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Abstract. Monitoring unusedor dark IP addresses offers opportunities to sig-
nificantly improve and expand knowledge of abuse activity without many of the
problems associated with typical network intrusion detection and firewall sys-
tems. In this paper, we address the problem of designing and deploying a system
for monitoring large unused address spaces such as class A telescopes with 16M
IP addresses. We describe the architecture and implementation of the Internet
Sink (iSink) system which measures packet traffic on unused IP addresses in an
efficient, extensible and scalable fashion. In contrast to traditional intrusion de-
tection systems or firewalls, iSink includes anactivecomponent that generates
response packets to incoming traffic. This gives the iSink animportant advan-
tage in discriminating between different types of attacks (through examination
of the response payloads). The key feature of iSink’s designthat distinguishes it
from other unused address space monitors is that its active response component
is statelessand thus highly scalable. We report performance results of our iSink
implementation in both controlled laboratory experimentsand from a case study
of a live deployment. Our results demonstrate the efficiencyand scalability of
our implementation as well as the important perspective on abuse activity that is
afforded by its use.
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1 Introduction

Network abuse in the form of intrusions by port scanning or self propagating worms is a
significant, on-going threat in the Internet. Clever new scanning methods are constantly
being developed to thwart identification by standard firewalls and network intrusion de-
tection systems (NIDS). Work by Stanifordet al. [27] and by Mooreet al. [18] project
and evaluate the magnitude of the threat of new classes of worms and the difficulty of
containing such worms. The conclusions of both papers is that addressing these threats
presents the research and operational communities with serious challenges. An impor-
tant step in protecting networks from malicious intrusionsis to improve measurement
and detection capabilities.

One means for improving the perspective and effectiveness of detection tools is to
monitor both usedand unused address space in a given network. Monitoring the un-
used addresses is not typically done since packets destinedfor those addresses are often
dropped by a network’s gateway or border router. However, tracking packets sent to



unused addresses offers two important advantages. First, other than misconfigurations,
packets destined to unused addresses are almost always malicious, thus false positives
- a significant problem in NIDS - are minimized. Second, unlike NIDS that monitor
traffic passively, a detection tool that monitors unused addresses can actively respond
to connection requests, thus enabling the capture of data packets with attack-specific
information. The possibility for unused address space monitoring is perhaps most sig-
nificant in class A and class B networks where the number of unused addresses is often
substantial. The idea of monitoring unused address space has been adopted in a num-
ber of different studies and on-going projects including the DOMINO project [31], the
Honeynet project [29], LaBrea tarpits [14] and in the backscatter analysis conducted by
Mooreet al. in [19].

This paper makes two contributions. The first is our description of a new system
architecture and implementation for measuring IP traffic. An Internet Sinkor iSink, is
a system we developed for monitoring abuse traffic by both active and passive means.
The key design requirements of an iSink are extensibility offeatures and scalability
of performance since it is meant to be used to monitor potentially large amounts of IP
address space.

Our design of an iSink includes capabilities to trace packets, to actively respond
to connection requests, to masquerade as several differentapplication types, to finger-
print source hosts and to sample packets for increased scalability. The passive compo-
nent of our implementation (which we call Passive Monitor) is based on Argus [3] - a
freely available IP flow measurement tool. The active component of our implementation
(which we call Active Sink) is based on the Click modular router platform [12]. Click is
an open-source toolkit for building high performance network systems on commodity
hardware. The focus of Active Sink’s development was to build a set ofstateless respon-
der elementswhich generate the appropriate series of application levelresponse packets
for connections that target different network services including HTTP, NetBIOS/SMB
and DCERPC (Windows RPC Service).

The second contribution of this paper is a measurement and evaluation case study
of our iSink implementation. We use the results from the casestudy to demonstrate the
scale and diversity of traffic characteristics exposed by iSink-based monitoring. These
results provide validation of our architectural requirements and rationale for subsequent
evaluation criteria. We also deployed the iSinkin situ to monitor four class B address
spaces within our campus network for a period of 4 months and one entire class A ad-
dress space to which we have access. From these data sets we report results that demon-
strate the iSink’s capabilities and the unique informationthat can be extracted from this
measurement tool. One example is that since the traffic characteristics from our class
B monitor are substantially different from those on the class A monitor, we conclude
that the location of the iSink in IP address space is important. Another example is that
we see strong evidence of periodic probing in our class A monitor which we were able
to isolate to the LovGate worm [1]. We also uncovered an SMTP hot-spot within the
class A network that has been unreported prior to our study. We were able to attribute
that anomaly to misconfigured wireless routers from a major vendor. Finally, we assess
basic performance of the iSink in controlled laboratory experiments and show that our
implementation has highly scalable response capability.



These results demonstrate that our iSink architecture is able to support a range of
capabilities while providing scalable performance. The results also demonstrate that
Active iSinks are a simple and very useful way to extend basicintrusion monitoring
capabilities in individual networks or in the Internet as a whole.

2 Related Work

The notion of monitoring unused IP addresses as a source of information on intrusions
has been in use in various forms for some time. While we coin the terms “Internet Sink”
and “iSink”, these monitors have variously been referred toas “Internet Sink-holes” [8],
“Blackhole Routers” [9] and “Network Telescopes” [15]. TraditionalHoneypotsare de-
fined as systems with no authorized activity that are deployed with the sole purpose of
monitoring intrusions.Honeynetsare network of honeypots (typically set up as VMware
hosts). Their deployment is often associated with significant management and scalabil-
ity challenges [29]. In [15], Moore raises the challenges ofdeploying honeypots in
a class A network telescope. The systems that are perhaps most similar to the Active
Sink have been developed in the Honeyd [10] and Labrea Tarpitprojects [14]. Active
Sink’s design differs in significant ways from these two systems. Much like the Ac-
tive Sink, Honeyd is designed to simulate virtual honeypotsover unused IP addresses,
with the potential for a diverse set of interactive responsecapabilities. However, Hon-
eyd’s stateful active responder design has significant scalability constraints that make it
inappropriate for monitoring large IP address ranges whichis one of iSinks primary ob-
jectives. LaBrea’s primary design objective is to slow the propagation of Internet worms
(i.e.,a sticky honeypot), and as such, it lacks the richness of interaction capabilities that
is required to gather important response information. In addition to a richer response
set, our Active Sink’s performance greatly exceeds that of LaBrea as will be seen in
Section 5.

There are a number of empirical studies of intrusion and attack activity that moti-
vate and inform our work. In [33], the authors explore the statistical characteristics of
Internet intrusion activity from a global perspective. That study is based on the use of
intrusion logs from NIDS and firewalls located broadly across the Internet. Mooreet al.
examined the global prevalence of denial-of-service attacks using backscatter analysis
in [19]. That work was conducted by gathering packet traces from a relatively quies-
cent class A network. Characteristics of the Code Red worm have been analyzed in a
number of studies. In [17] the authors investigate the details of the Code Red outbreak
and provide important perspective on the speed of worm propagation. Mooreet al.pro-
vide further insights on the speed at which countermeasureswould have to be installed
to inhibit worms propagation [18]. While the prospects for successful containment are
rather grim, it is clear that rapid detection will be a key component in any quarantine
strategy.

Intrusion detection systems are a standard component in network security architec-
tures. These tools typically monitor packet traffic at network ingress/egress points and
identify potential intrusions using a variety of techniques. Standard methods for intru-
sion identification include misuse detection (eg.[21,25]), statistical anomaly detection
(eg.[26]), information retrieval (eg.[2]), data mining (eg.[13]), and inductive learning



(eg.[28]). Our work is distinguished from general NIDS in that they operate on active
IP addresses and must deal with the problem of identifying the nefarious traffic mixed
in with all of the legitimate traffic. We expect iSinks and NIDS to complement each
other in future operational environment.

High performance packet monitors have been used for collecting packet traces in
the Internet for years. These systems relate directly to ouriSink design in that they
must scale to reliably log packets on very high speed links. Examples of these include
systems that have been developed with a variety of commodityand special purpose
hardware such as [5,7,11]. Our iSink differs significantly from these systems (as well
as the NIDS mentioned above) in that it not only passively monitors and logs packets,
but it alsoactively respondsto incoming TCP connection requests and has application
level response capability.

3 Internet Sink Architecture

In this section we describe the iSink requirements, architecture and implementation.
The implementation is described within the context of deployments on two different
sets of address spaces.

3.1 Design Requirements

The general requirements for an iSink system are that it possess scalable capability
for both passive and active monitoring and that it be secure.We discuss the issues of
security in more detail in [32].

Passive monitoring capability must be able to capture packet header and payload
information accurately. While there are many standard tools and method for packet
capture, if either these or new tools are employed, they should be flexible and efficient
in the ways in which data is captured and logged.

Active response capability is included in iSink’s design asa means to gather more
detailed information on abuse activity. This capability isenabled by generating appro-
priate response packets (at both transport and applicationlevels) to a wide range of
intrusion traffic. While active responses also have the potential to interfere with mali-
cious traffic in beneficial ways such as tarpitting, this is not a focus of iSink’s design.

We expect Internet Sinks to measure abuse activity over potentially vast unused
IP address spaces. For example, in our experimental setup, we needed the ability to
scale to an entire class A network (16 million addresses). With the continued growth
in malicious Internet traffic, and transition to IPv6, we expect the scalability needs to
grow significantly for both the active and passive components of our system. Our basic
approach to scalability is to maintain as little state as possible in our active responders.
Another means for increasing scalability is through the useof sampling techniques in
both active and passive components of the system. If sampling is employed, then the
measurement results must not be substantially altered through their use.

Finally, our intent is to develop iSink as an open platform, thus any systems that are
used as foundational components must be open source.



3.2 Active Response: The Design Space

In this section we explore the architectural alternatives for sink-hole response systems.
The choices we consider are LaBrea, Honeyd, Honeynets and Active Sink (iSink’s ac-
tive response system) as shown in Table 1. We compare these systems based on the
following characteristics.

Table 1: Design Space of Sink-Hole Responders

Configurability Modularity Flexibility Interactivity Scalability
Active Sink High High High Low-Medium High
Honeyd High Low-Medium High Low-Medium Low-Medium
Honeynet Low Medium Medium High Low-Medium
LaBrea Low Low Low Limited High

1. Configurability describes the ability of the configuration language to definethe
layout and components of response networks. Honeyd’s strengths are in fine-grained
control of virtual network topologies and network protocolstacks. However Hon-
eyd’s language does not provide support for assigning largeblocks of IP addresses
to templates (except for the default template)3. Active Sink’s configuration lan-
guage (inherited from Click) uses a BPF like language and provides excellent sup-
port for both fine-grained and coarse-grained control of a virtual network topology.
Active Sink’s design is stateless and hence does not replicate network stack retrans-
mission timers. LaBrea and Honeynets only allow for limitedconfigurability.

2. Flexibility relates to the ability to mix and match services with operating systems.
For example, the ability to define two types of Windows Servers: one with a telnet
service and FTP service and another with NetBIOS Service anda Web server. The
design of Honeyd and Active Sink both provide a high degree offlexibility. It is
somewhat harder to do the same with Honeynets. LaBrea’s flexibility in this regard
is limited as it was designed with a different objective.

3. Modularity describes the ability to compose and layer services on top ofone an-
other. For example, layering Server Message Block (SMB) service over NetBIOS
or layering Web services over SSL. Active Sink’s design is inherently modular
which directly facilitates service composition. In contrast, Honeyd’s design is more
monolithic and hence less straightforward to layer services.

4. Interactivity refers to the scope of response capability. The levels of interactivity
of Honeyd and Active Sink are comparable. Obviously, Honeynets could provide
more complete response capabilities. However, to mitigatethe risk of Honeynets
being used as a stepping-stone for additional attacks, datacontrols are required to
be placed which limit interactivity. There are other practical configuration issues
that also could limit interactivity. For example, Active Sink’s NetBIOS responder
grants session requests for all NetBIOS names and all user/password combinations,
while a Honeynet Windows monitor would only allow NetBIOS session requests if
it matches its list of valid names. Hence, the realized degree of interaction in Active
Sinks are often higher than honeynets.

3 This feature is particularly necessary for large network sinks.



5. Scalability refers to the number of connections that can be handled in a given time
period. In our monitoring environment we typically see hundreds of thousands of
connection attempts per minute. Active Sink’s stateless kernel module design pro-
vides high degree of scalability by eliminating unnecessary system calls and inter-
rupt handling overheads4. LaBrea’s stateless design also provides reasonable scal-
ing properties, however its user level implementation makes it inferior to the Active
Sink. A weakness of Honeyd’s design is its inherent statefulness that limits its scal-
ability5. Our experience suggests that Honeyd works well in environments that see
tens of connection attempts per minute. The scalability of Honeynet systems vary
from low to medium depending on the service and licensing issues.

3.3 Implementation

The objective of our monitoring infrastructure implementation was to create a highly
scalable backplane with sufficient interactivity to filter out known worms, attacks and
misconfiguration. To accomplish this, the iSink design includes a Passive Monitor, an
Active Sink and a Honeynet component. Unsolicited traffic can be directed to each of
these components which provide unique measurement capabilities. These components,
in addition to MRTG [20] and FlowScan [23], were run on Linux-based commodity
PCs. Details of our implementation as illustrated in Figure1 and include:

1. Passive Monitor - This component is based on Argus which is a generic libpcap
based IP network auditing tool. It allows for flow level monitoring of sink traffic and
can be interfaced with FlowScan which is a flow level network traffic visualization
tool.

2. Active Sink - The standard collection of elements provided with Click enabled
many of the basic capabilities required for building activeresponses in iSink. Fig-
ure 2 illustrates iSink’s configuration based on Click’s modular design. Some of the
fundamental elements include: (i) Poll Device which constantly polls the interface
for new packets; (ii) IP Classifier which routes ARP packets to the ARP Respon-
der, ICMP ping packets to the Ping Responder and TCP packets to the Windows
Responder (all other packets are discarded); (iii) WindowsResponder which re-
sponds to connection attempts on open ports and forwards HTTP requests to the
Web Responder and SMB data packets to the NetBIOS Responder.The applica-
tion responders developed specifically for iSink are shaded. As far as we know, we
are the first non-commercial Honeypot system to provide emulation capabilities for
Windows Networking(NetBIOS/SMB/CIFS) and DCERPC. The current suite of
responders that are available also includes an HTTP responder, an SMTP respon-
der, an IRC responder, Dameware responder and a responder for backdoor ports
such as MyDoom and Beagle.
Stateless responders are enabled by the following two observations:

4 Click also provides the flexibility to be run as a userlevel module which greatly simplifies
debugging and development.

5 Honeyd forks a process per connection attempt. A more recentversion of Honeyd includes
support for python threads. However, scalability improvements are limited by the overhead of
the python interpreter.
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(a) It is almost always possible to concoct a suitable response just by looking at
the contents of the request packet from the client –even for complex protocols
like SMB. Knowledge of prior state is not compulsory.

(b) We need to continue the packet exchange only until the point where we can
reliably identify the worm/virus.

3. NAT Filter - The motivation behind filtering is to reduce the volume of traffic gen-
erated by active responders. This module serves two purposes. It routes requests to
appropriate responders (Active Sink or Honeynets) throughnetwork address trans-
lation. It also filters requests that attempt to exploit known vulnerabilities or mis-
configuration. This makes mapping of iSinks more difficult and increases scala-
bility of analysis daemons that have to process large volumes of data. We experi-
mented with several filtering strategies:
For each source IP allow only:

(a) first N connections
(b) first N connections per<destination port>
(c) connections to first N destinations IPs targeted by the source

Of the three strategies,option (c) [N destination IPs per source IP] seemed the
most attractive. The performance of options (a) and (c) werecomparable. They
both provided two orders of reduction in the volume of packets and bytes) and were
significantly better than option(b). We choseoption (c)because it has the additional
advantage of providing aconsistent viewof the network to the scan sources thus
allowing the iSink to appear as if it were a subnet with N live hosts6.

4. VMware Honeynets- These are, quite simply, commodity operating systems run-
ning on VMware. Currently, we route packets of services for which we don’t have
complete responders to fully patched Windows systems.

5. NIDS - This system can be used to evaluate the packet logs collected at the filter. We
plan to implement support for NIDS rules that can communicate with the filter and
implement real time filtering decisions. For example, the decision to route packets

6 The set of N destination hosts varies with each source depending on the order in which the
source scans the address space.



or migrate connection to VMware Honeynet could be triggeredupon the absence
of a signature in the NIDS ruleset for the connection.

For this study, we built and deployed two separate iSinks: a “campus-enterprise”
iSink and a “service-provider” iSink. These were used to assess our iSink design and
demonstrate its capabilities.

3.4 Deployment: Campus-Enterprise Sink

The campus iSink received unsolicited traffic destined for approximately 100,000 un-
used IPv4 addresses within 4 sparsely-to-moderately utilized class-B networks that are
in use at our campus. Essentially, these unused addresses are in the “holes” between
active subnets, each of which typically contains 128 to 1024contiguous host addresses
(i.e., 25 through 22-bit netmasks, respectively).

A so called “black-hole” intra-campus router was configuredto also advertise the
class B aggregate /16 routes into the intra-campus OSPF. Theresult was that there were
persistent less-specific (16 bit netmask) routes for every campus address. Unsolicited
traffic, whether from campus or outside sources, destined for unused campus IP ad-
dresses always “falls through” to those less-specific /16 routes, and therefore is routed
to the iSink and measured. Furthermore,occasionallytraffic destined for campus ad-
dresses that are normally in use can fall through to the iSinkif its subnet’s more specific
route disappears. Typically, this only happens during network outages, making the iSink
a potential warning system of problems because it can passively detect routing failures.
Whenever traffic that was destined for a campus IP address known to be in use reaches
the iSink instead, the operators know that there is a problem.

It was important in our environment that the iSink machine was not capable of
actively participating in the intra-campus routing, otherthan to respond via ARP as
the IP nexthop on its transit link. The iSink is not an OSPF router, but instead is the
destination of a static route. This limits the possible damage that could be caused if
ever the iSink system was compromised and was attempted to beused maliciously.

3.5 Deployment: Service-Provider Sink

The service-provider iSink received unsolicited traffic destined for 16 million IPv4 ad-
dresses in one class A network. An ISP router, located at our campus’ service-provider,
served as the gateway for the service-provider iSink. The service-provider was respon-
sible for advertising the class A network via BGP to our service provider’s commercial
transit providers, Internet2’s Abilene network, and to various other peers. SNMP-based
measurements at the Ethernet switch’s ports were used to compute any packet loss by
the libpcap-based Argus software.

4 Experiences with Internet Sink

This section demonstrates iSink’s capabilities and illustrates the complementary roles
of the Passive Monitor and the Active Sink using results fromour two iSink deploy-
ments. We first discuss issues of perspective by comparing the passive-monitoring re-
sults observed in the campus-enterprise sink with that of the service-provider sink. We
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Fig. 3: Inbound Traffic for a Typical Week on Campus-Enterprise Sink (bits/pkts per second)
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Fig. 4: Inbound Traffic for a Typical Week on Service ProviderSink (bits/pkts per second)

then demonstrate the utility of the Active Sink in investigating network phenomenon
revealed by the Passive Monitor including periodic probingand SMTP hot-spots.

4.1 Campus Enterprise iSink Case Study

Because the campus iSink is located inside one autonomous system and advertised via
the local interior routing protocol, this system sees traffic from local sources in addition
to traffic from sources in remote networks. Traffic observed from local sources included:

– Enterprise network management traffic attempting to discover network topology
and address utilization (such as ping sweeps and SNMP query attempts)

– Traffic from misconfigured hosts. For instance, a few hosts continually send domain
queries to what is now an unused campus IP address. Presumably, an operational
DNS server used to be at that address. We also see traffic from misconfigured AFS
clients and NetBIOS name registration requests from local windows hosts with
incorrect WINS address.

– Malicious probes and worm traffic that has an affinity for hosts within their classful
network.

Figure 3 shows the traffic observed from only remote sources in a typical week at
the campus-enterprise iSink. There are several notable features. The dominant protocol



is TCP since the campus border routers filter scans to port 1434 (ms-sql-m) that was
exploited by the SQL-Slammer worm [16]. The peak rate of traffic is about 1Mb/s and
1500 packets per second. There is no obvious periodicity in this dataset. Finally, because
TCP is the dominant protocol, the packet sizes are relatively constant and the number
of bytes and packets follow a predictable ratio. Hence, the graphs of bit and packet rate
show very similar trends.

Table 2: Top Services (Service Provider Sink)

Service: Inbound flows per second

udp netbios-nsdst 1932
udp ms-sql-mdst 1187
http dst 197
netbios-ssndst 133
microsoft-dsdst 115
smtpdst 67
http src 44
httpsdst 11
ms-sql-sdst 10
telnetdst 2

Table 3: Backscatter sources (victims) in service
provider sink (12 hrs - 5 min avg)

Type Num IPs % IPs

TCP RST 295 38%

TCP SYN RST 105 14%

TCP ACK 81 10%

TCP ACK RST 80 10%

ICMP INTRANS TIME EXCEEDED 58 7%

ICMP PORTUNREACH 29 4%

ICMP PKT FILTERED UNREACH 23 3%

TCP SYN ACK 10 1%

ICMP HOST UNREACH 6 1%

OTHER 87 11%

4.2 Service Provider iSink Case Study

The volume of unsolicited inbound traffic to the class A network varied between average
rates of 5,000 packets-per-second (pps) when we brought thesystem on line to over
20,000pps six months later at the end of our study. One consequence that was relayed
to us by experienced network operators is that it is not possible to effectively operate
even this relatively quiescent class A network at the end of a1.5 megabit-per-second
T1 link because the link becomes completely saturated by this unsolicited traffic.

To operate the service-provider iSink continuously, we originally assumed that we
could safely introduce the class A least-specific /16 route for the iSink and still allow
operators to occasionally introduce more-specific routes to draw the network’s traffic
elsewhere in the Internet when need-be. While sound in theory (according to “CIDR
and Classful Routing” [24]), it didn’t work in practice. Because today’s Internet is bi-
furcated into commercial/commodity networks and research/education networks (In-
ternet2’s Abilene), some institutions connected to both types employ creative routing
policies. We found that some sites prefer less-specific routes over more-specificwhen
the less-specific route is seen on what is likely to be a higher-performance (or fixed
cost) service such as Internet2.

Figure 4 depicts the traffic observed in a typical week at the service-provider iSink.
Unlike the campus-enterprise network, the dominant protocol is UDP, most of which
can be attribute to Windows NetBIOS scans on port 137 and the ms-sql-m traffic from
worm attempting to exploit the vulnerable MS-SQL monitor. Since UDP traffic with
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payloads of varying sizes dominates, there is no strong correspondence between the
graphs for bytes and packets. The most interesting feature is the striking periodic be-
havior of the TCP flows, discussed in more detail in the section 4.2. Table 2 provides a
summary of the inbound per second flow rate of the top services.

Analysis of Backscatter PacketsBackscatter packets are responses to spoofed DoS
attacks and have been effectively used to project Internet wide attack behavior [19].
Figure 5 provides a time series graph of the backscatter packet volume observed in our
service-provider sink. Noteworthy features include the following:

1. TCP packets with ACK/RST dominate as might be expected. This would be the
most common response to a SYN flood from forged sources.

2. Vertical lines that correspond to less common short duration spikes of SYN/ACK
and SYN/ACK/RST.

3. ICMP TTL exceeded packets could be attributed to either routing loops or DoS
floods with a low initial TTL.

Table 3 provides a summary of the number of active sources of backscatter traffic,
i.e., the estimated count of the victims of spoofed source attacks. These numbers are
an average during the 12 hours shown in Figure 5 of the number of sources in each 5
minute sample. In terms of the distribution of the volumes ofBackscatter scan types,
our results are consistent with those published in [19]. Backscatter made up a small
percentage (under 5%) of the overall traffic seen on our service-provider sink.

Investigating Unique Periodic ProbesThe periodicity observed in the service provider
iSink data is an excellent example of the perspective on intrusion traffic afforded by
iSink. The first step in our analysis of this periodicity was to understand the services
that contributed to this phenomenon. We found that most of the periodicity observed in
the TCP flows could be isolated to sources scanning two services (port 139 and 445)
simultaneously. Port 139 is SMB (Server Message Block protocol) over NetBIOS and
port 445 is direct SMB. However, this did not help us isolate the attack vector because
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peak = 100, total sources = 2,177) Right: Volume oftype-5port139 scanners

it is fairly common for NetBIOS scanners to probe for both these services. Passive logs
provided three additional clues: 1) scans typically involve 256 successive IP addresses
that span a /24 boundary, 2) the probes had a period of roughly2.5 hours, 3) the small
timescale periodicity seemed to be super imposed over a diurnal periodic behavior at
larger timescales.

Figure 6 shows the number of flows scanning both services in a week. To simplify
our analysis we then focused on a single day’s data and classified scanners on these
services based on their scan footprints. We defined scannersthat match our profile (be-
tween 250-256 successive IP addresses spanning a /24 boundary) astype-1sources. We
also defined sources that scan five or more subnets simultaneously astype-5sources.
This includes processes that pick destination IP addressesrandomly and others that are
highly aggressive. Figure 7 shows a time-volume graph of thetype-1andtype-5scan-
ners.The interesting aspect of this figure is that the number of sources in each peak
(around 100) is more than an order of magnitude smaller than the total number
of participants observed in a day (2,177). We can also see that most of the diurnal
behavior could be attributed to typetype-5sources.

This mystery motivated our development of NetBIOS and SMB responders. By
observing the packet logs generated by the active response system we concluded that the
scanning process was the LovGate worm [1] which creates the file NetServices.exe
among others.

We proceeded to setup a controlled experiment which began bytrying to infect
a Windows 2000 host running on VMware with LovGate. LovGate uses a dictionary
attack, so we expected a machine with blank administrative password to be easily in-
fected. However, the NetBIOS sessions were continually getting rejected due to Net-
BIOS name mismatches. So we modified the lmhosts file to acceptthe name *SMB-
SERVER enabling us to capture the worm.

We verified that LovGate’s NetBIOS scanning process matchedthe profile of the
type-1scanners7. To date, we have not been able to disassemble the binary as itis a
compressed self-extracting executable. So we monitored the scans from the infected
host. There were two relevant characteristics that provideinsight into the periodicity:

7 Besides the NetBIOS scanning LovGate also sent SMTP probes to www.163.com.
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1) The scanning process is deterministic,i.e., after every reboot it repeats the same
scanning order 2) During the course of a day there are several5-10 minute intervals
where it stops scanning. Our conjecture is that these gaps occur due to approximately
synchronized clocks in the wide area thus producing the observed periodicity.

SMTP Hot-spot Analysis of SMTP (Simple Mail Transfer Protocol) scans in the ser-
vice provider sink is another important demonstration of active sink’s capabilities. From
passive measurements, we identified an SMTP hot-spoti.e., there was one IP address
that was attracting a disproportionately large number of SMTP scans (20-50 scans per
second). Hot-spots in unused address space are typically good indicators of misconfig-
uration. During a 10 day period in December we observed over 4.5 million scans from
around 14,000 unique IP addresses all bound to one destination IP within our moni-
tor. A cursory analysis suggested that these scans were all from cable-modem and DSL
subscribers. Finally, the scans also seemed to have an uncommon TCP SYN fingerprint
(win 8192, mss 1456).

The possibility of spam software as a source of this anomaly was ruled out due
to the non-standard TCP fingerprint. We then hypothesized that this could be from a
specific cable-modem or DSL device. We set up an SMTP responder on the target IP
address and captured the incoming email.This revealed the source of the email to be
misconfigured wireless-router/firewall systems from a major vendor8. The emails
are actual firewall logs!

To better understand the reasons behind this SMTP hot-spot,we examined the fire-
wall system’s firmware. Theunarj utility was used to extract the compressed binary.
However, searching for the hot-spot IP address string in thebinary proved fruitless.
Examination of the firmware “application” revealed that there was an entry for SMTP
server that was left blank by default. This led us to conjecture that the target IP address
was the result of an uninitialized garbage value that was converted to a network ordered
IP address. It also turns out that every byte in our hot-spot address is a printable ASCII
character. So we searched for this four byte ASCII string andfound a matchin almost
all versions of firmware for this device. The string occurred in both the extracted and
compressed versions of the firmware. As a sanity check, we looked for other similar
ASCII strings, but did not find them. These kind of hot-spots can have very serious

8 We are in the process of notifying the manufacturer and plan to reveal the name of the vendor
once this is completed.



ramifications in network operations. For example, one the authors discovered a similar
problem with Netgear routers that inadvertently flood our campus NTP servers [22].

Experiences with Recent Worms Our iSink deployment has proved quite useful in
detecting the advent of recent worms such as Sasser [4]. Without active response capa-
bility, such as that provided by the Active Sink, it would be impossible to distinguish
existing worm traffic on the commonly exploited ports such asport 445 from new worm
activity. Detection of such new worms is often possible without modifications to the re-
sponder, as was the case for thelsarpc exploit used by Sasser. Our active response
system enabled accurate detection of not only Sasser, but also more fine-grained classi-
fication of several variants. Prior to the release of Sasser,we were also able to observe
early exploits on thelsarpc service which could be attributed to certain strains of
Agobot. Figures 8 and 9 illustrate the interaction of RBOT.CC [30], a more recent
virus that also exploits thelsarpc vulnerability, with the Active Sink.

5 Basic Performance

One of the primary objectives of the iSink’s design is scalability. We performed scala-
bility tests on our Active Sink implementation using both TCP and UDP packet streams.
The experimental setup involved four 2GHz Pentium 4 PCs connected in a common lo-
cal area network. Three of the PCs were designated as load generators and the fourth
was the iSink system that promiscuously responded to all ARPrequests destined to
any address within one class A network. Figures 10 demonstrates the scalability under
of LaBrea9 and Active Sink under TCP and UDP stress tests. The primary difference
between the TCP and UDP tests is that the TCP connection requests cause the iSink
machine to respond with acknowledgments, while the UDP packets do not elicit a re-
sponse. Ideally, we would expect the number of outbound packets to equal the number
of inbound packets. The Click-based Active Sink scales wellto TCP load with vir-
tually no loss up to about 20,000 packets (connection attempts) per second. LaBrea
performance starts to degrade at about 2,000 packets. The UDP test used 300 byte UDP
packets (much like the SQL-Slammer worm). In this case, boththe LaBrea and Active
Sink perform admirably well. LaBrea starts to experience a 2% loss rate at about 15,000
packets/sec.

6 Sampling

There are three reasons whyconnection samplingcan greatly benefit an iSink architec-
ture:(i) reduced bandwidth requirements, (ii) improved scalability, (iii) simplified data
management and analysis. In our iSink architecture, we envision building packet-level
sampling strategies in the Passive Monitor and source-level sampling in the NAT Filter.

9 We compare Active Sink with LaBrea because unlike LaBrea, Honeyd is stateful(forks a pro-
cess per connection), and hence is much less scalable. SinceHoneyd also relies on a packet
filter LaBrea’s scalability bounds affect Honeyd as well.
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Fig. 10: Scalability of Click-based Internet Sink and LaBrea for TCP (left) and UDP (right) flows

We considered two different resource constraint problems in the passive portion of
the iSink and evaluated the use of sampling as a means for addressing these constraints.
We first considered the problem of a fixed resource in the iSinkitself. Estan and Vargh-
ese in [6] describe sampling methods aimed at monitoring “heavy hitters” in IP flows
through routers with a limited amount of memory. We adapted one of these methods for
use in iSink. Second, we considered the problem of bandwidthas the limited resource.
In this case, the idea is to reduce the total amount of traffic routed to an iSink by se-
lecting subnets within the total address space available for monitoring. These methods
would be used in combination with the filtering methods described in Section 3.3.

Memory Constrained iSink Sampling The method that forms the basis of our sam-
pling approach with a memory constrained iSink is calledSample and Hold[6]. This
method accurately identifies flows larger than a specified threshold (i.e., heavy hitters).
Sample and hold is based on simple random sampling in conjunction with a hash table
that is used to maintain flow ID’s and byte counts. Specifically, incoming packets are
randomly sampled and entries in the hash table are created for each new flow. After
an entry has been created,all subsequent packets belonging to that flow are counted.
While this approach can result in both false positives and false negatives, its accuracy
is shown to be high in workloads with varied characteristics. We apply sample and hold
in iSink to the problem of identifying “heavy hitters”, which are the worst offending
source addresses based on the observed number of scans.

Adapting the sample and hold method to the iSink required us to define the size
of the hash table that maintains the data, and the sampling rate based on empirical
observation of traffic at the iSink. In [6], the objective is identifying accurately the
flows that take overT% of a link’s capacity. An oversampling factorO is then selected
to reduce the possibility of false negatives in the results.These parameters result in
allocatingHTlen = 1/T ∗ O locations in each hash table. The packet sampling rate
is then set toHTlen/C whereC is the maximum packet transmission capacity of the
incoming link over a specified measurement periodt. At the end of eacht, the hash
table is sorted and results are produced.

Bandwidth Constrained iSink Sampling In the bandwidth constrained scenario, the
sampling design problem is to select a set of subnets from thetotal address space that is
available for monitoring on the iSink. The selection of the number of subnets to monitor
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Fig. 11: Error rates for different hash table sizes (x-axis is log scale) using Sample and Hold
method with rates of 1/100 (left) and 1/300 (right).

is based on the bandwidth constraints. In this case we assumethat we know the mean
and variance for traffic volume on a “typical” class B or classC address space. We then
divide the available bandwidth by this value to get the number of these subnets that can
be monitored. The next step is to select the specific subnets within the entire space that
will minimize the error introduced in estimates of probe populations.

Our analysis in this paper is based on the use of random sampling as a means for
subnet selection. Our rationale for this approach is based on the observation that over-
all traffic volumes across the service-provider class A address space that we monitor is
quite uniform. The strengths of this approach are that it provides a simple method for
subnet selection, it provides unbiased estimates and it lends itself directly to analysis.
The drawback is that sampling designs that take advantage ofadditional information
such as clustered or adaptive sampling could provide more accurate population esti-
mates. We leave exploration of these and other sampling methods to future work.

After selecting the sampling design, our analysis focused on the problem ofde-
tectability. Specifically, we were interested in understanding the accuracy of estimates
of total probe populations from randomly selected subsets.If we consider̂τ is an unbi-
ased estimator of a population totalτ then the estimated variance ofτ̂ is given by:

var(τ̂ ) = N2

[

(

N−n
N

)

σ2

n
+

(

1−p

p

)

µ

n

]

whereN is the total number of units (in our case, subnets),n is the sampled number
of units,µ is the population mean (in our case, the mean number of occurrences of a
specific type of probe),σ2 is the population variance andp is the probability of detec-
tion for a particular type of probe. In the analysis presented in Section 6.1, we evaluate
the error in population estimates over a range of detection probabilities for different
size samples. The samples consider dividing the class A address space into its com-
ponent class B’s. The probabilities relate directly to detection of worst offenders (top
sources of unsolicited traffic) as in the prior sampling analysis. The results provide a
means for judging population estimation error rates as a function of network bandwidth
consumption.

6.1 Sampling Evaluation

Our evaluation of the impact of sampling in an iSink was anofflineanalysis using traces
gathered during one day selected at random from the service-provider iSink. Our objec-
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tive was to empirically assess the accuracy of sampling under both memory constrained
and bandwidth constrained conditions. In the memory constrained evaluation, we com-
pare the ability to accurately generate the top 100 heavy hitter source list over four
consecutive 1 hour periods using different hash table sizesand different sampling rates.
For each hour in the data set, we compare the percentage difference in the number of
scans generated by the “true” top 100 blacklist and sampled top 100 blacklist sources.
In the bandwidth constrained evaluation, we consider accuracy along three dimensions:
1) estimating the worst offender population with partial visibility, 2) estimating black
lists of different lengths, 3) estimating backscatter population.

Our memory constrained evaluation considers hash table sizes varying from 500 to
64K entries where each entry consists of a source IP and a access attempt count. Note
that the hash table required to maintain the complete list from this data was on the order
of 350K entries We consider two different arbitrarily chosen sampling rates - 1 in 100
and 1 in 300 with uniform probability. In each case, once a source IP address has been
entered into the table, all subsequent packets from that IP are counted. If tables become
full during a given hour then entries with the lowest counts are evicted to make room
for new entries. At the end of each hour, the top 100 from the true and sampled lists are
compared. New lists are started for each hour. The results are shown in Figure 11. These
results indicate that even coarse sampling rates (1/300) and relatively small hash tables
enable fairly accurate black lists (between 5% - 10% error).The factor of improvement
between sampling at 1/100 and 1/300 is about 1.5, and there islittle benefit to increasing
the hash table size from 5,000 to 20,000. Thus, from the perspective of heavy hitter
analysis in a memory constrained system, sampling can be effectively employed in
iSinks.

As discussed in the prior section in our bandwidth constrained evaluation we con-
sider error introduced in population estimates when using simple random sampling over
a portion of the available IP address space. We argue that simple random sampling is
appropriate for some analyses given the uniform distribution of traffic over our class
A monitor. The cumulative distribution of traffic over a one hour period for half of the
/16 subnets in our class A monitor is shown in Figure 13(right). This figure shows that
while traffic across all subnets is relatively uniform (at a rate of about 320 packets per
minute per /16), specific traffic subpopulations - TCP backscatter as an example - can
show significant non-uniformity which can have a significantimpact on sampling.
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We use the mean normalized standard deviation (σ/µ) as an estimate of error in our
analysis. In each case, using the data collected in a typicalhour on the /8, we empirically
assess the estimated error as a function of a randomly selected sample of /16 subnets.
The results of this approach are shown in Figure 12. The graphon the left shows the
ability to accurately estimate the number of probes from thesingle worst offending
IP source over a range of detection probabilities (i.e., the probability of detecting a
source in a selected /16). This graph indicates that worst offenders are detectable even
with a small sample size and error-prone or incomplete measurements. The graph on
the right shows the ability to accurately estimate black lists from a selected sample of
/16’s. This graph indicates that it is easier to estimate larger rather than smaller black
lists when sampling. We attribute this to the variability inblack list ordering across the
/16’s. Finally, Figure 13(left) shows the ability to accurately estimate TCP backscatter
traffic over a range of detection probabilities. The graph suggests that while backscatter
estimates are robust in the face of error-prone or incomplete measurements, estimated
error of total backscatter is quite high even with a reasonably large number of /16’s.
This can be attributed to the non-uniformity of backscattertraffic across the class A
monitor shown in Figure 13(right) and suggests that alternative sampling methods for
backscatter traffic should be explored. On a broader scale, this indicates that traditional
backscatter methodologies that assumes uniformity could be error prone.

7 Summary and Future Work

In this paper we describe the architecture and implementation of an Internet Sink: a
useful tool in a general network security architecture. iSinks have several general de-
sign objectives including scalability, the ability to passively monitor network traffic on
unused IP addresses, and to actively respond to incoming connection requests. These
features enable large scale monitoring of scanning activity as well as attack payload
monitoring. The implementation of our iSink is based on a novel application of the
Click modular router, NAT Filter and the Argus flow monitor. This platform provides an
extensible, scalable foundation for our system and enablesits deployment on commod-
ity hardware. Our initial implementation includes basic monitoring and active response
capability which we test in both laboratory and live environments.



We report results from our iSink’s deployment in a live environment comprising
four class B networks and one entire class A network. The objectives of these case
studies were to evaluate iSink’s design choices, to demonstrate the breadth of informa-
tion available from an iSink, and to assess the differences of perspective based on iSink
location in IP address space. We show that the amount of traffic delivered to these iSinks
can be large and quite variable. We see clear evidence of the well documented worm
traffic as well as other easily explained traffic, the aggregate of which can be considered
Internet background noise. While we expected overall volumes of traffic in the class B
monitors and class A monitor to differ, we also found that theoverall characteristics
of scans in these networks were quite different. We also demonstrate the capability of
iSinks to provide insights on interesting network phenomenon like periodic probing and
SMTP hot-spots, and their ability gather information on sources of abuse through sam-
pling techniques. A discussion of operational issues, security, and passive fingerprinting
techniques is provided in [32].

The evaluation of our iSink implementation demonstrates both its performance ca-
pabilities and expectations for live deployment. From laboratory tests, we show that
iSinks based on commodity PC hardware have the ability to monitor and respond to
over 20,000 connection requests per second, which is approximately the peak traffic
volume we observed on our class A monitor. This also exceeds the current version of
LaBrea’s performance by over 100%. Furthermore, we show that sampling techniques
can be used effectively in an iSink to reduce system overheadwhile still providing ac-
curate data on scanning activity.

We intend to pursue future work in a number of directions. First, we plan to expand
the amount of IP address space we monitor by deploying iSinksin other networks.
Next, we intend to supplement iSink by developing tools for datamining and automatic
signature generation.
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