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Abstract—As the network operating system (NOS) is the
strategic control center of a software-defined network (SDN), its
design is critical to the welfare of the network. Contemporary
research has largely focused on specialized NOSs that seek
to optimize controller design across one or a few dimensions
(e.g., scalability, performance, or security) due to fundamental
differences in architectural trade-offs needed to support compet-
ing demands. We thus designed Barista, as a new framework
that enables flexible and customizable instantiations of network
operating systems (NOSs) supporting diverse design choices. The
Barista framework incorporates two mechanisms to harmonize
architectural differences across design choices: component syn-
thesis and dynamic event control. First, the modular design of the
Barista framework enables flexible composition of functionalities
prevalent in contemporary SDN controllers. Second, its event-
handling mechanism enables dynamic adjustment of control flows
in a NOS. These capabilities allow operators to easily enable
functionalities and dynamically handle associated events, thereby
satisfying network operating requirements. Our results demon-
strate that Barista can synthesize NOSs with many functionalities
found in commodity NOSs with competitive performance profiles.

I. INTRODUCTION

Software-defined networks have emerged as a compelling
alternative to vertically integrated networks, which offer lim-
ited flexibility, programmability, and customizability. Among
SDNs driving motivations is a desire to address the “islands-
of-functionality” challenge in traditional networks, in which
disparate functions must be independently deployed, separately
managed, and require distinct policy control. In theory, the
programmable control layer of SDNs offers a more agile plat-
form which facilitates the unified integration and management
of diverse functions.

In the SDN stack, a network operating system (NOS)
stands as the strategic control center since it determines the
functionalities of SDN by implementing logic for network
management and providing a control interface for higher-level
applications. The complexity associated with their design leads
to significant software abstraction, scalability, security, and
reliability challenges. To address these challenges, research in
network and security communities has expended considerable
effort toward designing NOSs focused on high availability,
robustness and security control. As a result, contemporary
NOSs have become specialized toward specific objectives.
For example, Beacon [13] is highly optimized for providing
maximal throughput from a single controller; ONOS [25]
and OpenDaylight [5] focus on distributed scalability; and
SE-Floodlight [26] attempts to address a range of security
requirements imposed within sensitive network computing
environments.

However, based on interactions with SDN operators in
both industry and academia, stove-piped functions persist with
SDNs, albeit in a different manifestation. For example, it is
common for network administrators to manage multiple SDN
sub-networks with disparate requirements and policies using
distinct network verticals managed by different controllers
(e.g., a campus network consisting of department networks
with differing management policies). This invariably leads to
increased management costs, because each controller has its
own programming architecture and software APIs (e.g., an
SDN application running on ONOS [25] cannot be directly
moved to OpenDaylight [5]).

We posit that the rigidity in a composition of contempo-
rary SDN controllers significantly limits their ability to fully
address the challenge of satisfying competing demands within
enterprise, cloud, and data center networks. Furthermore, while
operators might want to achieve the functionalities present
in two different NOSs, it is quite challenging to integrate
these capabilities due to fundamental architectural differences
and conflicting design principles. For instance, the distributed
ONOS architecture emphasizes parallelism for large-scale net-
works, while SE-Floodlight focuses on centralized monitoring
of all control flows inside a NOS. Thus, we make the case
for a new NOS design that allows for customizable controllers
while retaining a uniform programming API.

To address architectural limitations, we designed a novel
NOS framework, called Barista, that supports the flexible
composition of the functionalities found in commodity NOSs.
Barista facilitates rapid modular prototyping, customization,
and fielding of control layer logic to meet diverse operational
requirements. We focused on two key aspects of Barista’s
design: component synthesis and dynamic event control. First,
the modular design of the Barista framework enables operator-
defined composability of various NOS functionalities (e.g.,
clustering, role-based authorization, and flow-rule conflict res-
olution) as portable component extensions. Second, Barista
allows operators to customize the control flows across NOS
components. Barista’s event handling framework supports a
diversity of event types, component chaining, and policy-based
event distribution. Barista also introduces a meta-event class
that can dynamically modify the set of active components
based on current operating conditions. These capabilities col-
lectively enable the dynamic composition and synthesis of
custom NOSs based on operational requirements.

Contributions. In sum, we made the following contributions:

• Design of a new NOS architecture, called Barista, which
substantially accelerates the ability of the SDN research



community to rapidly prototype and integrate new NOS
functionalities into a distributed NOS environment.

• Development of a new SDN event-handling framework
that enables fine-grained control over events delivered to
NOS components through a diverse set of event types,
dynamic chaining among components, and policy-based
event distribution.

• Evaluation of Barista in three use cases that demonstrate
its composability, and its ability to address a range of
operational scenarios that no current NOS can singularly
address.

• Release of Barista as an open-source project.

II. BACKGROUND AND MOTIVATION

Over the past few years, a growing list of competing NOS
software projects have explored features that appeal to various
network operator communities. Barista represents a unique
design perspective among this spectrum of competitive NOS
software projects. Here, we are motivated by the need for a
highly composable NOS compilation framework, that enables
the rapid integration of new NOS features and extensions,
while allowing operators to flexibly compose the most appro-
priate features to match the needs of their individual target
environments. Barista offers a unique NOS approach, that is
applicable to both research communities and operators in a
wide range of operational settings.

A. The Academic Case for Barista

The SDN control layer has garnered much of the focus
among those involved in SDN research. In surveying this
work, we found that researchers often employ an existing
NOS as a base from which to explore new control-layer
features. For example, Ravana [19] modifies Ryu [8], a well-
known open-source NOS, to introduce fault-tolerant features
to the SDN control layer. Other groups have integrated exten-
sions, such as strong security features, into established NOSs
[18], [26]. Unlike the proprietary nature of legacy networks,
SDN researchers enjoy access to a wide range of opensource
platforms from which to experiment, including some of the
most visible and widely used NOSs, such as ONOS [25]
and OpenDaylight [5]. Alternatively, other researchers have
introduced complete ground-up NOS proposals, which focus
on exploring specialized properties, such as robust application
management with high performance [30].

Barista seeks to further extend the ease with which new
NOS components can be designed and integrated. It minimizes
the effort from which components, including feature extensions
to an existing NOS instance can be modularly constructed and
deployed. For example, with Barista, one can rapidly devise
and implement a new flow-rule conflict-detection algorithm
that does not require in-depth analysis or modification of the
NOS internal architecture (e.g., the implementation of such
an algorithm required internal modifications of the Floodlight
NOS [26]). Barista-hosted NOS extensions offer modular
components that do not require internal NOS modifications
to join its event pipeline. Barista’s approach to a component-
based NOS architecture provides research communities with a
rapid development framework, that 1) significantly accelerates
experimentation by reducing the implementation cost, and 2)

produces cleanly-composable NOS functional extensions that
are easily shared.

B. The Industrial Case for Barista

Network operators who deploy SDN-enabled networks
face the challenge of selecting the best NOS to match the
operational requirements of the target network. For example,
consider a network operator who manages two networks: net-
work A consists of 1K switches and 100K hosts for web testing,
and network B consists of 10 switches and 100 hosts that
provide database services for a corporate-sensitive dataset. In
this scenario, an operator might conclude that a NOS designed
for network scalability and high-performance would best suite
network A, while a NOS that offers strong security policy
enforcement would best suite network B. Although, managing
two separate NOSs might match each environment with the
most applicable NOS features, the deployment of two different
NOS platforms will also impact the overall management cost.

Thus, the second motivation for Barista is to design a
NOS compilation framework that enables the customization
of the NOS at deployment time, with the features that best
suite the target environment. Here, the network operator simply
specifies the functional requirements for each network, and
produces two automated compilations of Barista that deliver
the comparable functional services provided by the two in-
dependent NOS platforms. Once the functional requirements
are specified (i.e., performance, security, fault recovery pro-
tections, scalability) for each network, the Barista framework
will produce a NOS composition that integrates the functional
components that match the stated objectives.

C. Motivating Example

Consider the case where an operator maintains a large num-
ber of computing servers and network devices in a datacenter
network. He needs a scalable NOS to manage the entire set of
entities. However, since the NOS manages the whole network
infrastructure, a compromise of the NOS affects all other
services. As a result, the operator needs a scalable and secure
NOS to satisfy the operating requirements. Without an avail-
able controller, the operator might customize ONOS [25] by
adding the security features introduced by SE-Floodlight [26]
and LegoSDN [10].

Most security features (e.g., role-based authorization, flow-
rule conflict resolution) require inline hooking of inter-
component communication. However, modern NOSs (includ-
ing ONOS) use direct communication between components for
high performance, which means that components communicate
with each other without any control of a NOS. In turn, the
operator needs to embed security logic into all locations where
manual security inspection is required. Furthermore, whenever
ONOS code is updated, the operator needs to check and
make corresponding updates to the security logic. Although
security features can be integrated into ONOS, its underlying
framework (i.e., OSGi [6]) cannot support complete isolation
among components (bundles) due to the shared computing
environment where a component can lead to compromises that
affect the entire system [22], [30].

Our Solution: Barista allows operators to deploy components
supporting diverse functionalities as extensions. For full isola-
tion, Barista replaces direct function calls between components
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Fig. 1: Barista System Overview: Base Framework and Event Handling Framework

with request-response events handled by its centralized event
handler that brokers call between components. Furthermore,
Barista dynamically enforces the component event-processing
sequence based on the characteristics of deployed components.
As a result, the operator can compose scalability and security
functionalities on top of an isolated computing environment
with the dynamic event-processing chain regardless of changes
to the internal logic of components.

III. SYSTEM DESIGN

This section presents the design of Barista and explains
how it facilitates the development of various NOS function-
alities as component extensions that are assembled to build
customized NOS instances. The Barista design sits on the
opposite spectrum of prior NOS work that focused on the
specialization of NOS functionalities to better support target
network environments. Rather, Barista’s goal is to enable
operator-defined composability of NOS functionalities that can
be assembled in its isolated per-component environment.

A. Base Framework Overview

Figure 1 illustrates the two key elements of the Barista
framework: components and events. A component represents
the implementation of a specific NOS function. The concept
of modular composition is inspired by Click [20] and Exoker-
nel [12]. We also consider applications as components in this
work. The only difference is in the kinds of information they
deal with. The framework provides two classes of components.
The first class is a general component (e.g., packet I/O engine
and OpenFlow engine). These are designed primarily to be-
come a functional logic inside a NOS. The second class is an
autonomous component (e.g., statistics and resource manage-
ments). These components are similar to general components,
however, they are intended to independently conduct certain
actions without intervention.

In the Barista framework, events drive the component-
to-component information flow. All communication between
components is managed in an event handler. To communicate
with other components, the incoming and outgoing events
of each component should be first registered at the event
handler. Then, the event handler identifies which components
have registered for an event and delivers the event to those
components.

Barista does not support non-event-based interaction be-
tween components; all intercommunication between compo-
nents is done through events. While this event-handling mech-
anism may increase the communication overhead compared to

direct function calls, in terms of integrating NOS components,
it provides a a degree of abstraction from the NOS internals for
defining component composability. Moreover, it allows inser-
tion of security functionalities to inspect all communications
(e.g., API permission check and data integrity checks). Thus,
our design approach emphasizes flexible composition over high
performance.

B. Component Specification

Barista’s implementation of a component is similar to
that of a general program. A component is composed of
four pieces: main, cleanup, command-line interface (CLI),
and handler functions. The main and cleanup functions are
analogous to a constructor and a deconstructor. Through those
functions, a component can be attached and/or detached from
the framework. The CLI function is the interface to a com-
ponent for operators and allows operators to interact with
the component in runtime. The handler function acts as the
core function of a component that is responsible for receiving
predefined (inbound) events.

Component configuration includes several fields besides
the inbound events. A component can be either general or
autonomous, which determines how the framework handles
it. The role (e.g., admin, security, management, and network)
field indicates the kinds of events a component can receive
and trigger. The permission field defines the capabilities of
a component (reading the internal data of events, modifying
data, and cutting off event distribution). Finally, the outbound
field describes the kinds of events that will be triggered from
a component.

To integrate a component into the framework, an op-
erator can dynamically (un)load a component at runtime
through Barista’s CLI. Once a component is integrated into
the framework, its execution order is automatically determined
according to its role, permission, and dependencies on other
events. If a component has a higher role (admin > security
> management > network) or permission (r:4, w:2, x:1), it
will be executed before other components with lower roles
or permissions. Suppose that component i and j listen to the
same event A. Also, component i triggers event B to update
some data, and component j triggers event C to read the data
updated by component i. In this case, component i will be
executed first for event A since it can trigger event B based
on event A. The framework also allows advanced operators to
adjust the execution order among components through the CLI
for additional flexibility.
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C. Component Portability

Barista allows a component to be executed either inside
or outside the framework by providing a wrapper between
external components and the framework. The wrapper allows
the same code of a component to be used, no matter where it
is executed, without any modification. As shown in Figure 2,
the wrapper is composed of four functions: inter-process
communication (IPC), event and component managers and an
external component handler. The IPC manager coordinates all
messages between an external component and the framework
(including events) and delivers the messages to the correspond-
ing managers. The event and component managers emulate
the behavior of the framework based on the given messages.
The external component handler converts messages coming
through IPC channels to actual events. With those functions,
external components can transparently communicate with other
components.

This portability yields two major benefits. First, a com-
ponent can freely introduce 3rd-party libraries and systems.
For example, many modern controllers [5], [25] use the OSGi
framework [6] to achieve dynamic development and deploy-
ment. While this framework is used to develop new OSGi-
based modules and dynamically integrate them together, its
integration is limited to OSGi-based modules. If a 3rd-party
system does not provide OSGi-based libraries, a developer has
to embed whole libraries into a bundle or make a valid OSGi
bundle from the libraries. Barista, however, does not restrict
the integration of other libraries, which means that developers
can build components using 3rd-party libraries as independent
applications. Second, a component can be fully isolated. While
a few NOSs [30] adopt a micro NOS approach (e.g., [12]) to
isolate functionality, most NOSs [1], [5], [25] still follow a
monolithic approach; Even though each component is modu-
larized, the execution environments are shared. This monolithic
approach allows a small component failure to spread across
the whole system in a cascade effect [11]. The failure of
a component in Barista does not affect the whole operation
of a NOS, although some partial functionalities might be
temporarily unavailable. As soon as a component fails, it can
be restarted and recover its original states depending on the
implementation of the component.

D. Component Pool

Barista provides a component pool that includes a set of
25 self-developed components supporting the functionalities of
contemporary NOSs from which developers can easily pick-
and-choose based on their operating needs.
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Barista provides the necessary components (packet I/O
engine, protocol parser (e.g., OpenFlow), and application han-
dler), management components (switch, host, topology, flow,
and statistics), and logging as base components to implement
a NOS. As component extensions, the cluster component inter-
nally integrates a 3rd-party distributed storage for scalability.
For performance improvement, static flow-rule enforcement
and a flow-rule cache may be deployed. For security, appli-
cation authentication, role-based authorization, component ac-
cess control, control flow and internal message integrity, data-
plane message verification, and flow-rule conflict resolution
components may be embedded into the control flows of a
NOS. Monitoring components for system resources and the
control channel between a NOS and the data plane can be used
to detect abnormal NOS behavior. The failure management
and isolation for southbound interfaces and applications can
increase the robustness of a NOS.

IV. SDN EVENT HANDLING

The Barista event-handling framework seeks to service a
broader range of component composition strategies and expose
event-handling configuration as part of the NOS operation.
For example, Barista introduces an event broker that enables
the NOS author to 1) associate components to a diverse
set of event types, 2) define dynamic event chaining among
components, and 3) offer policy-based event distribution. This
section presents these three event brokerage issues as they are
addressed within the Barista framework.

A. Handling Diverse Event Classes

Barista extends the SDN event handling model by incor-
porating inter-component communications and event-broker-
derived meta events as additional event classes that Barista
authors can define. We illustrate the processing paths of those
three event classes in Figure 3.

Notification Events: The event-handling mechanisms used
by today’s SDN controllers are quite straightforward. A com-
ponent first registers a callback function to an event handler



for receiving a subset of data-plane events (e.g., PACKET IN
messages). When a registered event occurs, the event handler
forwards the event by invoking the callback function. Barista
also provides a mechanism for managing notification-based
data-plane events.

Inter-component Events: While today’s NOSs provide dy-
namic and modular component designs through software ser-
vices (e.g., OSGi [6]), inter-component dependencies remain
tightly coupled to component implementations. For these envi-
ronments, events are used for message distribution, and direct
function (API) calls are used for component-to-component
data exchanges (e.g., getting switch details). Even modular
components designs may require inter-component data sharing.

Here, we define two terms: contextual dependency and
functional dependency. A contextual dependency arises when
one component, i, needs the information produced from an-
other component, j, for i to operate. A functional dependency
arises when a component, i, must submit data to a component,
j, (e.g. employing an API call) for j to produce a result that
is then consumed by i. A highly modularized system is one in
which functional dependencies are minimized among system
components while retaining contextual dependencies.

Barista uses the event broker to replace functional depen-
dencies among components with inter-component communica-
tions involving the exchange of request and response events, as
shown in Figure 3. When a component triggers a request event
to the event handler, the event broker delivers the event to a
target component instead of the original component. When the
target component triggers a reply event, the event broker re-
places the request event with the reply event. Thus, the Barista
event framework replaces functional dependencies between
components with an inter-component event mechanism that
removes component-specific implementation dependencies.

Meta Events: Barista produces meta events for live event
statistics such as event volume, component-level statistics
regarding event consumption or production, and event-type
distribution statistics. Barista also allows operators to define
the thresholds that trigger meta events, and to associate han-
dling logic with produced meta events. Meta events can be
configured to dynamically activate and deactivate components,
or to filter certain events otherwise delivered to specific compo-
nents. The event handler automatically triggers the predefined
handling logic as defined by the operator when meta events
are produced.

Meta events offer a novel mechanism to define special-
ized handling components to deal with dynamic event-stream
conditions, such as dynamically activated component logic
to deal with flashmob traffic or other unexpected saturation
events. Meta events allow the operator to activate and de-
activate components that are pre-deployed to address certain
event production anomalies that can arise from a wide-range
of anticipated operating conditions. This meta-event-handling
service represents an extension beyond existing NOSs, which
may dynamically load and unload components, but require
human intervention to do so as anomalous event production
patterns occur. Meta events offer administrators a means to
express conditional component activation in advance, and to
deactivate such logic when event-production patterns indicate
that such conditions are no longer present. Meta events can
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also impose event handler filtering adjustments, such as the
filtering of specific events to certain components that could
result in unwanted resource utilization.

B. Dynamic Component-Event Chaining

An event chain occurs when the event handler must service
a group of components that are designed to consume a common
event. Modern NOSs do not usually expose services to define
chaining strategies among its components; such strategies
must be defined within the code or through manual priority
configuration. The lack of event-chain support for components
among NOSs is likely because they are primarily concerned
with non-interference. However, some components, especially
security components (e.g., a flow-rule conflict resolver, or an
integrity checker), require fine-grained controls with even-
processing orders [27]. To accommodate this requirement,
Barista facilitates explicit event chaining by default.

Barista has two ways to deliver events to components, as
shown in Figure 4: sequential delivery and parallel delivery.
Sequential delivery is used when a component is granted
permission to terminate event-chaining sequences based on
an internally-defined decision regarding the event, such as a
filter-criteria match (e.g., update, cut-off permissions). Parallel
delivery is used when components consume events but do
not impact the delivery of the event to other components
(e.g., read-only permission). Event-sequence formulation be-
gins with Barista ordering component event delivery based on
each component role and delivering events to components that
have higher authority first. Barista then evaluates which com-
ponent can be delivered events in parallel or sequential. Next,
it checks for contextual dependencies among the consumers. If
so, it imposes sequencing such that the dependent component
follows the event processing of the independent components.
Finally, it processes the adjusted event chains.

This dynamic composition of event chaining enables a fine-
grained control of component composition within the NOS,
which is particularly relevant to the integration of security
and fault-recovery components. While existing NOSs enhance
network serviceability through various network components,
their architectural designs impose limitations on adding secu-
rity features. For example, SE-Floodlight [26] requires mod-
ification to its internal logic to embed a flow-rule conflict-
detection mechanism. In contrast, Barista’s architecture is
designed to modularize components and event-handling flows.
This design simplifies the integration of research extensions
into the processing pipeline of NOS notification and inter-
component events.
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C. Policy-based Event Distribution

Rather than employing event-handling mechanisms, exist-
ing NOSs focus on adding more functions to satisfy ever-
increasing operating requirements. This approach is neither
scalable nor robust. In contrast, Barista provides operator-
defined policies (ODPs). that allow operators to select the set
of components that they wish to deploy and specify the event-
handling policy for the deployed components.

In the current Barista prototype, each ODP is composed
of seven fields: datapath ID, in-port (incoming switch port),
protocol, source/destination IP addresses and ports. This can
be extended based on future operator needs. Once an operator
defines an ODP, Barista updates the policy table in a target
component as shown in Figure 5. Then, when the event handler
identifies an incoming event, it matches the event with the
policy table of a target component before delivery. If the event
does not match component policy, the event handler proceeds
to the next component in the event chain.

In Figure 6, an SDN allows an operator to manage net-
work traffic from a global perspective over the switching
infrastructure. Using one or more SDN applications hosted
on the NOS, each network flow can be managed by an in-
dividual application or among multiple applications. However,
an operator may need to dynamically alter the network flow
management policy depending on runtime criteria. To illustrate
this point, let us consider a deployment in which the SDN
operator employs two flow management applications: a flow-
forwarding application and a virtual-network-function (VNF)
manager, which selectively directs certain flows to one or
more VNF box(es). While the VNF manager locally routes
traffic through VNFs (i.e., VNF chaining), the forwarding
application handles traffic globally. However, current NOSs
do not provide mechanisms to selectively differentiate between
such applications; both applications receive messages for all
traffic, even though some messages are not relevant. Hence, the
operator chooses to deploy those applications independently.
Unlike current NOSs, Barista’s ODPs can filter messages so
that the VNF manager only handles traffic bound to each VNF
box, and the forwarding application handles all traffic except
for the traffic handled by the VNF manager.

D. Event Distribution across Instances

The Barista event handler uses the cluster component to
deliver events to other instances. The cluster component at
each instance shares its events through distributed storage.
When indicated events are triggered at one of the instances, the
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cluster component receives them from the event handler and
stores them in distributed storage. At the same time, the cluster
component continues polling for new events from other in-
stances and triggers those events at its instance. The distributed
storage maintains logical sequences to ensure that incoming
events are ordered chronologically. The polling mechanism
gets events from the distributed storage and currently supports
eventual consistency; supporting strong consistency is a future
goal.

The information to be shared across Barista instances
depends on the events received by the cluster component. For
example, if operators only want to share topology information,
they can set switch and topology events at the cluster com-
ponent. Some events can be shared among specific instances
rather than all instances allowing operators to strategically
distribute events at each instance.

V. SYSTEM IMPLEMENTATION

A prototype of Barista has been implemented to evaluate
the efficiency and effectiveness of its design, including the
base framework and a broad set of components. The Barista
prototype consists of over 17K lines of mostly C code and
supporting Python scripts.

The base framework maintains a component list containing
operator-defined configurations (JSON format). Event distri-
bution across Barista instances uses MariaDB and Galera
Cluster [3] and makes batch transactions. The wrappers for
component portability use POSIX message queues and shared
memories. We are currently developing the wrappers in more
languages to provide additional options to Barista develop-
ers. To generate control traffic for evaluation, we modified
Cbench [29] to produce more diverse control messages with
specific input parameters, such as the range of IP/MAC address
pairs and messages per second. All implementation details
and source code will be available at https://github.com/sdx4u/
barista.

VI. USE CASES

This section presents three use cases that demonstrate the
effectiveness of Barista: A) a distributed and secure NOS, B)
separated network management using operator-defined policies
and C) an IoT use case.
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Fig. 7: Throughput comparison of Barista, ONOS, and SE-
Floodlight

A. Distributed and Secure NOS

This use case describes how an operator can brew a
scalable, secure NOS using the Barista framework as discussed
in Section II-C. The first step considers the functionalities of
a scalable NOS (i.e., ONOS) and a secure NOS (i.e., SE-
Floodlight). ONOS achieves scalability with its distributed
mechanisms (e.g., distributed storage and raft-based consis-
tency model). In the case of SE-Floodlight’s key features
are role-based authorization, component authentication, and
flow-rule conflict resolution. An operator can simply enable
those functionalities (i.e., cluster, role-based authorization,
component access control, and flow-rule conflict resolution)
with the base components in the Barista framework.

To show the effectiveness of the Barista NOS composition,
we compared the throughputs of Barista, ONOS, and SE-
Floodlight with default configurations. The measurements used
Cbench with 1,000 virtual hosts connected across 48 ports per
switch. Figure 7 illustrates the per-instance throughput of the 3-
node Barista cluster, 3-node ONOS cluster, and SE-Floodlight
with varying numbers of switches. The reason for per-instance
throughput is because SE-Floodlight only supports a single
instance. Each ONOS instance saturated at an average of 940K
responses/s, and SE-Floodlight saturated at 357K responses/s.
The Barista instance supported a maximum throughput of
1,059K responses/s. Although the Barista instance lost some
throughput due to the high computation overhead coming
from checking flow-rule conflicts, it showed almost three
times higher throughput than that of SE-Floodlight and was
comparable with ONOS. With this throughput rate, the Barista
framework allows operators to compose required functionali-
ties with competitive performance.

B. Separation of Network Management

Barista allows operators to define operator-defined policies
at a per-component level (i.e., they can use policies to affect
the set of flows seen by each Barista component). To illustrate
this capability, we instantiated a simple network, shown in
Figure 6, that is managed with a Barista controller. Here, an
operator wants to separately manage network traffic with a
forwarding application and local traffic at the VNF box with a
VNF manager. Achieving this requires the definition of three
ODPs. To handle traffic on the physical network using the for-
warding application, the operator defines two ODPs: “forward-
ing dpid:!2” and “forwarding dpid:2; port:1,2; proto:lldp”. To
handle local traffic at the VNF box using the VNF manager,
the operator defines a third ODP: “vnf manger dpid:2”. These
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Fig. 8: Throughput comparison of Barista, Ryu, and Floodlight
on a single-board device

ODPs allow Barista to filters out events so that each application
sees only the events defined by ODPs. This requirement can
be satisfied without any application modification by applying
ODPs that control event flows inside the controller. Thus,
Barista empowers operators by providing the ability to dynami-
cally control flow handling within the controller through well-
defined policies. As another example, operators may define
policies to scale up the throughput of a component by increas-
ing the number of component instances and assigning a subset
of traffic to each one (i.e., “forwarding 1 dstip:192.168.0.0/25”
and “forwarding 2 dstip:192.168.0.128/25”).

C. Lightweight NOS for IoT Environments

IoT devices require a lightweight NOS as they have much
lower computing power than commodity servers. Unfortu-
nately, most contemporary NOSs [5], [25] are designed for
server-side deployments and unsuitable to be run on small
devices with limited resources. However, a few controllers [1],
[7], [8] are readily executable on such devices (specifically the
ODROID XU4 [16]).

To demonstrate the applicability of Barista in this situation,
we compared it with Ryu [8] and Floodlight [1] (default
configurations). We used ODROID XU4 (ARM Cortex-A7,
Octa-core, 2 GB of RAM) and a set of base components for
the Barista cases. Figure 8 illustrates the throughput of each
NOS (lines). The throughput of Ryu is 2,058.4 responses/s on
average. Since Ryu is a single-thread controller and threading
is only available for application tasks, its throughput does not
scale up and is much lower than others. Because Floodlight can
run with multiple threads, its throughput goes up to 55,005.0
responses/s with a 93.8% CPU usage. However, Barista shows
even higher throughput. With a single worker, Barista performs
up to 63,523.5 responses/s while consuming up to 14.5% of
CPU resources. With eight workers, Barista performs up to
254K responses/s. This demonstrates that the Barista NOS is
also suitable for small computing devices such as IoT gateways
with low resource consumption.

VII. SYSTEM EVALUATION

This section describes experimental results that validate the
efficiency and effectiveness of the Barista prototype system.
Our testbed comprised six machines. Three machines ran
Barista instances, each with Intel E5-2620 CPU (6 cores, 2.40
GHz) and 32 GB of RAM. Three other machines, each with an
Intel i5-6600K CPU (4 cores, 3.50GHz) and 16 GB of RAM
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Fig. 9: Microbenchmarks of throughput and CPU usage

were used for control-message generation. For the evaluation,
we set Cbench to generate 1,000 unique hosts for each switch.

Component Microbenchmarks: To understand how each
component affects a NOS, we measured the throughput and
CPU usage of a set of extensible components along with
the base components. Figure 9 illustrates the throughput and
CPU usage for each component as we varied the number of
switches. We present the cases with 16 event-handling workers
finding that the throughput of most components (from 428K
to 1,338K responses/s on average) is comparable to that of
the base components (from 505K to 1,438K responses/s).
The throughput is saturated at around 1.4M responses/s due
to NIC bandwidth limitations (1 Gbps). When the number
of switches is low, the throughput suffers because of the
workload imbalance across workers (we will optimize the
framework in the near future). In most cases, each component
has minimal impact on the overall throughput; however, as
more components are integrated into the framework, the CPU
usage also increases. For example, the CPU overhead of AI
and SBI is significantly higher (up to 98.3%) than the others
(up to 37.8%).

The cases with two and four switches in Figure 9 show
the internal message integrity at 260K and 645K responses/s
(-48.4% and -44.5% compared to the throughputs of the
base components), respectively, because of the checksum-
generation overhead. The control-traffic management sightly
decreases the throughputs (438K and 1,158K responses/s, -
13.3% and -7.5%) since it monitors all incoming and outgoing
messages. However, as the number of workers increases, their
overheads are covered with sufficient computation resources.
Unlike the other components, the throughputs of the flow-rule
cache increase (561K and 1,152K responses/s, +11.1%). Figure
9 shows that the throughputs of four components (cluster, flow
conflict resolution, application isolation, and southbound isola-
tion) visibly decrease. The throughput of the cluster (-5.8% to
-20.2%) is reduced due to the read and write overheads from a
distributed storage. The flow-conflict resolution compares all
possible alias-reduced rules (ARRs introduced in [26]) with
existing flow rules, resulting in high computation overhead (-
7.0% to -24.2%). The performance degradation of SBI and AI
mainly occurs due to the IPC overhead. Since some data-plane

messages (e.g., PORT STATUS, and PACKET IN messages
related to LLDP packets) are not delivered to the application
layer, the throughput of SBI (-33.8% to -48.9%) is relatively
lower than that of AI (-23.1% to -33.5%).

VIII. RELATED WORK

A growing list of competing NOS software projects have
explored features that appeal to various network operator
communities. NOX [15] emerged as the first network operating
system for SDNs and has since been ported to Python -
POX [7]. Both Floodlight [1] and Beacon [13] followed the
release of NOX and were primarily optimized to maximize
connection throughput. Later NOS architectures have extended
early NOS functions to address the growing interest in SDNs
for managing large and dynamic (virtual) network environ-
ments. Onix [21] represents the first effort to address scalability
by developing a distributed NOS platform. ONOS [25], Hyper-
flow [31], Kandoo [17], OpenDaylight [5], and Beehive [32]
incorporate similar objectives. They are designed as distributed
platforms to support large numbers of requests in wide-area
environments and emphasize the need for greater scalability
while maintaining high performance. However, these platforms
do not focus on security or robust network application man-
agement in their designs.

SE-Floodlight [26], FortNOX [27], Rosemary [30],
LegoSDN [10], and Ravana [19] demonstrate the integration
of multi-network-application security and robustness features
into the SDN control layer. Those controllers focus on ap-
plication consistency and robust application management to
enhance NOS reliability in sensitive computing environments
with less regard to the scalability and performance issues
that are presented in other production environments. While
Corybantic [23] optimizes the modularized management of
controller applications, it does not consider the adoption of any
security mechanisms. Other NOSs have adopted component-
based architectures [5], [8], [25], but they do not consider
the issue of how to compose components based on operator-
defined requirements. While new features could be integrated
into ONOS [25] and OpenDaylight [5], the interface for
component extension is not straightforward. Ryu [8] provides



a basic set of components that is a strict subset of Barista’s
component library.

Other approaches to deal with multi-controller envi-
ronments include FlowVisor [9], [28], Frentic [14], and
Pyretic [24]. FlowVisor divides a network into slices and
enforces strict isolation between controllers running above it,
while managing provisioning and shared resources. FlowVisor
could similarly be used to manage Barista instances while pro-
viding a more homogeneous northbound API for applications.
Pyretic provides a higher-level runtime that resides “above”
the controller providing compositional operators for querying
and transforming network streams. In fact, Barista’s sequential
and parallel composition functions are inspired by Pyretic.
Such runtimes could be ported to run over Barista controllers.
Finally, commercial products such as HP-VAN [2] and the
NEC controller [4] are proprietary closed-source systems. We
have limited insight into their implementation, but they do not
support our approach of specification-driven NOS synthesis.

IX. CONCLUSION

The NOS is an integral piece of SDN, and its functionalities
significantly influence the whole network. While scalability,
security, and reliability challenges should be addressed in
the design of a NOS, we observe that contemporary NOS
solutions tend to be focused on specific dimensions, and the
integration of the functionalities across NOSs is challeng-
ing due to incompatible design principles. Barista takes an
important step toward addressing this problem by providing
a NOS component-synthesis framework that simplifies the
integration of composable NOS modules with a dynamic event-
handling mechanism. We evaluated the system against a range
of commodity NOSs with useful scenarios, and found that
Barista simplifies instantiation of a NOS with diverse feature
combinations and efficiently replicates functionalities found in
major NOSs while delivering competitive performance.
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