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Abstract. Monitoring unusedor dark IP addresses offers opportunities to sig-
nificantly improve and expand knowledge of abuse activitthaut many of the
problems associated with typical network intrusion detecand firewall sys-
tems. In this paper, we address the problem of designing epldying a system
for monitoring large unused address spaces such as clagssédpes with 16M
IP addresses. We describe the architecture and implermentaft the Internet
Sink (iSink) system which measures packet traffic on unuBealdidresses in an
efficient, extensible and scalable fashion. In contrastaditional intrusion de-
tection systems or firewalls, iSink includes active component that generates
response packets to incoming traffic. This gives the iSinkngoortant advan-
tage in discriminating between different types of attadksough examination
of the response payloads). The key feature of iSink’s dethighdistinguishes it
from other unused address space monitors is that its aetbmnse component
is statelessand thus highly scalable. We report performance resultsinfSink
implementation in both controlled laboratory experimeans from a case study
of a live deployment. Our results demonstrate the efficieamny scalability of
our implementation as well as the important perspectivebus@ activity that is
afforded by its use.
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1 Introduction

Network abuse in the form of intrusions by port scanning fgepagating worms is a
significant, on-going threat in the Internet. Clever newnsiiag methods are constantly
being developed to thwart identification by standard firés\ahd network intrusion de-
tection systems (NIDS). Work by Stanifoed al. [27] and by Mooreet al. [L8] project
and evaluate the magnitude of the threat of new classes ahsvand the difficulty of
containing such worms. The conclusions of both papers tsatidressing these threats
presents the research and operational communities withusezhallenges. An impor-
tant step in protecting networks from malicious intrusiea® improve measurement
and detection capabilities.

One means for improving the perspective and effectivenidstection tools is to
monitor both use@nd unused address space in a given network. Monitoring the un-
used addresses is not typically done since packets de$tingehse addresses are often
dropped by a network’s gateway or border router. Howevacking packets sent to



unused addresses offers two important advantages. Rinst, than misconfigurations,
packets destined to unused addresses are almost alwaygsonslithus false positives
- a significant problem in NIDS - are minimized. Second, unlkIDS that monitor
traffic passively, a detection tool that monitors unusedeskes can actively respond
to connection requests, thus enabling the capture of datefmwith attack-specific
information. The possibility for unused address space todng is perhaps most sig-
nificant in class A and class B networks where the number o$edaddresses is often
substantial. The idea of monitoring unused address spacbden adopted in a num-
ber of different studies and on-going projects including BOMINO project[31], the
Honeynet projeci]29], LaBrea tarpifs]14] and in the baekr analysis conducted by
Mooreet al.in [I9].

This paper makes two contributions. The first is our desonipdf a new system
architecture and implementation for measuring IP traffic.lAternet Sinkor iSink, is
a system we developed for monitoring abuse traffic by botiveeind passive means.
The key design requirements of an iSink are extensibilityeatures and scalability
of performance since it is meant to be used to monitor patiyiarge amounts of IP
address space.

Our design of an iSink includes capabilities to trace pagkiet actively respond
to connection requests, to masquerade as several diffgpetitation types, to finger-
print source hosts and to sample packets for increaseddiglahe passive compo-
nent of our implementation (which we call Passive Monitsrbased on Argu$]3] - a
freely available IP flow measurementtool. The active congmbof our implementation
(which we call Active Sink) is based on the Click modular enytlatform [I2]. Click is
an open-source toolkit for building high performance net&ystems on commaodity
hardware. The focus of Active Sink’s developmentwas todbaitet oktateless respon-
der elementsvhich generate the appropriate series of application leaglonse packets
for connections that target different network servicesudimg HTTP, NetBIOS/SMB
and DCERPC (Windows RPC Service).

The second contribution of this paper is a measurement aaldagion case study
of our iSink implementation. We use the results from the casdy to demonstrate the
scale and diversity of traffic characteristics exposed liykibased monitoring. These
results provide validation of our architectural requirenseand rationale for subsequent
evaluation criteria. We also deployed the iSinksitu to monitor four class B address
spaces within our campus network for a period of 4 months aredemtire class A ad-
dress space to which we have access. From these data sefsoneesults that demon-
strate the iSink’s capabilities and the unique informattaat can be extracted from this
measurement tool. One example is that since the traffic ctaistics from our class
B monitor are substantially different from those on the glAsmonitor, we conclude
that the location of the iSink in IP address space is impartamother example is that
we see strong evidence of periodic probing in our class A toomihich we were able
to isolate to the LovGate worml[1]. We also uncovered an SMoPspot within the
class A network that has been unreported prior to our stuéywaéfe able to attribute
that anomaly to misconfigured wireless routers from a magoder. Finally, we assess
basic performance of the iSink in controlled laboratoryerkpents and show that our
implementation has highly scalable response capability.



These results demonstrate that our iSink architectureléestatsupport a range of
capabilities while providing scalable performance. Theuts also demonstrate that
Active iSinks are a simple and very useful way to extend baxicision monitoring
capabilities in individual networks or in the Internet as laoke.

2 Related Work

The notion of monitoring unused IP addresses as a sourcéoofriation on intrusions
has been in use in various forms for some time. While we ca@rnehms “Internet Sink”
and “iSink”, these monitors have variously been referreakttinternet Sink-holesf]8],
“Blackhole Routers”[[B] and “Network TelescopeE™][15]. Giifdonal Honeypotsre de-
fined as systems with no authorized activity that are deployiéh the sole purpose of
monitoring intrusionsHoneynetare network of honeypots (typically set up as VMware
hosts). Their deployment is often associated with sigmficaanagement and scalabil-
ity challenges [129]. In [T155], Moore raises the challengesleploying honeypots in
a class A network telescope. The systems that are perhapssimmgr to the Active
Sink have been developed in the Honeyd [10] and Labrea Tarpjects [T#]. Active
Sink’s design differs in significant ways from these two syss. Much like the Ac-
tive Sink, Honeyd is designed to simulate virtual honeypotsr unused IP addresses,
with the potential for a diverse set of interactive resparegeabilities. However, Hon-
eyd’s stateful active responder design has significanabdy constraints that make it
inappropriate for monitoring large IP address ranges wisicme of iSinks primary ob-
jectives. LaBrea’s primary design objective is to slow thegagation of Internet worms
(i.e.,a sticky honeypot), and as such, it lacks the richness afdotion capabilities that
is required to gather important response information. Iditézh to a richer response
set, our Active Sink’s performance greatly exceeds thataBrea as will be seen in
Sectior[b.

There are a number of empirical studies of intrusion anctltsetivity that moti-
vate and inform our work. I [33], the authors explore theistigal characteristics of
Internet intrusion activity from a global perspective. Thaudy is based on the use of
intrusion logs from NIDS and firewalls located broadly asrtiee Internet. Mooret al.
examined the global prevalence of denial-of-service k#tasing backscatter analysis
in [I9]. That work was conducted by gathering packet tracesfa relatively quies-
cent class A network. Characteristics of the Code Red wowe baen analyzed in a
number of studies. I [17] the authors investigate the tetdithe Code Red outbreak
and provide important perspective on the speed of worm grajgan. Mooreet al. pro-
vide further insights on the speed at which countermeasurafl have to be installed
to inhibit worms propagation [18]. While the prospects focsessful containment are
rather grim, it is clear that rapid detection will be a key gmment in any quarantine
strategy.

Intrusion detection systems are a standard componentwonesecurity architec-
tures. These tools typically monitor packet traffic at natniaogress/egress points and
identify potential intrusions using a variety of techniqu8tandard methods for intru-
sion identification include misuse detectiay([21[25]), statistical anomaly detection
(eg.[28]), information retrieval €g.[2]]), data mining €g.[d3]), and inductive learning



(eg.[28]). Our work is distinguished from general NIDS in thaéytoperate on active
IP addresses and must deal with the problem of identifyiegifarious traffic mixed
in with all of the legitimate traffic. We expect iSinks and N80o complement each
other in future operational environment.

High performance packet monitors have been used for colpgiacket traces in
the Internet for years. These systems relate directly toi®ink design in that they
must scale to reliably log packets on very high speed linksniples of these include
systems that have been developed with a variety of commauiitly special purpose
hardware such a§l[B[7]11]. Our iSink differs significantlynii these systems (as well
as the NIDS mentioned above) in that it not only passively itoosand logs packets,
but it alsoactively respondto incoming TCP connection requests and has application
level response capability.

3 Internet Sink Architecture

In this section we describe the iSink requirements, archite and implementation.
The implementation is described within the context of dgplents on two different
sets of address spaces.

3.1 Design Requirements

The general requirements for an iSink system are that itgsssscalable capability
for both passive and active monitoring and that it be sedMediscuss the issues of
security in more detail in[132].

Passive monitoring capability must be able to capture pgaukader and payload
information accurately. While there are many standardst@sld method for packet
capture, if either these or new tools are employed, theyldhmriflexible and efficient
in the ways in which data is captured and logged.

Active response capability is included in iSink’s desigraaseans to gather more
detailed information on abuse activity. This capabilitgisabled by generating appro-
priate response packets (at both transport and applicki@hs) to a wide range of
intrusion traffic. While active responses also have therm@kto interfere with mali-
cious traffic in beneficial ways such as tarpitting, this isaéocus of iSink’s design.

We expect Internet Sinks to measure abuse activity ovempiatly vast unused
IP address spaces. For example, in our experimental sekupeeded the ability to
scale to an entire class A network (16 million addressesph \itie continued growth
in malicious Internet traffic, and transition to IPv6, we egpthe scalability needs to
grow significantly for both the active and passive composiehbur system. Our basic
approach to scalability is to maintain as little state assjts in our active responders.
Another means for increasing scalability is through the afssampling techniques in
both active and passive components of the system. If sagdiemployed, then the
measurement results must not be substantially alteredghrtheir use.

Finally, our intent is to develop iSink as an open platfoinug any systems that are
used as foundational components must be open source.



3.2 Active Response: The Design Space

In this section we explore the architectural alternativessfnk-hole response systems.
The choices we consider are LaBrea, Honeyd, Honeynets ativke/Rink (iSink’s ac-
tive response system) as shown in Tdlle 1. We compare thesmmsybased on the
following characteristics.

Table 1: Design Space of Sink-Hole Responders

Configurability | Modularity |Flexibility | Interactivity | Scalability
Active Sink High High High |Low-Medium High
Honeyd High Low-Medium  High |Low-Medium|Low-Medium
Honeynet Low Medium Medium High Low-Medium
LaBrea Low Low Low Limited High

. Configurability describes the ability of the configuration language to detfiree
layout and components of response networks. Honeyd'sgttreare in fine-grained
control of virtual network topologies and network protostdcks. However Hon-
eyd’s language does not provide support for assigning lalagks of IP addresses
to templates (except for the default tempIEIeActive Sink’s configuration lan-
guage (inherited from Click) uses a BPF like language andiges excellent sup-
port for both fine-grained and coarse-grained control oftual network topology.
Active Sink’s design is stateless and hence does not réplnegwork stack retrans-
mission timers. LaBrea and Honeynets only allow for limitefigurability.

. Flexibility relates to the ability to mix and match services with opegasiystems.
For example, the ability to define two types of Windows Sesvene with a telnet
service and FTP service and another with NetBIOS Serviceadvdb server. The
design of Honeyd and Active Sink both provide a high degrefeadbility. It is
somewhat harder to do the same with Honeynets. LaBrea'diligéxin this regard
is limited as it was designed with a different objective.

. Modularity describes the ability to compose and layer services on tagmefan-
other. For example, layering Server Message Block (SMBJisemnver NetBIOS
or layering Web services over SSL. Active Sink’s design iseirently modular
which directly facilitates service composition. In corstradHoneyd’s design is more
monolithic and hence less straightforward to layer sesrice

. Interactivity refers to the scope of response capability. The levels efaativity
of Honeyd and Active Sink are comparable. Obviously, Homt¢ycould provide
more complete response capabilities. However, to mitifegeisk of Honeynets
being used as a stepping-stone for additional attacks,cdat@ols are required to
be placed which limit interactivity. There are other preaticonfiguration issues
that also could limit interactivity. For example, ActivenBis NetBIOS responder
grants session requests for all NetBIOS names and all @ssuprd combinations,
while a Honeynet Windows monitor would only allow NetBIOSs®n requests if
it matches its list of valid names. Hence, the realized degf@nteraction in Active
Sinks are often higher than honeynets.

8 This feature is particularly necessary for large networksi



5. Scalability refers to the number of connections that can be handled wvea ¢ime
period. In our monitoring environment we typically see hreu$ of thousands of
connection attempts per minute. Active Sink’s statelesaedenodule design pro-
vides high degree of scalability by eliminating unnecegsgstem calls and inter-

rupt handling overheafls_aBrea’s stateless design also provides reasonable scal-

ing properties, however its user level implementation rsatkiaferior to the Active
Sink. A weakness of Honeyd’s design is its inherent stabefss that limits its scal-
abilityﬂ. Our experience suggests that Honeyd works well in envientathat see
tens of connection attempts per minute. The scalability oféynet systems vary
from low to medium depending on the service and licensinggiss

3.3 Implementation

The objective of our monitoring infrastructure implemeita was to create a highly
scalable backplane with sufficient interactivity to filtartdkcnown worms, attacks and
misconfiguration. To accomplish this, the iSink designtdes a Passive Monitor, an
Active Sink and a Honeynet component. Unsolicited traffic ba directed to each of
these components which provide unique measurement caigsbil hese components,
in addition to MRTG [20] and FlowScai [23], were run on Linbased commodity
PCs. Details of our implementation as illustrated in Figllend include:

1. Passive Monitor- This component is based on Argus which is a generic libpcap

based IP network auditing tool. It allows for flow level maning of sink traffic and
can be interfaced with FlowScan which is a flow level netwoalfic visualization
tool.

2. Active Sink - The standard collection of elements provided with Cliclalded
many of the basic capabilities required for building actiesponses in iSink. Fig-
urel? illustrates iSink’s configuration based on Click’s miad design. Some of the
fundamental elements include: (i) Poll Device which consyepolls the interface
for new packets; (ii) IP Classifier which routes ARP packetthe ARP Respon-
der, ICMP ping packets to the Ping Responder and TCP paakéte tWindows
Responder (all other packets are discarded); (iii) Wind&&sponder which re-
sponds to connection attempts on open ports and forwardPH&quests to the
Web Responder and SMB data packets to the NetBIOS Respdrueapplica-
tion responders developed specifically for iSink are shaéledar as we know, we
are the first non-commercial Honeypot system to provide atian capabilities for
Windows Networking(NetBIOS/SMB/CIFS) and DCERPC. Thereat suite of
responders that are available also includes an HTTP resposrd SMTP respon-
der, an IRC responder, Dameware responder and a respomdsadidoor ports
such as MyDoom and Beagle.

Stateless responders are enabled by the following two wétsens:

4 Click also provides the flexibility to be run as a userleveldule which greatly simplifies
debugging and development.

5 Honeyd forks a process per connection attempt. A more raggston of Honeyd includes
support for python threads. However, scalability improeets are limited by the overhead of
the python interpreter.
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Fig. 1: Internet Sink Implementation. In  Fig. 2: Active Sink Configuration based on Click's mod-
our current implementation the NIDS is  ular design. Shaded elements are iSink extensions.

run offline.

(a) It is almost always possible to concoct a suitable respgust by looking at
the contents of the request packet from the client —evendimpdex protocols
like SMB. Knowledge of prior state is not compulsory.

(b) We need to continue the packet exchange only until thatpahere we can
reliably identify the worm/virus.

3. NAT Filter - The motivation behind filtering is to reduce the volume affic gen-
erated by active responders. This module serves two puspliseutes requests to
appropriate responders (Active Sink or Honeynets) thraonegtvork address trans-
lation. It also filters requests that attempt to exploit knomlnerabilities or mis-
configuration. This makes mapping of iSinks more difficuld ancreases scala-
bility of analysis daemons that have to process large votuofielata. We experi-
mented with several filtering strategies:

For each source IP allow only:

(a) first N connections
(b) first N connections petdestination port
(c) connections to first N destinations IPs targeted by thecso

Of the three strategiegption (c) [N destination IPs per source IP] seemed the
most attractive. The performance of options (a) and (c) weraparable. They
both provided two orders of reduction in the volume of pasletd bytes) and were
significantly better than option(b). We chasggtion (c) because it has the additional
advantage of providing eonsistent vievof the network to the scan sources thus
allowing the iSink to appear as if it were a subnet with N loests.

4. VMware Honeynets- These are, quite simply, commodity operating systems run-
ning on VMware. Currently, we route packets of services farolr we don’t have
complete responders to fully patched Windows systems.

5. NIDS - This system can be used to evaluate the packet logs callattiee filter. We
plan to implement support for NIDS rules that can commueigdth the filter and
implement real time filtering decisions. For example, theislen to route packets

6 The set of N destination hosts varies with each source dépgmah the order in which the
source scans the address space.



or migrate connection to VMware Honeynet could be triggarpdn the absence
of a signature in the NIDS ruleset for the connection.

For this study, we built and deployed two separate iSinkscaripus-enterprise”
iSink and a “service-provider” iSink. These were used t@ssour iSink design and
demonstrate its capabilities.

3.4 Deployment: Campus-Enterprise Sink

The campus iSink received unsolicited traffic destined figgraximately 100,000 un-
used IPv4 addresses within 4 sparsely-to-moderatelyedilclass-B networks that are
in use at our campus. Essentially, these unused addressesthe “holes” between
active subnets, each of which typically contains 128 to 1@#tiguous host addresses
(i.e., 25 through 22-bit netmasks, respectively).

A so called “black-hole” intra-campus router was configute@lso advertise the
class B aggregate /16 routes into the intra-campus OSPFeshk was that there were
persistent less-specific (16 bit netmask) routes for evargpus address. Unsolicited
traffic, whether from campus or outside sources, destinediiased campus IP ad-
dresses always “falls through” to those less-specific /Uées and therefore is routed
to the iSink and measured. Furthermavecasionallytraffic destined for campus ad-
dresses that are normally in use can fall through to the iBit&ksubnet’'s more specific
route disappears. Typically, this only happens during netwutages, making the iSink
a potential warning system of problems because it can pEgsletect routing failures.
Whenever traffic that was destined for a campus IP addressrktmbe in use reaches
the iSink instead, the operators know that there is a problem

It was important in our environment that the iSink machineswat capable of
actively participating in the intra-campus routing, otliean to respond via ARP as
the IP nexthop on its transit link. The iSink is not an OSPReqgbut instead is the
destination of a static route. This limits the possible dgenthat could be caused if
ever the iSink system was compromised and was attemptedusdakemaliciously.

3.5 Deployment: Service-Provider Sink

The service-provider iSink received unsolicited traffistiteed for 16 million IPv4 ad-
dresses in one class A network. An ISP router, located atampas’ service-provider,
served as the gateway for the service-provider iSink. Théseprovider was respon-
sible for advertising the class A network via BGP to our saerovider's commercial
transit providers, Internet2’s Abilene network, and toi@as other peers. SNMP-based
measurements at the Ethernet switch’s ports were used tputerany packet loss by
the libpcap-based Argus software.

4 Experiences with Internet Sink

This section demonstrates iSink’s capabilities and itatss the complementary roles
of the Passive Monitor and the Active Sink using results fimum two iSink deploy-
ments. We first discuss issues of perspective by comparagdksive-monitoring re-
sults observed in the campus-enterprise sink with thateot#rvice-provider sink. We
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then demonstrate the utility of the Active Sink in investigg network phenomenon
revealed by the Passive Monitor including periodic prokdnd SMTP hot-spots.

4.1 Campus Enterprise iSink Case Study

Because the campus iSink is located inside one autonomstensynd advertised via
the local interior routing protocol, this system sees tedffim local sources in addition
to traffic from sources in remote networks. Traffic observedilocal sources included:

— Enterprise network management traffic attempting to discovetwork topology
and address utilization (such as ping sweeps and SNMP qtterngyats)

— Traffic from misconfigured hosts. For instance, a few hostsinaally send domain
gueries to what is now an unused campus IP address. Presy@alperational
DNS server used to be at that address. We also see traffic fisoonfigured AFS
clients and NetBIOS name registration requests from lodataws hosts with
incorrect WINS address.

— Malicious probes and worm traffic that has an affinity for kasithin their classful
network.

Figurel3 shows the traffic observed from only remote souncestipical week at
the campus-enterprise iSink. There are several notaltieré=a The dominant protocol



is TCP since the campus border routers filter scans to po#t {#3-sql-m) that was
exploited by the SQL-Slammer wori]16]. The peak rate ofita$ about 1Mb/s and
1500 packets per second. There is no obvious periodicitysrdiataset. Finally, because
TCP is the dominant protocol, the packet sizes are relgtv@hstant and the number
of bytes and packets follow a predictable ratio. Hence, thelgs of bit and packet rate
show very similar trends.

Table 2: Top Services (Service Provider Sinijable 3: Backscatter sources (victims) in service
provider sink (12 hrs - 5 min avg)

|Service: [Inbound flows per seconq | Type [Num IPs|% IPs]
udp.netbios-nsdst 1932 TCPRST 295 38%
udp.ms-sql-mdst 1187 TCP.SYN.RST 105 | 14%
http_dst 197 TCPACK 81 10%
netbios-ssrust 133 TCPACK_RST 80 10%
microsoft-dsdst 115 ICMP_INTRANS_TIME_EXCEEDED 58 %
smtpdst 67 ICMP_PORT UNREACH 29 4%
http_src 44 ICMP_PKT_FILTERED.UNREACH 23 3%
httpsdst 11 TCP.SYN.ACK 10 1%
ms-sql-sdst 10 ICMP_HOST.UNREACH 6 1%
telnetdst 2 OTHER 87 11%

4.2 Service Provider iSink Case Study

The volume of unsolicited inbound traffic to the class A netma@ried between average
rates of 5,000 packets-per-second (pps) when we brouglstydtem on line to over
20,000pps six months later at the end of our study. One coeseg that was relayed
to us by experienced network operators is that it is not pesso effectively operate
even this relatively quiescent class A network at the end bsamegabit-per-second
T1 link because the link becomes completely saturated Isyutigolicited traffic.

To operate the service-provider iSink continuously, wegioally assumed that we
could safely introduce the class A least-specific /16 roatdlie iSink and still allow
operators to occasionally introduce more-specific rowsedraw the network’s traffic
elsewhere in the Internet when need-be. While sound in yhgmcording to “CIDR
and Classful Routing'[[24]), it didn't work in practice. Bagse today’s Internet is bi-
furcated into commercial/commodity networks and resdadiication networks (In-
ternet2’s Abilene), some institutions connected to bofleyemploy creative routing
policies. We found that some sites prefer less-specificeoaver more-specifiwhen
the less-specific route is seen on what is likely to be a higlegiormance (or fixed
cost) service such as Internet2.

Figureld depicts the traffic observed in a typical week at #reise-provider iSink.
Unlike the campus-enterprise network, the dominant patscUDP, most of which
can be attribute to Windows NetBIOS scans on port 137 and giseghm traffic from
worm attempting to exploit the vulnerable MS-SQL monitanc® UDP traffic with
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payloads of varying sizes dominates, there is no strongespandence between the
graphs for bytes and packets. The most interesting feaguteistriking periodic be-
havior of the TCP flows, discussed in more detail in the sadfd. TabldR provides a
summary of the inbound per second flow rate of the top services

Analysis of Backscatter PacketsBackscatter packets are responses to spoofed DoS
attacks and have been effectively used to project Interids wttack behaviol 119].
Figurel® provides a time series graph of the backscattergpaokume observed in our
service-provider sink. Noteworthy features include thHéofeing:

1. TCP packets with ACK/RST dominate as might be expectet Would be the
most common response to a SYN flood from forged sources.

2. Vertical lines that correspond to less common short thurapikes of SYN/ACK
and SYN/ACK/RST.

3. ICMP TTL exceeded packets could be attributed to eithatimg loops or DoS
floods with a low initial TTL.

Table[3 provides a summary of the number of active sourceackdratter traffic,
i.e., the estimated count of the victims of spoofed source astatkese numbers are
an average during the 12 hours shown in Fiddre 5 of the nunftemurces in each 5
minute sample. In terms of the distribution of the volume®atkscatter scan types,
our results are consistent with those published[in] [19].kBeatter made up a small
percentage (under 5%) of the overall traffic seen on our cepiovider sink.

Investigating Unique Periodic ProbesThe periodicity observed in the service provider
iSink data is an excellent example of the perspective omsian traffic afforded by
iSink. The first step in our analysis of this periodicity wasunderstand the services
that contributed to this phenomenon. We found that mostep#riodicity observed in
the TCP flows could be isolated to sources scanning two s=\{jwort 139 and 445)
simultaneously. Port 139 is SMB (Server Message Block paljamver NetBIOS and
port 445 is direct SMB. However, this did not help us isoldte attack vector because
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it is fairly common for NetBIOS scanners to probe for bothstheervices. Passive logs
provided three additional clues: 1) scans typically ineoAb6 successive IP addresses
that span a /24 boundary, 2) the probes had a period of ro@ghlgours, 3) the small
timescale periodicity seemed to be super imposed over aaliperiodic behavior at
larger timescales.

Figure [® shows the number of flows scanning both services iaekwlo simplify
our analysis we then focused on a single day’s data and fidmsscanners on these
services based on their scan footprints. We defined scativansiatch our profile (be-
tween 250-256 successive |IP addresses spanning a /24 puastgpe-1sources. We
also defined sources that scan five or more subnets simulislyesstype-5sources.
This includes processes that pick destination IP addreasdemly and others that are
highly aggressive. FigurEl 7 shows a time-volume graph ofythe-1landtype-5scan-
ners.The interesting aspect of this figure is that the number of sotces in each peak
(around 100) is more than an order of magnitude smaller than he total number
of participants observed in a day (2,177)We can also see that most of the diurnal
behavior could be attributed to typge-5sources.

This mystery motivated our development of NetBIOS and SM&oaders. By
observing the packet logs generated by the active respgsisaswe concluded that the
scanning process was the LovGate wofth [1] which createsléesti Ser vi ces. exe
among others.

We proceeded to setup a controlled experiment which begatnylng to infect
a Windows 2000 host running on VMware with LovGate. LovGasesua dictionary
attack, so we expected a machine with blank administratags\word to be easily in-
fected. However, the NetBIOS sessions were continualliimgetejected due to Net-
BIOS name mismatches. So we modified the Imhosts file to acbheptame *SMB-
SERVER enabling us to capture the worm.

We verified that LovGate’s NetBIOS scanning process matthedgrofile of the
type—lscanneﬂs To date, we have not been able to disassemble the binarjisaa it
compressed self-extracting executable. So we monitoresgthans from the infected
host. There were two relevant characteristics that prowislight into the periodicity:

’ Besides the NetBIOS scanning LovGate also sent SMTP probesvi. 163. com



SYN

negprot reply SYN

sess—setup request >
> SYN-ACK

sess—setup reply
tree—conn (IPC)
tftp —i 192.168.86.41

tree-conn reply w;

CreateX (LSARPC)

CreateX reply systemse.exe
RPC BIND

BIND ack
LSADS request

Fig.9: RBOT.CC follow-up com-

. . ) mands(port 44445)
Fig. 8: RBOT.CC timeline of Isarpc exploit(port 445)

1) The scanning process is deterministie, after every reboot it repeats the same
scanning order 2) During the course of a day there are sebet@Iminute intervals
where it stops scanning. Our conjecture is that these gaps dce to approximately
synchronized clocks in the wide area thus producing thergbdeeriodicity.

SMTP Hot-spot Analysis of SMTP (Simple Mail Transfer Protocol) scans ia ger-
vice provider sink is another important demonstration ¢i/asink’s capabilities. From
passive measurements, we identified an SMTP hotisppthere was one IP address
that was attracting a disproportionately large number off8Mcans (20-50 scans per
second). Hot-spots in unused address space are typicaltyigdicators of misconfig-
uration. During a 10 day period in December we observed ogemillion scans from
around 14,000 unique IP addresses all bound to one destini&tiwithin our moni-
tor. A cursory analysis suggested that these scans wereildable-modem and DSL
subscribers. Finally, the scans also seemed to have an um@oMCP SYN fingerprint
(win 8192, mss 1456).

The possibility of spam software as a source of this anomaly wiled out due
to the non-standard TCP fingerprint. We then hypothesizadtttis could be from a
specific cable-modem or DSL device. We set up an SMTP respamdthe target IP
address and captured the incoming enmiiis revealed the source of the email to be
misconfigured wireless-router/firewall systems from a majovendorﬂ. The emails
are actual firewall logs!

To better understand the reasons behind this SMTP hot\spatxamined the fire-
wall system’s firmware. Thanar j utility was used to extract the compressed binary.
However, searching for the hot-spot IP address string inbihary proved fruitless.
Examination of the firmware “application” revealed thatrthevas an entry for SMTP
server that was left blank by default. This led us to conjecthat the target IP address
was the result of an uninitialized garbage value that waseed to a network ordered
IP address. It also turns out that every byte in our hot-sgdtess is a printable ASCII
character. So we searched for this four byte ASCII stringfandd a matchn almost
all versions of firmware for this devic&he string occurred in both the extracted and
compressed versions of the firmware. As a sanity check, wiebbfor other similar
ASCII strings, but did not find them. These kind of hot-spads tiave very serious

8 We are in the process of notifying the manufacturer and maeveal the name of the vendor
once this is completed.



ramifications in network operations. For example, one ttieas discovered a similar
problem with Netgear routers that inadvertently flood ounpas NTP server§[22].

Experiences with Recent Worms Our iSink deployment has proved quite useful in
detecting the advent of recent worms such as Sdsser [4]oWitttive response capa-
bility, such as that provided by the Active Sink, it would epossible to distinguish
existing worm traffic on the commonly exploited ports sucpait 445 from new worm
activity. Detection of such new worms is often possible withmodifications to the re-
sponder, as was the case for thear pc exploit used by Sasser. Our active response
system enabled accurate detection of not only Sasser,dauiradre fine-grained classi-
fication of several variants. Prior to the release of Sassewere also able to observe
early exploits on the sar pc service which could be attributed to certain strains of
Agobot. Figures[18 and19 illustrate the interaction of RBAT.(30], a more recent
virus that also exploits thiesar pc vulnerability, with the Active Sink.

5 Basic Performance

One of the primary objectives of the iSink’s design is sciitgbWe performed scala-
bility tests on our Active Sink implementation using bothFr@nd UDP packet streams.
The experimental setup involved four 2GHz Pentium 4 PCs ectadl in a common lo-
cal area network. Three of the PCs were designated as loadajers and the fourth
was the iSink system that promiscuously responded to all AdRfaests destined to
any address within one class A network. Figirds 10 demdastthae scalability under
of LaBref] and Active Sink under TCP and UDP stress tests. The priméfereince
between the TCP and UDP tests is that the TCP connectionstgoeuse the iSink
machine to respond with acknowledgments, while the UDP gtaatto not elicit a re-
sponse. Ideally, we would expect the number of outboundgtadk equal the number
of inbound packets. The Click-based Active Sink scales wellCP load with vir-
tually no loss up to about 20,000 packets (connection atEnmer second. LaBrea
performance starts to degrade at about 2,000 packets. TReé#bused 300 byte UDP
packets (much like the SQL-Slammer worm). In this case, botH_aBrea and Active
Sink perform admirably well. LaBrea starts to experiencé@@ss rate at about 15,000
packets/sec.

6 Sampling

There are three reasons wbgnnection samplingan greatly benefit an iSink architec-
ture: (i) reduced bandwidth requirements, (ii) improved scadli@Ri(iii) simplified data
management and analysis our iSink architecture, we envision building packetde
sampling strategies in the Passive Monitor and sourcd-gavepling in the NAT Filter.

® We compare Active Sink with LaBrea because unlike LaBreayéyd is stateful(forks a pro-
cess per connection), and hence is much less scalable. ISoreyd also relies on a packet
filter LaBrea’s scalability bounds affect Honeyd as well.
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We considered two different resource constraint problentke passive portion of
the iSink and evaluated the use of sampling as a means foesgidg these constraints.
We first considered the problem of a fixed resource in the iBaelf. Estan and Vargh-
ese in [6] describe sampling methods aimed at monitoringvidnitters” in IP flows
through routers with a limited amount of memory. We adapteslaf these methods for
use in iSink. Second, we considered the problem of bandwislthe limited resource.
In this case, the idea is to reduce the total amount of tradfited to an iSink by se-
lecting subnets within the total address space availablmémitoring. These methods
would be used in combination with the filtering methods diégct in Sectiolz313.

Memory Constrained iSink Sampling The method that forms the basis of our sam-
pling approach with a memory constrained iSink is caiaimple and Holdg]. This
method accurately identifies flows larger than a specifiesktiold {.e., heavy hitters).
Sample and hold is based on simple random sampling in cotijumwith a hash table
that is used to maintain flow ID’s and byte counts. Specificaicoming packets are
randomly sampled and entries in the hash table are createzhéth new flow. After
an entry has been creatadl subsequent packets belonging to that flow are counted.
While this approach can result in both false positives atgkfaegatives, its accuracy
is shown to be high in workloads with varied characteristigs apply sample and hold
in iSink to the problem of identifying “heavy hitters”, whicare the worst offending
source addresses based on the observed number of scans.

Adapting the sample and hold method to the iSink requirecdbugefine the size
of the hash table that maintains the data, and the sampliagbesed on empirical
observation of traffic at the iSink. I[6], the objective gentifying accurately the
flows that take ovel'% of a link’s capacity. An oversampling factoris then selected
to reduce the possibility of false negatives in the resulteese parameters result in
allocatingHT;., = 1/T * O locations in each hash table. The packet sampling rate
is then set taH 7;.,,/C whereC' is the maximum packet transmission capacity of the
incoming link over a specified measurement perioét the end of eactt, the hash
table is sorted and results are produced.

Bandwidth Constrained iSink Sampling In the bandwidth constrained scenario, the
sampling design problem is to select a set of subnets frorothkaddress space that is
available for monitoring on the iSink. The selection of thenber of subnets to monitor
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is based on the bandwidth constraints. In this case we asthanhee know the mean
and variance for traffic volume on a “typical” class B or cl&address space. We then
divide the available bandwidth by this value to get the nunab¢hese subnets that can
be monitored. The next step is to select the specific subriitgthe entire space that
will minimize the error introduced in estimates of probe plgpions.

Our analysis in this paper is based on the use of random sagngi a means for
subnet selection. Our rationale for this approach is basgti@observation that over-
all traffic volumes across the service-provider class A asislspace that we monitor is
quite uniform. The strengths of this approach are that ivigles a simple method for
subnet selection, it provides unbiased estimates anddslaself directly to analysis.
The drawback is that sampling designs that take advantagddifional information
such as clustered or adaptive sampling could provide marerate population esti-
mates. We leave exploration of these and other samplingadstio future work.

After selecting the sampling design, our analysis focusedhe problem ofde-
tectability. Specifically, we were interested in understanding the raoyuof estimates
of total probe populations from randomly selected sub$etge considerr is an unbi-
ased estimator of a population totathen the estimated variance®fs given by:

var(?) = N* [(Mg2) £ + (152) 4]

whereN is the total number of units (in our case, subnets$, the sampled number
of units, i is the population mean (in our case, the mean number of aawees of a
specific type of probe);? is the population variance andis the probability of detec-
tion for a particular type of probe. In the analysis preseimeSectior G, we evaluate
the error in population estimates over a range of detectrobabilities for different
size samples. The samples consider dividing the class Aeaddipace into its com-
ponent class B’s. The probabilities relate directly to déta of worst offenders (top
sources of unsolicited traffic) as in the prior sampling gsial The results provide a

means for judging population estimation error rates as etfomof network bandwidth
consumption.

6.1 Sampling Evaluation

Our evaluation of the impact of sampling in an iSink wa®#hneanalysis using traces
gathered during one day selected at random from the sepvmader iSink. Our objec-
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tive was to empirically assess the accuracy of samplinguat memory constrained
and bandwidth constrained conditions. In the memory caimsd evaluation, we com-
pare the ability to accurately generate the top 100 heavwgrhsgburce list over four
consecutive 1 hour periods using different hash table sindglifferent sampling rates.
For each hour in the data set, we compare the percentagesdiffein the number of
scans generated by the “true” top 100 blacklist and sampled ®0 blacklist sources.
In the bandwidth constrained evaluation, we consider aaytalong three dimensions:
1) estimating the worst offender population with partidibility, 2) estimating black
lists of different lengths, 3) estimating backscatter gapon.

Our memory constrained evaluation considers hash tal#s sarying from 500 to
64K entries where each entry consists of a source IP and asaattempt count. Note
that the hash table required to maintain the complete bshfihis data was on the order
of 350K entries We consider two different arbitrarily chnsampling rates - 1 in 100
and 1 in 300 with uniform probability. In each case, once as®ilP address has been
entered into the table, all subsequent packets from thaelPaunted. If tables become
full during a given hour then entries with the lowest counts evicted to make room
for new entries. At the end of each hour, the top 100 from the &nd sampled lists are
compared. New lists are started for each hour. The resatshenwn in FigurEZ1. These
results indicate that even coarse sampling rates (1/3@D)edatively small hash tables
enable fairly accurate black lists (between 5% - 10% erfidrg factor of improvement
between sampling at 1/100 and 1/300 is about 1.5, and thittéeibenefit to increasing
the hash table size from 5,000 to 20,000. Thus, from the petise of heavy hitter
analysis in a memory constrained system, sampling can leetefly employed in
iSinks.

As discussed in the prior section in our bandwidth const@ievaluation we con-
sider error introduced in population estimates when usmgle random sampling over
a portion of the available IP address space. We argue thatesirandom sampling is
appropriate for some analyses given the uniform distrdoutf traffic over our class
A monitor. The cumulative distribution of traffic over a oneun period for half of the
/16 subnets in our class A monitor is shown in Figtrke 13()ightis figure shows that
while traffic across all subnets is relatively uniform (atgerof about 320 packets per
minute per /16), specific traffic subpopulations - TCP baaktec as an example - can
show significant non-uniformity which can have a significampact on sampling.
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We use the mean normalized standard deviatign) as an estimate of error in our
analysis. In each case, using the data collected in a typaealon the /8, we empirically
assess the estimated error as a function of a randomly sélsample of /16 subnets.
The results of this approach are shown in Fidute 12. The goapthe left shows the
ability to accurately estimate the number of probes fromdimgle worst offending
IP source over a range of detection probabilities.(the probability of detecting a
source in a selected /16). This graph indicates that wofshdérs are detectable even
with a small sample size and error-prone or incomplete nreasents. The graph on
the right shows the ability to accurately estimate bladis lfsom a selected sample of
/16’s. This graph indicates that it is easier to estimatgdarather than smaller black
lists when sampling. We attribute this to the variabilitybilack list ordering across the
/16's. Finally, Figure[ZTI3(left) shows the ability to acctaly estimate TCP backscatter
traffic over a range of detection probabilities. The grapfgasts that while backscatter
estimates are robust in the face of error-prone or incoraptetasurements, estimated
error of total backscatter is quite high even with a reasbniaibpge number of /16’s.
This can be attributed to the non-uniformity of backscatteffic across the class A
monitor shown in FigurEZ13(right) and suggests that altira@ampling methods for
backscatter traffic should be explored. On a broader s¢aseindicates that traditional
backscatter methodologies that assumes uniformity coailerior prone.

7 Summary and Future Work

In this paper we describe the architecture and implememtati an Internet Sink: a
useful tool in a general network security architecturenkSihave several general de-
sign objectives including scalability, the ability to passy monitor network traffic on
unused IP addresses, and to actively respond to incomingection requests. These
features enable large scale monitoring of scanning agtastwell as attack payload
monitoring. The implementation of our iSink is based on aat@pplication of the
Click modular router, NAT Filter and the Argus flow monitohi$ platform provides an
extensible, scalable foundation for our system and endsldsployment on commod-
ity hardware. Our initial implementation includes basicnitoring and active response
capability which we test in both laboratory and live enviments.



We report results from our iSink’s deployment in a live enviment comprising
four class B networks and one entire class A network. Theobligs of these case
studies were to evaluate iSink’s design choices, to demateshe breadth of informa-
tion available from an iSink, and to assess the differentpsispective based on iSink
locationin IP address space. We show that the amount oftoidfivered to these iSinks
can be large and quite variable. We see clear evidence of éiledacumented worm
traffic as well as other easily explained traffic, the aggregéwhich can be considered
Internet background noise. While we expected overall velsiof traffic in the class B
monitors and class A monitor to differ, we also found that dwerall characteristics
of scans in these networks were quite different. We also deinate the capability of
iSinks to provide insights on interesting network phenoardike periodic probing and
SMTP hot-spots, and their ability gather information onrses of abuse through sam-
pling techniques. A discussion of operational issues,rigcand passive fingerprinting
techniques is provided if_[82].

The evaluation of our iSink implementation demonstratdh fite performance ca-
pabilities and expectations for live deployment. From laiory tests, we show that
iSinks based on commodity PC hardware have the ability toitmoand respond to
over 20,000 connection requests per second, which is appately the peak traffic
volume we observed on our class A monitor. This also excdeslsurrent version of
LaBrea’s performance by over 100%. Furthermore, we shotstirapling techniques
can be used effectively in an iSink to reduce system overhlé still providing ac-
curate data on scanning activity.

We intend to pursue future work in a number of directionssti-ive plan to expand
the amount of IP address space we monitor by deploying iSmlksther networks.
Next, we intend to supplementiSink by developing tools fataghining and automatic
signature generation.
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