Benchmark Saturation Execution| Memory

application Learned|Total[ CEGAR|Valid [Spurious|Total| time (s) |used (KB)
beacon 0 3 2 0 0 2 74.50 62215
imidori |« o 2] 2| o of 2| 486.42] 71953
[doubleclick-loader | o 1] o o of o 1159 47503]
jsbeautifier |« o 2] of o 0| 0 6560 - 47731
squirrelmail |« o 1] of o of o 6.81] - 47516
squirrelmail (seeded)| - a4 5 1 o of 1] 192.01] 58360
squirrelmail (seeded) 3 4 0 1 0 1 93.16 58813
squirrelmail (seeded) 2 3 0 1 0 1 49.05 56960
squirrelmail (seeded) 1 2 0 1 0 1 26.83 57595
squirrelmail (seeded) 0 1 0 1 0 1 11.72 60084
jssec | 2 o o 0f o 1404 46591
jssec 0 1 0 0 1 1 7.59 56023
jssec (seeded) | 1 20 1 o of 1| 1818l 56480
jssec (seeded) 0 1 0 1 1 2 8.38 55947
flicke ] 2| 3 1 o of 1| 13867 60737
flickr 1 2 1 0 1 2 74.49 61472
flickr 0 1 0 1 1 2 24.23 63520
hulurespawn | T o 2| 24[ 26| 449.94[ 90821
hulurespawn 0 2 0 2 27 29 140.75 66069
lga o 2] 0 2| 220] 222| 35059.68] 1374208
lplusone | o 2 o 2] 27 29[ 124.40[ ¢ 68673

Table 2. Performance of JAM on benchmarks.

a conditional program-execution path in which additional URL parameters can
be appended to the domain name.

Policies can be derived with respect to the stated purpose of an application
provided by an untrusted third party. The jssec benchmark exhibits this con-
cept. The program is intended only to open and close sections of the current page
by altering the display attribute of a CSS style property. Therefore, an appro-
priate policy is to state that “if any DOM element’s style property is altered,
then the only allowed action is to set display.” This case also demonstrates
JAM’s ability to statically inspect deeply nested object structures.

The hulurespawn, midori, flickr, plusone, and ga benchmarks all incor-
porate asynchronous callbacks (via the JavaScript setTimeout function) and
event handlers, which can potentially lead to unforeseen call sequences. Each
callback is treated conservatively by explicitly modeling the JavaScript event-
handling loop in the control automaton, which allows JAM to identify violating
traces involving complex interleavings of callback activations.

Scalability of the JAM system was another consideration addressed by the
choice of subject applications. The ga (Google Analytics) benchmark tests the
upper limits of JAM’s current capabilities. In addition to being of substantial
size in terms of line count, this program also employs timers, event handlers, and
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Benchmark Source lines |Policy|Policy|Checks

application (normalized)|states | edges [needed
beacon 144 4 4 2
midori 1833 3 2 2
doubleclick-loader 96 2 1 0
jsbeautifier 156 3 2 0
squirrelmail 51 2 1 0
squirrelmail (seeded) 51 2 1 1
jssec 25 2 1 0
jssec (seeded) 25 2 1 1
flickr 51 2 1 1
hulurespawn 270 3 2 2
ga 4093 2 2 1
plusone 398 2 2 2

Table 3. Summary of the benchmark applications analyzed.

difficult.

Several of the policies we chose to apply to our benchmarks are intended
to prohibit calls to certain sensitive functions. The characteristic of JavaScript
that, when viewed in isolation, any callsite could potentially target any function,
accounts for the large number of spurious checks added to the ga, plusone and
hulurespawn benchmarks. To combat this sitation, JAM makes heavy use of
conservative may-target and may-be-targeted-by analyses provided by Google’s

other constructs, such as first-class functions, that make static dataflow analysis

Closure compiler, augmented with additional dataflow analyses.
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