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ABSTRACT

Cyber Threat Intelligence (CTI) sharing facilitates a comprehensive
understanding of adversary activity and enables enterprise networks
to prioritize their cyber defense technologies. To that end, we introduce
HogMap, a novel software-defined infrastructure that simplifies and
incentivizes collaborative measurement and monitoring of cyber-threat
activity. HogMap proposes to transform the cyber-threat monitoring
landscape by integrating several novel SDN-enabled capabilities: (%)
intelligent in-place filtering of malicious traffic, (¢4) dynamic migration
of interesting and extraordinary traffic and (é¢¢) a software-defined
marketplace where various parties can opportunistically subscribe
to and publish cyber-threat intelligence services in a flexible manner.
We present the architectural vision and summarize our preliminary
experience in developing and operating an SDN-based HoneyGrid,
which spans three enterprises and implements several of the enabling
capabilities (e.g., traffic filtering, traffic forwarding and connection
migration). We find that SDN technologies greatly simplify the design
and deployment of such globally distributed and elastic HoneyGrids.

1 Introduction

Effective and timely cyber threat intelligence (CTI) sharing is essential
in the fight against sophisticated cyber-criminals. However, the state
of the art in CTI sharing leaves much to be desired: it is a potpourri
of community mailing lists or a set of ad-hoc automation solutions.
We posit that the development of automated solutions to collaborative
threat monitoring and exchange is principally constrained by two factors:
technical complexity and lack of coercive incentives.

Novel and exciting capabilities enabled by SDNs include physical
separation of the control plane from the data plane, network programma-
bility, and network function virtualization which allows for dynamic
network reconfiguration to support host mobility [1], in-network load
balancing [2], and dynamic threat mitigation [3]. We make the case
that such capabilities could mitigate the technical complexity of collabo-
rative monitoring by simplifying the seamless integration of distributed
threat monitoring sensors.

We architect our collaborative threat monitoring framework around
dark address space monitors (network telescopes [4] and honeynets [5])
which are well-established security tools commonly used to gather
CTI. While telescopes have limited fidelity due to the limitations of
passive monitoring, effective honeynet deployments entail maintain-
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ing a constantly evolving repertoire of application responders and a
menagerie of operating systems and applications which run at varying
patch levels and becomes a constant operational challenge. In addition,
most honeynets and telescopes suffer from a tunnel-vision syndrome
that stems from monitoring one or a small number of contiguous network
blocks. However, targeted scanning by sophisticated attackers implies
that the choice of monitoring location is important. Prior works, such as
highly predictive blacklists [6], have demonstrated that one gets better
blacklists by prioritizing networks that are most similar to one’s own.
While the benefits of collaborative monitoring are proven, free and open
data sharing approaches are straddled by the early adopter incentive
problem: there is no benefit to being the first to publicly share data. In
contrast, adversaries have become quite adept at incorporating technol-
ogy advancements and incentivizing collaborative malware propagation
through affiliate programs [7, 8] and anonymous currencies [9].

Therefore, an ideal CTI collection framework should achieve the
following three design goals:

e Modular Design: Darknet provision, honeyfarm management and
application development should be decoupled. The framework should
support dynamic orchestration of globally distributed darknets and
honeyfarms to avoid tunnel-vision syndrome and optimize resource
utilization.

e [ncentivized Participation: Darknet, honeyfarm and application
providers should be incentivized to collaborate.

o High Scalability: The framework should enable large-scale measure-
ments by intelligently and actively responding to a large volume of
traffic with limited resources.

To overcome the existing gridlock in the development of threat in-
telligence collection services, we design and implement a scalable SDN-
based HoneyGrid that decouples network telescopes and honeyfarms, to
enable multiple HoneyGrids to dynamically collaborate with each other
for higher resource utilization rates and global attack visibility. To incen-
tivize more HoneyGrids and security application providers to collaborate,
we present HogMap, a flexible, open, and collaborative marketplace.

2 Conceptual Overview

Hogmap is a marketplace to facilitate incentivized collaboration be-
tween network operators with reserved (unused) address space, honeynet
service providers, and security application providers who would benefit
from access to malicious traffic and threat intelligence across a widely-
diverse range of addresses. In building our HoneyGrid marketplace,
we embrace the paradigm of SDNs and programmable network switches
to facilitate the seamless exchange of global attack activity across dis-
tributed participants. Specifically, for the first time, we use SDNs to
realize concepts of attack flow orchestration and just-in-time honeypot
migration that is informed through real-time observation of an adver-
sary’s behavior. Our objective is to enable dynamic threat intelligence
collaborations and design analysis capabilities that produce a unified
threat surveillance contact surface, scalable to millions of IP addresses.
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Figure 1: Architectural Overview of HogMap

Service Name / Provider

Description

Attack(er) as a Service
(AaaS)/ASP

BlackList as a Service
(BLaS)/BLSP
Darknet as a Service
(DaaS)/DSP
Response as a Service
(RaaS)/RSP

Honeyfarm as a Service
(HaaS)/HSP

Monitoring as a Service
(MaaS)/MSP

Traffic Analysis as
a Service (TanaaS)/
TASP

Real-time information about attacks or attackers
targeting certain services or from specific

geo- or netblock- locations are advertised.
Specialized blacklists services, such as highly
predictive blacklists (HPBs) [6] are advertised.

All or a subset of traffic that is sent to an unused
address block are advertised.

Mitigation responses (quarantine, migrate to
honeynet, fishbowl, etc.), triggered by CTI gathered
from HogMap and implemented as SDN applications,
could also be advertised.

Honeyfarms that are comprised of VMs running
various operating systems, with different patch levels
and different containment policies or application
emulators are advertised.

Extended monitoring services, e.g., long-term
tracking of IRC channels [12], P2P botnet
communications etc. are advertised.

Different levels of traffic analysis services, such as
real-time intrusion detection, offline deep packet
inspection, binary analysis services, etc. are advertised.

Packet trace and forensic information collected
at other HoneyGrids are advertised.

Traffic as a Service
(TaaS)/ TSP

Table 1: Potential Set of HogMap Services and Providers

Figure 1 shows an example of HogMap infrastructure in which a
HoneyGrid is composed of two darknet gateways and honeyfarms,
owned by different darknet and honeyfarm providers. Through a bidding
process coordinated by HogMap Manager, the two darknet gateways
“outsource” each connection to the chosen honeyfarm for response.

The use of SDN simplifies the deployment of HogMap by providing a
common forwarding substrate over which traffic redirection applications
may be run. The software running at the gateways of the providers
and subscribers may be directly updated by updating the marketplace
apps. In addition, various traffic winnowing strategies, that we describe
below, may be directly delivered as SDN applications. Realizing similar
functionality in traditional networks would involve reimplementing
such gateway or proxy forwarding, in custom software [10, 11], and
that would be much less scalable.

2.1 SDN-Enabled HoneyGrid MarketPlace

The marketplace is a collection of a la carte services that the HoneyGrid
participants can advertise and subscribe to. The centralized HogMap
manager coordinates dynamic services to foster collaborative surveil-
lance, data exchange and threat mitigation capabilities that would be
difficult to enable independently.

HogMap adopts SDN technology to simplify marketplace coordina-
tion across different parties: to participate in HogMap, various providers

with diverse network architectures only need to be equipped with an
OF switch gateway and flexibility to deploy HogMap-certified SDN
apps. These apps can then enable the provider to participate in various
services and perform just-in-time actions to forward traffic without
manual configuration. We discuss how HogMap marketplace works
by presenting examples scenarios in Section 3.

A key driving force behind HogMap is the symbiotic nature of the
threat monitoring ecosystem, i.e., service subscribers and providers
benefit from HogMap. Subscribers benefit from access to heteroge-
neous services from distributed providers, e.g., collection of physically
distributed honeyfarms, each specializing in a different area such as
SCADA emulation, Mac Networks, Windows enterprise emulation,
satellite telemetry systems and web server vulnerability emulation.
These services enable subscribers to achieve custom response orchestra-
tion and global visibility; two goals traditional honeynets are unable to
realize. Service providers gain access to both data and revenue, helping
providers improve their CTI and refine mitigation systems. We identify
apotential set of HogMap services ' in Table 1.

For pricing, HogMap adopts a laissez faire approach that is inspired
by MoB [13] and eBay [14] with no regulatory control. However, open
market economics theory dictates that most traders will ultimately price
their services based on prevailing competitive forces. Two critical com-
ponents of such a marketplace include billing and reputation tracking,
which can either be built into the system or relegated to third party
providers. We leave this for future work.

2.2 SDN-Enabled Traffic Winnowing

We describe below four traffic winnowing strategies that have been
implemented using SDNs to improve scalability.

1. Delayed Connection Migration: Significant honeynet VM cycles
are wasted on attempts to service scanners, i.e., source IP addresses that
send no more than a single SYN packet. Delayed Connection Migration
(DCM) [15] is a strategy that tries to delay the allocation of a dedicated
VM instance until the source has demonstrated that it is not just a scanner.
We implement DCM by extending OF switches.

2. Dynamic Traffic Filter Scheme: Not all traffic merits aresponse. If a
source exhibits certain activity in one connection, the same kind of activ-
ity will be seen on many other connections initiated by the same source.
However, proposing an universal filter for all sources is difficult. For ex-
ample, many sources possess the same degree of affinity to all monitored
IP addresses, but there are still some active sources that carry different
exploits for different services. To efficiently trade off traffic reduction
and information loss, the traffic filter should be dynamically updated
with more specific rules. We define a flexible traffic filter scheme that
runs as an SDN controller app and supports multiple filtering strategies.

3. Intelligent HIH Management: When an HIH is allocated for a con-
nection, a timeout specifies the period of time that this connection can
occupy the HIH. A small timeout might terminate an attacker’s ongoing
activities; a large one might lead to low HIH utilization rate, since an
HIH might still be reserved for a connection even if attacker has stopped
exploiting activity. Another traffic winnowing strategy is to proactively
remove sessions by preemptively recycling VM instances as soon as the
HoneyGrid is able to identify the adversarial malware family or detect
the termination of the attack.

In addition, we design a capability to dynamically modify priorities
of HIH allocation based on history of sources: sources with a history
of exploiting unknown vulnerabilities would have higher priorities than
those repeatedly attempting well-known exploits.

4. LIH Filters and Session Migration: To further reduce the volume
of traffic reflected to the honeyfarm, one might use low-interaction
honeypots (LIHs) such as Dionaea [16], Honeyd [17] or iSink [18]

"This list is not intended to be complete, rather its evolutionary and
meant to highlight the breadth of services that could be supported
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Figure 2: An enterprise subscribes to RaaS to better protect its
production network

as a pre-filter before allocating high-interaction honeypots (HIHs) to
traffic because our evaluation results show that LIHs are sufficient for
alarge portion of traffic. For example, in our operational HoneyGrid,
we found that more than 90% of Telnet connections stopped at the Telnet
authentication phase, which most of the Telnet LIHs can fully simulate;
allocating an HIH to each of these connections is wasteful. Since we
are not able to determine if a connection requires an HIH when one only
sees the first packet, we allocate LIHs for these connections. If the LIH
cannot handle the connection, we then migrate the session to an HIH
instance in real time.

3 Case Study

We discuss two HogMap use case scenarios. The first one shows how bid-
ding process works. The second one illustrates how multiple providers
collaboratively service a subscriber using SDN techniques.
Scenario 1: A US research group intends to monitor and analyze web
security trends in Asia, but they don’t have Asian darknet address space.
Therefore, the group sends a query to the HogMap manager to subscribe
to TaaS with its requirements for DSP and HSP. Having received the
request, the manager sends bid requests to all the qualified providers.
Each provider returns a bid response including pricing and detailed
capacities. The HogMap manager relays the bid responses to the sub-
scriber, which then selects the bid winners (e.g., DSP A and HSP B) on
the basis of price and reputations, and returns winners to the manager,
which informs DSP A and HSP B of subscriber’s selection. Then,
HogMap client apps on both providers authenticate each other through
digital certificates generated by HogMap manager during registration
and create a temporary secure channel to negotiate traffic forwarding
parameters such as the responding services and maximum outgoing
requests. When the temporary channel is initiated, DSP A forwards a
copy of the traffic to subscriber’s address using GRE channel.

Scenario 2: Figure 2 illustrates a scenario in which an enterprise net-
work subscribes to Raa$ to better protect its production network. RaaS
is collaboratively served by a BLSP, HSP, TASP. The bidding process
is the same as in Scenario 1 and the subscriber selects one from each
provider group. Based on the subscriber’s request details and the chosen
providers, the HogMap manager customizes an SDN mitigation response
app and delivers it to the subscriber. The subscriber is required to run an
SDN gateway switch upon which runs the mitigation response app that
forwards incoming traffic. Traffic identified as malicious by the response
app is then forwarded to selected HSP; the remaining non-suspicious
traffic will be forwarded to the enterprise’s production network.

In addition, the mitigation response app also instructs the gateway
switch to send a copy of the honeyfarm traffic to a TASP for deep packet
inspection. The TASP will generate situational awareness reports [5]
for the enterprise network’s administrators everyday. Moreover, the
detection results will also be directly sent to BLSP to update its blacklist

and to HSP for better allocation of honeypots (see Section 2.2). If a
BLSP updates its database, it will directly send a request to the mitiga-
tion response app through the app’s REST APl interface. Because the
participants are all SDN-enabled, the subscriber is able to dynamically
replace any of the providers for lower price or better performance without
stopping the service.

Both scenarios illustrate how participants are incentivized to join
HogMap: subscribers can get services with smaller budgets and better
performance; providers not only get paid, butalso get access toreal-world
data that would be otherwise hard to obtain for product improvement.

4 System Implementation and Evaluation

We have implemented a proof-of-concept SDN-enabled HoneyGrid,
including one darknet gateway (hosting a contiguous /17 unused address
block); one local honeyfarm; two globally distributed honeyfarms; and
one traffic analysis server which stores traffic and runs analysis scripts
every six hours to analyze the data and generate situational awareness
reports [5].

4.1 Honeypot Allocation

We implemented the four strategies discussed in Section 2.2 to reduce
traffic volume and fully utilize HIH resources.

1. Delayed Connection Migration: We extended the OpenFlow ref-
erence software switch [19] with an additional action (DELAYED_-
CONTROLLER) to implement the delayed connection migration func-
tion [15]. The extended switch proxies TCP handshakes, and once the
handshake is complete, forwards packets to the controller’s honeypot
allocation app. The honeypot allocation app then allocates honeypots
and directs the switch to migrate the connection. Once the migration
process completes, subsequent packets will be forwarded to the hon-
eypot with SEQ_MOD and ACK_MOD actions, which are two actions
added by our extended switch to modify a TCP packet’s SEQ and ACK
fields. The honeypot allocation app selects flows on which to enforce
delayed connection migration by installing new flow rules with the
DELAYED_CONTROLLER action; matching flows will be subject
to delayed connection migration.

We measured the volume of scan traffic on a honeynet that responds to
all TCP connections. The results are shown in the first row of Figure Sc;
among all the responded connections, scanning traffic accounts for
34.5%. Delayed connection migration can prevent HoneyGrid from
allocating honeypots for them.

2. Dynamic Traffic Filtering Scheme: We implemented a filter scheme on
honeypot allocation apps that maintains a filter table such that multiple
filters can coexist. Each row of the table represents a filter instance with
its parameters. For each connection, the table first finds all filters with
matching scope and then applies the one with the highest priority.

By default, we employed a one-source-one-destination-per-honey-
service (OSODPHS) filter: for each honey service that we deployed,
a source can only interact with the first destination that it contacts.
The honeypot allocation app supports other authorized participants
(e.g., a TASP) to dynamically modify filters through the REST API
interface [20] provided by the app.

We evaluated the effectiveness of the OSODPHS filter in our oper-
ational HoneyGrid. The results are illustrated in Figure 5d; on average,
the OSODPHS filter drops 23.1% of connections. Another 21.1% of
connections are dropped because our HoneyGrid does not have suitable
honey services for those protocols. Only 55.8% of total connections
will enter the honeyfarm.

3. Intelligent HIH Management: We first leverage the OF switch’s idle
and hard timeout feature: for each flow rule, we set a large hard timeout,
which indicates the maximum amount of time the rule can exist; and
a small idle timeout, which specifies the amount of time before the rule
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Figure 3: Telnet session migration

is removed when no traffic is detected. When a timeout event fires, the
corresponding rule will be automatically removed and a flow removed
message will be sent to controller; upon receiving this message, the
honeypot allocation app and the HIH manager app update connection
status and recycle the HIH for the next connection. In addition, we run
custom Bro policy scripts in each HIH to monitor traffic in real time.
If the traffic can be attributed to a known malware family, the HIH will
immediately send a message to the controller. Upon receipt of this
message, the HIH will be recycled for new connections.

The honeypot allocation app supports source priority update by other
authorized participants in the marketplace through a REST APl interface
during runtime. In the current implementation, a source’s priority can be
set as high, medium or low; medium is the default priority. The honeypot
allocation app always tries to allocate HIH for sources with high priority.
In the absence of an unallocated HIH, an HIH used by the source with
lowest priority will be recycled and allocated to the high-priority source.

We evaluated the effectiveness of VM recycling on a small HIH
honeyfarm with eight HIHs running. Figure 5b shows the CDF of 16,307
HIH instance lifetimes. From the figure, we see that for eighty percent
of the times, an HIH will run for less than 51 seconds. For less than 10%
of the time, an HIH’s lifetime is longer than 120 seconds; the longest
lifetime is 300 seconds. We are mostly interested in such rare-scenario
traffic because these sources are more likely to initiate an unknown
attack. Without preemptive VM recycling, every HIH has to run for 300
seconds in order to collect sufficient statistics, a period which would
significantly waste HIH resources.

4. LIH Filters and Session Migration: We implemented a session migra-
tion mechanism for the Telnet protocol. Figure 3 illustrates how it works.
(1): When an attacker initiates a connection to port 23 (Telnet), the
honeypot allocation app first allocates a Telnet LIH (LIH1) for it. After
attempting several username/password pairs, the attacker successfully
logs in and sends the first command. (2): LIH1 sends a request to
honeypot allocation app to ask if conducting session migration. (3,
4): Next, the honeypot allocation app chooses an unused Telnet HIH
(HIH1) as the target honeypot, notifies LIH1 not to further respond to
this session and then instructs Telnet session synchronization app to start
synchronizing the session. (5): The packets that might be used for future
session synchronizations are stored on the extended OF switch but man-
aged by the trace recorder app. The Telnet session synchronization app
fetches this session’s previous packets through trace recorder app and
synchronizes the session through OF switch. (6): After synchronization,
the Telnet session synchronization app informs the honeypot allocation
app, which then modifies flow rules to forward the session’s subsequent
traffic to the port connected to HIH1 with different ACK and SEQ fields
through SEQ_MOD and ACK_MOD actions, which are provided by our
extended OF switch. Thus, through this process, the attacker’s session
is first handled by LIH and then seamlessly handed off to the HIH.
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Figure 4: Darknet gateway and honeyfarm forward traffic by modifying
IP header

We measured the number of Telnet connections that stopped at the
authentication phase. The results are shown in the second row of Fig-
ure 5c; on average, there are 246 Telnet connections per hour and 96.3%
of them stopped at the authentication phase (our Telnet LIH app will
let the attacker pass the authentication phase if he/she either enters the
most popular username password pairs, like root/root, or has attempted
more than five times). Due to session migration, the HoneyGrid need
not allocate HIHs to any of these connections.

4.2 Traffic Forwarding

Traffic forwarding apps running on the darknet gateway and honeyfarm
forward traffic between each other. We discuss how these work in this
section.

1. Packet Modification: We adopt a header modification approach
to forward traffic. This approach can be conveniently implemented
using OF switches without incurring bandwidth overhead. The traffic
forwarding app installs rules to modify an incoming packet’s destination
address as honeyfarm’s public address and its source address as the target
IP. Each packet will be mapped from flow attackerIP: attackerPort —
targetlP:targetPort (the original flow), to flow targetIP: attackerPort —
honeyfarmlP : targetPort (the forwarding flow). Figure 4 shows an exam-
ple: an attacker with IP /.1.1.1 attempts to exploit port 445 of a darknet
address 2.2.128.2 (target IP). This connection is then “outsourced” to
a honeyfarm with the public IP 3.3.3.3 for response.

Though this scenario is rare, two original flows could be mapped to
the same forwarding flow. Therefore, if a packet forwarding app detects
such a conflict, it will add one more action to modify attacker’s source
port with a different port number to compose a new forwarding flow
that has not been used by other original flows at the moment.

2. Attacker IP Notification: Darknet gateway switches modify the pack-
ets’ IP headers to forward them to honeyfarm. To allow the honeyfarm
to discern the attackers’ true IP addresses, the traffic forwarding app
creates a virtual tunnel for each connection before forwarding traffic
(that is inspired by FlowTags [21]): for each new connection, traffic
forwarding app on the darknet gateway side emits two setup packets
that inform the honeyfarm of the attacker’ true IP. Specifically, before
installing rules for a new connection, the traffic forwarding app first
builds two packets with their IPID fields set as first and second half of the
source P, respectively. We set the ECN fields in the IP headers of these
packets as either 1 or 2 to indicate which half of the attacker IP is stored
in the IPID field. The ECN fields of non-setup packets are unchanged.

We also propose a negotiation mechanism to prevent setup packets
from getting lost: the honeyfarm will send a setup-request packet back to
the darknet gateway if it detects a potential setup packet loss; the darknet
gateway does not install backward forwarding rules unless it receives
aconfirmation. This mechanism guarantees that the traffic forwarding
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Figure 5: HoneyGrid Experimental Evaluation Results

app resends the lost setup packet in a timely manner and a connection
will be continued only when the honeyfarm has received the attacker’s
IP address.

3. Flow Consistency: Inconsistencies may arise due to asynchronous
deletion of session rules in the darknet gateway and the honeyfarm. In
our implementation, when a rule in the darknet gateway gets deleted, the
traffic forwarding app sends a message to the honeypot allocation app
running on the honeyfarm, indicating the expired flow, which should
be deleted. The honeypot allocation app deletes the specified flow rules
and returns a confirmation to the traffic forwarding app. Only when the
confirmation has been received, can the traffic forwarding app reuse
the forwarding flow. For efficiency, this process is implemented to work
asynchronously.

4. HoneyGrid Forwarding Delay: Our HoneyGrid is deployed with
one local honeyfarm and two remote honeyfarms located in Chicago
and Amazon’s EC2 Cloud [22], respectively. We measured the Honey-
Grid’s forwarding delay by initiating 3000 HTTP requests to the darknet
gateway, which then forwarded the traffic to the three honeyfarms for
response. Specifically, we measured the initial RTT (i.e., the time it
takes from SYN to the SYN/ACK) and non-initial RTT (i.e., the round
trip delay after TCP handshake). The initial RTT’s CDF is shown in
Figure 5a (left), while the non-initial RTT is shown in the right. The 80th
percentiles of non-initial RTTs are 117.91 and 120.34 milliseconds for
the two remote honeyfarms and 99.34 milliseconds for local honeyfarm.
The overhead results primarily from the transmission delay between
the darknet gateway and remote honeyfarms. The remote honeyfarms’
initial RTTs incur extra tunnel setup overhead; the 80th percentile of
initial RTTs for the Chicago and EC2 honeyfarms are 136.89 and 126.37
ms, meaning that the tunnel setup overhead is between 6 and 20 ms.
Compared with the overall end-to-end delay, this overhead is negligible
and incurred only once for each connection.

5 Discussion

Our proof-of-concept implementation is just a starting point toward
a full-fledged HogMap marketplace. Here, we discuss some attacks,
limitations and future research directions.

As an SDN-based system, HogMap introduces new attack vectors.
First, vulnerabilities in SDN applications and controller may be ex-
ploited by attackers. This issue can be addressed by timely update of
controller and app software. Moreover, state-of-the-art SDN security
techniques [23] can be deployed on HogMap to mitigate the threats.
Second, the centralized control plane makes SDN-based systems more

vulnerable to DoS attacks. In HogMap, these attacks may be addressed
through delayed connection migration.

HogMap providers may come from various organizations with differ-
ent security capabilities and trust levels. Therefore, in HogMap, different
providers are isolated and may only communicate through temporary
channels setup by the HogMap manager with limited privileges. For ex-
ample, an untrusted honey-service provider may not be allowed to open
new outbound connections from within its application. Each provider’s
compromise history affects its HogMap reputation score. However,
the effect of a compromised provider will be limited to its network
slice and not affect other participants. A future research direction is
developing algorithms that automatically enable the HogMap manager
detect compromised providers.

Our implemented approach to forward traffic, though efficient, does
not encrypt traffic while forwarding, which might cause IDS/IPS de-
ployed in the packet forwarding path to block traffic carrying exploit
data. Therefore, we plan to support a complementary VPN tunnel to
forward traffic. In addition, we plan to deliver our extended switch as
a whitebox switch image, which can then be downloaded and installed
on participants’ standardized physical OF switch, such as PicOS [24].
Finally, we plan to implement an LIH filter framework that provides APIs
for standardized operations, such as controller-app communications.
This would enable developers to simply focus on protocol simulation
without worrying about migration.

6 Related Work

Historically, network telescopes have been used to successfully mea-
sure and characterize denial-of-service attacks [25], Internet worm
outbreaks [26], Internet background radiation (IBR) traffic [27], and
Internet outages due to natural disasters and censorship events [28].
While these studies were able to opportunistically infer global attack
phenomena, from a single large network slice, they are limited in cyber-
event detection fidelity due to the passive nature of such measurement
strategies. In contrast, active response honeynets suffer from challenges
of scale due to the incessant and high-volume nature of IBR traffic.
To our knowledge, we are the first and only attempt to integrate SDN
capabilities into the operation of a global HoneyGrid. Our current effort
is also inspired by prior work on building distributed network telescopes
(e.g., Internet Motion Sensor [29]) and efforts to build scalable and
intelligent honeyfarms (e.g., GQ [30] and Potemkin [31]), which are
considered state of the art in honeynet monitoring. While we share their
aspirations for building scalable honeynet monitors, we differ in our
marketplace approach to globally distributed threat monitoring. Unlike
prior research efforts, we are also less interested in understanding the



behavior of self-propagating worms and botnets and more focused on
building new and innovative techniques for tracking stealthy and human-
driven activities in these ecosystems. Hence, we particularly emphasize
the role of filters and low-interaction honeynets as a first-order filter prior
to migrating connections to a centralized high-interaction honeyfarm.

7 Conclusion

We designed and implemented an SDN-based HoneyGrid that de-
couples darknet gateways and honeyfarms, to enable various participants
to dynamically collaborate for higher resource utilization rate and global
attack visibility. Moreover, to simplify and incentivize collaboration,
we propose a software-defined marketplace where various participants
can opportunistically subscribe to and publish, CTI services in a flexible
manner. The evaluation results demonstrate the utility of SDNs in
implementing a range of sophisticated traffic filtering and migration
strategies. HogMap’s traffic reduction strategies can effectively decrease
the number of connections allocated to high-interaction honeypots (by
over 90% for some protocols). In addition, connection forwarding
delays across the HoneyGrid are quite reasonable and dominated by
the propagation delay between the networks.
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