Experiences in Malware Binary Deobfuscation

Hassen Saidi Phillip Porras Vinod Yegneswaran
Computer Science Laboratory
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025, USA
{saidi,porras,vinod } @Qcsl.sri.com
Tel: 1.(650).859.3810

Abstract

Malware authors employ a myriad of evasion techniques to impede automated
reverse engineering and static analysis efforts. The most popular technologies include
‘code obfuscators’ that serve to rewrite the original binary code to an equivalent form
that provides identical functionality while defeating signature-based detection sys-
tems. These systems significantly complicate static analysis, making it challenging to
uncover the malware intent and the full spectrum of embedded capabilities. While
code obfuscation techniques are commonly integrated into contemporary commodity
packers, from the perspective of a reverse engineer, deobfuscation is often a necessary
step that must be conducted independently after unpacking the malware binary. In
this paper, we describe a set of techniques for automatically unrolling the impact
of code obfuscators with the objective of completely recovering the original malware
logic. We have implemented a set of generic debofuscation rules as a plug-in for the
popular IDA Pro disassembler. We use sophisticated obfuscation strategies employed
by two infamous malware instances from 2009, Conficker C and Hydraq (the binary
associated with the Aurora attack) as case studies. In both instances our deobfus-
cator enabled a complete decompilation of the underlying code logic. This work was
instrumental in the comprehensive reverse engineering of the heavily obfuscated P2P
protocol embedded in the Conficker worm. The plug-in is integrated with the Hex-
Rays decompiler to provide a complete reverse engineering of malware binaries from
binary form to C code and is available for free download on the SRI malware threat
center website: http://www.mtc.sri.com/deobfuscation/.

1 Introduction

There have been substantial efforts in recent years to develop automated tools and services
that can reverse malicious binary program logic and profile the behavioral and forensic
impacts of malware. In general, the objective of the malware analyst is to extract an un-
derstanding of how the malware works (its program logic, control flow, triggering events)
and how its presence may be detected or prevented on hosts. Unfortunately, malware
binary reverse engineering is a highly adversarial activity. Malware developers share and
incorporate a myriad of antianalysis mechanisms to prolong the life of their applications
and reduce their detectability. These mechanisms include such protections as code and
data segment encryption, binary polymorphism and metamorphism, code restructuring,
API call hiding, and antitracing logic. Malware analysis strategies largely explore malware
from either of two perspectives: 1) a static review of the application, or 2) an in-depth

monitoring of the application’s dynamic behavior. Static program analysis has the advan-
tage of analyzing the entirety of code segments encapsulated in the application, and thus
has the potential to capture its complete logical flow. Static analysis can bring to bear in-
depth program analysis techniques, such as computing the full control flow graph (CFG)
of all code segments, including those segments that may or may not appear reachable.
Dynamic analysis involves executing a malware sample in a carefully monitored environ-
ment to build a profile of the application’s runtime behavior. Tools like CWSandbox [14],
TTAnalyze [13], and BitBlaze [6] are examples of online services that perform dynamic
analysis. The power of the dynamic analysis approach is that one can rapidly gain a high
degree of insight into the runtime operation of a malware sample, including its execution
sequence and forensic impact, regardless of what structural transformations have been
made to hinder static code inspection. To achieve greater completeness in the runtime
exploration of a malware application, dynamic analyses have been applied in an iterative
execution form to explore all reachable program statements within the code. Indeed, full
path exploration [9] can be used to exhibit all the behaviors while bypassing suicide logic,
antitracing, and antidebugging logic embedded in the malware binary. Here, we subscribe
to the view that while dynamic analysis has the advantage of bypassing code obfuscation
techniques, it is more desirable to examine statically the entire code logic as it is the
most reliable way to explore all possible behaviors of the malware. While static analysis
is often impeded by the heavy use of various obfuscation techniques, we undertake the
task of systematically identifying the various obfuscation techniques applied to a given
binary and systematically undoing them to recover the original binary code from which
more advanced techniques such as complete code decompilation and code analysis can be
applied. A perfect illustration of the power of our approach is the complete analysis [10]
of the most obfuscated logic of the Conficker worm [1] that still plagues the world nearly
eighteen months after it was first released. In its latest version called Conficker C [2],
a heavily obfuscated custom peer-to-peer (P2P) protocol was included in the malware’s
logic. Dynamic analysis could reveal some features of the protocol such as a partial iden-
tification of the message format exchanged between Conficker-infected peers, as well as
the number of threads started to handle the P2P traffic. Dynamic analysis, however, did
not allow a thorough and precise description of the protocol. This was done only through
static analysis where not only a complete description of the protocol including the vari-
ous message formats, threads and code has been described, but also previously unknown
features and functionality were uncovered. For instance, static analysis identified the
mapping between the IP address of the infected host and the ports used to channel the
TCP and UDP P2P traffic. We were able to extract and deobfuscate the port generation
algorithm code [3] from the binary and generate a corresponding C code that we provided
to the security community to scan the Internet for Conficker-infected hosts. Most notice-
able was the discovery that the P2P protocol not only was used to distribute additional
binaries but also was a way to send x86 instructions to be executed as a thread inside the
running Conficker process and therefore could serve as a hot patching mechanism that
can apply arbitrary modifications to the running process, thus potentially bypassing any
monitoring mechanism. Also noticeable was an algorithm that randomly chooses a peer
to communicate with among a list of peers composed of randomly generated IP addresses
and a list of peers received from a peer-infected host. The algorithm favored heavily the
randomly generated list of peers, making efforts of poisoning the list of peers obsolete.
This strategy was contemplated by the security community as a way to reduce the size of
the Conficker C peer network and therefore contain the infection.

The contribution of our work can be summarized as a set of transformations that

undo systematically the obfuscation steps applied to the original binary. Furthermore,
we developed a systematic approach to evaluating any deobfuscation strategy by using
decompilation as the evaluation criterion of how well a deobfuscation technique performs.
If the resulting code can be translated into a higher-level C-like description, it indicates
that the employed deobfuscation technique has restored the binary into a form that a
decompiler can make sense of. We take our deobfuscation effort one step further and
we provide an automated way of rebuilding the malware binary by identifying the origin
entry point (OEP) and the often obfuscated library calls to the Windows application
programming interface (API). We have implemented a deobfuscation library as a plug-in
for the popular IDA Pro [5] disassembler. We use the Hex-Rays decompiler [8] in our
analysis.

The paper is organized as follows. In Section 2, we describe an overview of the
obfuscation techniques used by malware and focus on those tackled by our approach.
In Section 3, we describe the systematic deobfuscation techniques that we propose. In
Section 4, we give an overview of our unpacking strategy. In Section 5, we describe
our automated binary rewrite methodology to undo malware obfuscation steps, and in
Section 7, we provide a way to evaluate it. In Section 6, we describe our binary rewrite
technique, and in Section 9, we describe implementation. Finally, in Section 8 we describe
how our techniques are used on Conficker and Hydraq. In Section 9, we describe our
implementation. We then conclude with some future research plans.

2 Malware Obfuscation

One major obstacle when it comes to analyzing malware samples collected from the In-
ternet is that the majority of them are packed. Packing is a method commonly used by
malware authors to evade signature-based antimalware software and hamper static anal-
ysis. It involves compressing (or encrypting) most or all of the malicious code and then
wrapping the result in an often short set of instructions that implements an unpacking
routine that decompresses (or decrypts) the packed code at runtime and then transfers
control to the original unpacked code. Malware obfuscation is often employed as an im-
portant step in the packing process. There are mainly two types of packing technologies.
Both technologies use some form of encryption and code compression to reduce the foot-
print of the malware. They are, however, distinguished by the transformations operated
on the original binary code. The first type of packing technology transforms the x86 code
into an equivalent form where a myriad of transformations has been employed to obfus-
cate features of the code. These features include the control flow graph, the call graph,
the import table, and the flow of data. This produces a functionally equivalent code that
is much harder to analyze manually and represents a challenge to reverse engineers. The
second type of packing technology consists of hiding the behavior of the malware by em-
ulating the code. Portions of the malware code are moved to a data portion of the binary
and are emulated within an embedded virtual machine that executes instructions hidden
in the data portion and dispatches the control flow appropriately to mimic the original
code functionality. In this type of technology, the resulting code is a mix of the original
binary code and an emulation code that fetches the obfuscated instructions from the data
portion of the binary and emulates them along with a dispatching routine that emulates
the control flow graph of the original binary. A full taxonomy of the various obfuscation
techniques can be found in [7]. In this work we are particularly interested in transfor-
mations that produce a semantically equivalent program that has a different structure
than the original program. The following describes the categories of obfuscations that we

tackle:

Packing: The malware’s code is compressed or encrypted in order to minimize the mal-
ware’s footprint and to also generate multiple copies of the same malware.

Antianalysis techniques: Various antidebugging and virtual machine detection instruc-
tions are inserted into the original binary to trigger suicide logic and prevent the
dynamic tracing of the malware.

Binary rewriting: The malware’s instructions are rewritten to semantically equivalent
instructions that cannot be attributed to a particular compiler and do not corre-
spond to the product of a compilation process. These rewriting steps can target the
control and data flow, the functions epilogues and prologues, stack manipulation,
and calling conventions.

API obfuscation: the obfuscation of the library or Windows API calls made by the
malware is achieved by destroying the original import table and rebuilding it on the
fly as part of the unpacking routine.

3 Deobfuscation

We systematically address the above-mentioned obfuscation categories, but while many
approaches have been proposed in the literature to address particular techniques, we focus
on the metrics to evaluate the quality of deobfuscation to ensure that we have success-
fully recovered the original code. Malware binaries are often the product of a compilation
process where symbol tables and debugging symbols are omitted. Further packing steps
compress the code and destroy the import table, which is later restored dynamically.
Obfuscation is employed either as a step prior to packing where the binary code is trans-
formed into a semantically equivalent binary with a different structure, or employed in
tandem with the packing where not only the binary is transformed into an equivalent
program but where checks are inserted to make sure that the program is not monitored
or being debugged, which effectively challenges both dynamic and static malware analysis
techniques. Knowing that the original malware binary prior to obfuscation is the product
of a compiler and therefore adheres to particular structural conventions such as function
epilogues and prologues and calling conventions, we aim at undoing the obfuscation steps
employed by the malware authors by rewriting the code into a form that does correspond
to what a typical compiler would produce. To ensure that our deobfuscation is successful,
we first need to recover the binary code through an unpacking process that defeats the
antitracing and debugging techniques embedded in the packed binary. We also need to
recover the OEP and rebuild the import table before rebuilding the executable binary.
We undertake the following main deobfuscation steps we :

Unpacking: Unpacking malware amounts to running the malware and capturing its pro-
cess image and then writing it to an executable file format that can be subjected
to further analysis such as disassembly and code analysis. Unpackers are usually
one of two kinds: generic unpackers that focus on process memory image dump-
ing without addressing the problem of import table recovery, and those that are
dedicated to a particular packer and thus are able in some cases to automatically
rebuild import tables and discover the OEP. We devise a multistrategy for dumping
a process image of the malware while bypassing the antitracing and antidebugging
techniques embedded in the malware unpacking routine.

Binary rewriting and editing: We undo any rewriting step that has been applied to
the original binary code after the compilation process of the original malware source
code. We validate the result through decompilation to make sure that the result
corresponds to a well-formed C-like code.

Malware binary reconstruction: We attempt to reconstruct the original unpacked
malware executable by setting the OEP and rebuilding the import table. We use
a semantic and a structural approach to analyzing the dumped process image of
the malware to determine the origin entry point. We employ a set of heuristics to
identify API calls and rebuild the import table accordingly.

4 Malware Unpacking

Malware unpacking refers to the process of recovering the original code from a packed
malware binary. This process involves running the malware binary and capturing its
process image. The image process contains both the unpacking routine and the original
code revealed at runtime. The original code can be either the product of a compiler or a
rewrite of the product of a compiler in order to obfuscate the malware logic. Analyzing
the image process, or what we refer to as the raw dumped binary, is the objective of any
reverse engineering effort - that is, capturing the original binary code and understanding
its logic and purpose. While this is possible in many instances, there are cases where the
malware has been packed in such a way that the original code cannot be fully recovered.
This is the case where the original code is weaved with additional code inserted by the
packer to check for a debugger or other tracing methods, or when the code is emulated
by embedding an emulator in the malware binary.

Our first step is to dump the process image of a running malware binary while bypass-
ing all antitracing and antidebugging logic, otherwise called antidumping logic, embedded
in the binary. To achieve this, we employ a multistrategy that allows us to try several
heuristics until all antidumping techniques are circumvented. The following describes the
different strategies we use:

¢ Nonintrusive monitoring techniques allow a coarse-level tracing of native kernel-level
APT or system calls, and then dumping of the malware’s process image. We use our
unpacker Eureka [12] for this purpose. Eureka dumps the memory image when the
NtExistProcess system call is executed. It can dump the memory image when a
certain number of occurrences of binary n-grams is reached. It can also dump the
memory image after a user-defined timer expires.

e If system call tracing is detected, we proceed by running the malware and then sus-
pend the execution by attaching a debugger to the running process before dumping
it. This allows suspension of the process without actively tracing it with a debug-
ger. Process suspension allows us to examine the memory and dump the appropriate
memory segments of the running process.

e If the OEP is known, we turn on system call monitoring only when the OEP is
reached to monitor the execution of the original code. This ensures that the an-
titracing and antidebugging techniques generally employed before transferring the
control to the OEP will never be triggered.

Once an image of the running process is captured, it is written to a file that is a
Portable Executable (PE) format file or .exe. The file is then subjected to further

analysis that consists of finding the OEP, identifying and reconstructing the import table,
and undoing any other obfuscation step that resulted in rewriting the original set of
instructions.

5 Malware Binary Deobfuscation through Code
Transformation

Like any other binary, a malware binary is the product of compiling the source code into
machine instructions for the given target platform. Analysis tools such as disassemblers
can then recover the assembly code by reinterpreting the binary code into a higher-level
language. Decompilers take this process one step further and translate the assembly code
to source code. Compilers often produce binary code in a form from which it is possible
to guess the type of compiler used and therefore can often determine the programming
language and the programming platform used to compile the original malware code. Ob-
fuscated code often does not exhibit these clues since it is the product of a systematic
rewrite of the original binary code into a semantically equivalent form but whose struc-
ture has been altered. Among the most used obfuscation techniques through systematic
rewrites are

1. Rewriting stack manipulation instructions such as push and pop into mov and add
and sub instructions where only the ESP pointer is increased or decreased. This
prevents the disassembler from recognizing access to the stack frame and recognizing
read or write operations of the local variables and access to function arguments.

2. Code dechunking where a single subroutine composed of multiple contiguous blocks
is scattered throughout the binary image and where the control flow between con-
tiguous blocks is ensured through an unconditional jump instruction. This effec-
tively dechunks a function into multiple chunks where chunks present in multiple
subroutines are represented by a single copy referenced by multiple subroutines.
This prevents the disassembler from recognizing function boundaries.

3. Calling convention obfuscation where the standard calling conventions are replaced
by user-level conventions. Calling conventions describe the interface of called code
- that is, the order in which parameters are allocated, where parameters are placed
(pushed on the stack or placed in registers), which registers may be used by the
function, and whether the caller or the callee is responsible for unwinding the stack
on return. By pushing some of the arguments on the stack and passing the remaining
one through an arbitrary set of registers, it is possible to define arbitrary user-level
calling conventions that do not correspond to the output of any standard compiler.
This prevents the disassembler from guessing the number of arguments for a given
function and recognizing the calling convention which might indicate which compiler
was used.

We proceed in a systematic way to undo the above-mentioned obfuscating techniques
by applying a set of transformations. Our transformations aim at rewriting the binary
in a form that corresponds to the output of a standard compiler. To evaluate how well
our transformations work, we apply systematically a decompiler to the resulting binary
to ensure that the decompiler can recognize the output of a compiler and therefore is able
to translate the assembly code into a higher level of abstraction in the form of a C-like
program. The set of transformations we apply is

1. Normalize the stack pointer manipulation through the use of push and pop.

2. Identify all chunks that belong to a function and then apply decompilation to recover
the C-like description of each function in the unpacked malware binary.

3. Identify nonstandard calling conventions and systematically translating them to the
cdecl standard calling convention.

Given that our transformations produce an assembly code that can be successfully
translated into a C-like set of functions, we proceed to identify the API calls and the
OEP to complete our binary deobfuscation and reconstruction process.

6 Malware Binary Reconstruction

In malware reconstruction, a raw dumped image process is rebuilt by discovering and
statically rebuilding the import table as well as the OEP. Once this has been achieved, it
is possible to redisassemble the dumped executable with the help of the additional recov-
ered information, which allows the disassembler IDA [5] to produce a better disassembly.
Figure 1 shows the disassembly of a function in a damaged binary prior to OEP and API
identification. Figure 2 shows the same function after the OEP and all API calls were
identified. Providing this information to IDA allows the disassembler to recognize that
the function is WinMain and to recognize all of its arguments and local variables accu-
rately. Finding the OEP and achieving a 100% API resolution rate are keys to the overall
success of the malware binary reconstruction process in particular and to the overall goal
of reverse engineering and analysis. Finding the OEP and the target of every call in the
code allows us to generate the complete call graph and the reconstruction of the import
table, which then allows us in the best-case scenario to produce an unpacked code that
can actually be executed without the obfuscation introduced by the packer. In the worst
case, we can still build a complete call graph and control flow graph but we may not be
able to execute the original code.

6.1 Finding the OEP

Given the disassembly of a dumped image of a running malware binary, we employ two
distinct and complementary strategies to identify the OEP.

6.1.1 Structural Strategy for OEP Discovery

We build a call graph using the disassembly of the damaged binary by extracting from
each subroutine the set of subroutines that are referenced at any address in the subroutine
address space. The graph might have several root nodes with a different number of callee
subroutines. We rank the root nodes by ascending number of called subroutines, and
we determine that the OEP is one of those root node functions. The following example
illustrates how the OEP candidate is determined for a version of the Storm worm [11]:

checking for OEP candidates using graph connectivity

Found the following OEP candidates with 435 successors ...sub_403318
Found the following OEP candidates with 97 successors ...sub_40BEC2

Found the following OEP candidates with 83 successors ...sub_403C39

o | FvB|| F HA|
x 1D, Wiew-A, | x Pseudocode-d, | X Hex Wiew-d | X & Structures | X En Enums | X I% Imports | X gﬁ Exports

.text:064616818 sub_481818 proc near ; CODE XREF: .text:08848558CLp
.text:08481818

.text:0684681818 var_BY4
.text:0684681818 var_BS8
text:B80401018 var_AC
text:084681818 var_AB
text:pe401018 var_A4
text:00461818 var_Ao8
.text:p0401018 var_98
text:00461818 var_4
.text:poue10180

dword ptr -68B4h
dword ptr -6B8h
dword ptr -8ACh
dword ptr -8a%h
dword ptr -8A4h
dword ptr -8a8h
dword ptr -98h
dword ptr -4

.text:084810818 push ebp

text:aase1811 mov ebp, esp

.text:060461013 and esp, BFFFFFFF&h
-text:ap401016 sub esp, BB4h

Jtext:a6848161C mov eax, dword_4136834
text:ae461621 xor eax, esp

.text:0604010823 mowv [esp+BB4h+var_4], eax
.text:0040102A0 push ebx

.text:0040102B push esi

.text:0040102C push edi

.text:a8481082D lea eax, [esp+BCBh+var_B4]
.text:064616831 push eax ; _DWORD
.text:00401032 mouv ebx, 32h

.text:00401837 call ds :dword_L48F BBC
.text:a848183D push eax 5 _DUWORD
.text:0860461683E call ds :dword_L4B8F1BC
.text:a0401044 mou esi, eax

Jtext: 060401046 xor eax, eax

text:a0481848 push offset sub_461888 ; _DWORD
.text:0040104D mowv [esp+BC4h+var_BB], offset aCbevtsvc ; "CbhEvESuvc'™
-text:ap401055 mov [esp+BC4h+var_AC], offset sub_484110
.text:0040105D mowv [esp+BC4h+var_AB], eax
-text:oa461861 mov [esp+BChh+var_A%], eax

[ooooio1o [oo401010: sub_401010
Output window

Figure 1: A Function before OEP and API identification

The subroutine at address 0x403318 is the subroutine that is the most likely candidate
for OEP. The subroutines sub_40BEC2 and sub_403C39, while not referenced directly from
subroutine sub_403318, are determined later to be the start addresses of two threads
started from the main thread of the executable starting at address 0x403318.

6.1.2 Semantics-based Strategy for OEP Discovery

Since we are dealing with Windows executables, we exploit the fact that the malware
executables have been compiled as Windows applications having specific features. It is
often the case that at the beginning of the execution of a Windows application, a certain
number of known Windows APIs are invoked. For instance:

e GetCommandline is often called at the beginning of a Windows executable to retrieve
command line arguments.

e GetModuleHandle is invoked to retrieve a module handle for a specified module
loaded by a calling process or the handle to the file used to create the current
process.

e GetVersion retrieves the version number of the current operating system.

e CreateMutex is often invoked in the beginning of the execution to check whether a
version of the malware is already running on the host.

e ExitProcess is often called in the start subroutine where the malware executes
its logic and exits or checks for specific resources on the local host and then exits
prematurely when those resources are not present, or checks for antitracing and
debugging mechanisms and then exits prematurely (suicide logic).

BEs|FRB | F AL
- A | | I I (Y | |

x [Z] 1DA Viewd | X [Z] Pseudocade-s | % [Hexviews | X B Stuctues | X En Enums | X B Imports | X B Exports
.text:80481018 ; int _ stdcall WinMain{HINSTAHNCE hInstance, HINSTANCE hPrevInstance, LPSTR 1lpCmdLine, int nShouwCmd)

.text:00481018 _WinMain@16 proc near ; GODE XREF: start+172]p
-text:08481818

-text:00401018 pHumArgs = dword ptr -8BLh

.text:00461018 ServiceStartTable= SERUVICE_TABLE_ENTRYA ptr -0BOh

-text:08481018 var_As = dword ptr -BA8h

-text: 004810818 var A4 = dword ptr -8A4h

.text:80481018 UersionInformation= _OSUERSIONINFOA ptr -B8A6h
-text:00481810 var_4 dword ptr -4
-text:00481018 hinstance dword ptr &

-text:@8481818 hPrevinstance dword ptr 6Ch
.text:80481018 1pCndLine dword ptr 18h
-text:08481818 nShowCmnd dword ptr 14h
-text:o0u81810

.text:pouei010 push ebp
-text:oeug1e11 movw ebp, es

-text:@o4B1813 and esp, BFFFFFFF8h

-text:o8u81816 sub esp, BB4h

-text:-@e4@101C nou eax, dword_413834

-text:00481021 XOF eax, esp

.text: 0401023 nov [esp+BBUh+var_k], eax

-text:@o4B182A push ebx

.text:80481028 push esi

-text:8048102C push edi

.text: 00401020 lea eax, [esp+0COh+pHumArgs]

-text:@8461031 push eax ; pHumArgs

-text:oeue1032 movw ebx, 32h

-text:80481037 call GetCommandLiney

-text:0040103D push eax ; lpCmdLine

-text:o0u0103E call CommandLineToArguy

.text:00u01044 mov esi, eax

-text: 08461846 KOr eax, eax

-text:A04A1048 push offset TopLevelExceptionFilter ; 1pTopLevelExceptionFilter
-text:o6u0104D mou [esp+BCLh+ServiceStartTable.lpServiceName], offset ServiceMame ; “CbEutSuc™
-text:oeu01055 mou [esp+BC4h+ServiceStartTable.lpServiceProc], offset sub_484118

[ooo01010 [D0401010: Wintaingx, x,%, %)
4

Output windaw

Figure 2: A Function after OEP and API identification

We have determined that there are more than twenty APIs or a combination of those
that are a very good indication of the start of a Windows executable. Combined with
the call graph analysis, we achieve a 100% rate of OEP discovery by simply analyzing
the disassembly of raw dumped processes. Using the right OEP, IDA can improve its
disassembly process by better determining the boundaries of functions, better tracing ref-
erences to functions resulting in better call graphs, and better identification of subroutines
that correspond to the C runtime library. This yields a disassembly where on average
75% of the code is identified as known runtime libraries that have precise semantics and
do not need to be included in the summary of the malware’s behavior. This means that
we can focus on average on only 25% of the original malware’s code, which corresponds
to malware-specific behavior such as changes to the registry, changes to the file system,
launching and terminating processes, and remote file download and network connections.

6.2 API Resolution

In much of the malware unpacking literature, the recovery of import tables is not ad-
dressed. The Eureka framework [12] was the first to address such concern by trying to
identify Windows APIs when the jump target is given as an absolute address - that is, an
absolute address that is known to be the standard address where a given Windows API is
always loaded. The typical Windows XP installation with a service pack includes about
1283 DLL files in the system32 directory. Adding to those standard libraries, Windows

stores in the Winsxs folder multiple versions of DLLs in order to let multiple applications
run in Windows without any compatibility problem. In XP, few DLLs have multiple
versions, leading to a total number of DLLs in the system with their multiple versions
to be about 1350. Windows Vista and 7 maintain a much significantly larger number of
copies of the standard DLLs. We have built a database of all exported DLL functions
for a typical XP installation with SP2 and SP3. All APIs are identified by a name, the
number of arguments, the name and type of each argument when known, the type of
the return value, and the address where the API is typically loaded - that is, the offset
of the API location with respect the DLL file. We extended extend the capabilities of
Eureka based on the documented APIs. When determining that a call instruction is to
an address that corresponds to the standard location of an API, we match the call to
the identified API. When an absolute address is not give and it is not possible to map
a call to a particular API, we resort to a novel API resolution technique based on type
analysis. We first analyze the number of elements pushed onto the stack prior to reaching
the call site. This allows us to determine the number of arguments for the target func-
tion. We then apply data flow analysis to trace how the return values of the unidentified
target functions are related to arguments of other unidentified functions. The union of
these constraints is matched against our derived type signatures of all candidate Windows
APIs that we documented in our database. Malware can load dynamic-linked libraries
(DLLs) in nonstandard locations. The packer MEW, for instance, replaces all import
entries with addresses of user-level functions that happen to have the same signature as
the obfuscated APIs. The user-level function address is replaced by the Windows API
address only when the API is invoked. In the case of packers like Themida, ASPack
and Armadillo for instance, the import table is built in two phases and only some of the
APIs are referenced by their absolute address in a static manner. All other references are
dynamically computed. Only Type analysis can identify all APIs.

7 Using Decompilation

Decompilation is the reverse operation to that of a compiler. That is, it translates the
low-level assembly representation of a binary file into a higher level of abstraction to
be humanly readable and that is in some cases very close to the original source code
of the program prior to the compilation phase. The term decompiler is most commonly
applied to a program that translate executables programs (the output from a compiler)
into source code in a (relatively) high-level language that, when compiled, will produce an
executable whose behavior is the same as the original executable program. The Hex-Rays
[8] decompiler for instance, produces for each subroutine in a binary, the corresponding
C-like function. The decompiler identifies the argument of the subroutines, its local
variables, and its return value. This effectively determines the signature of the function
and its calling convention. The decompiler then translates the assembly instructions into
C-like assignment expressions where all references of x86 registers used as intermediate
storage and computation variables are eliminated. It also translates jump instructions into
C control constructs. The success of decompilation depends on the amount of information
present in the code being decompiled and the sophistication of the analysis performed on
it. Some post-compilation tools produce obfuscated code (that is, they attempt to produce
output that is very difficult to decompile). This is done to make it more difficult to reverse
engineer the executable.

Figure 3 shows the result of decompiling a subroutine in the Hydraq binary. The
decompiler was fooled to believe that the function takes 57 arguments. This is because

10

s||FRB| £ 44|

x DA Viewd X Pseudocode-D ‘ x Pseudocode-C | X Pseudocode-B | X Pseudocaded | X Hex View-8 | X B; Stuctures | X En Enums | X % Imparts | X §3 Exparts

int _ cdecl sub_188814F1{SOCKET s, int a2, int a3, int a4, int a5, int a6, int a7, int a8, int a%, int a1@, int a11, int a12, int a13,
{

int u57; // esi@

char =u58; // eax@9

int result; // eax@y

int namelen; 7/ [sp+14h] [bp-BCh]@1

struct sockaddr name; // [sp+18h] [bp-BE8h]E@1
char vé2; // [sp+56h] [bp-8Bh]E@7

namelen = 16;
getsockname{s, &nane, &namelen);
w57 = =({ DWORD =)&name.sa_data[2];
u58 = inet_ntoa({=*(struct in_addr =)&name.sa_data[2]);
if { tstrstr{usg, "127.0.") && u57 *= -1 && v57 || gethostname(&uiz, 128))
result = u57;
else
result = sub_180831DA{
S

a2,

al,

ahs,

a5,

a6,

a7,

as,

a9,

ale,
a1,
a1z,
a3,
aly,
als,
a6,
a7,
als,
a9,
a2zae,
a21,
a2z,
a23,
a2y,
a2s,
az26,
az27,
az28,
az29,
a3ie,

< |
|sub_100014F1:8
Dutput window

Figure 3: Obfuscated Function at Offset 0x14F1 in Hydraq

the return value of the subroutine is determined by a different subroutine that was not
decompilable as a result of dechunking. Figure 4 shows the result of decompilation of the
same function after we merge the two functions into a single one as a systematic way of
recovering from dechunking. Notice that the decompiler successfully identifies a single
arguments and all local variables.

8 Deobfuscating Conficker

Each generation of Conficker [1] has incorporated techniques such as dual-layer packing,
encryption, and antidebugging logic to hinder efforts to reverse its internal binary logic.
Conficker C [2] further extends these efforts by providing an additional layer of cloaking
to its newly introduced P2P module. The binary code segment that embodies the P2P
module has undergone multiple layers of restructuring and binary transformations in an
effort to substantially hinder its reverse engineering. These techniques have proven highly
effective in thwarting the successful use of commonly used dissassemblers, decompilers,
and code analysis routines employed by the malware analysis community. In particular,
three primary transformations were performed on the P2P module’s code segment:

API Call Obfuscation: Conficker employs a common obfuscation technique, in which
library references and API calls are not imported and called. Rather, they are
often replaced with indirect calls through registers in a manner that hides direct
insight into which libraries and APIs are used within a segment. As API and library

11

s||FRB| 7 44|
[ME ' [[[l | [.
x DA View-d X Pseudocode-a, | x Hex Wiew-2 | x & Structures | X En Enums ‘ x % Imports | x ?13 Exports |

int _ cdecl sub_188814F1({SOCKET s)
i
const char =u1; 7/ esi@2
signed int v2; /f ebx@1
int v3; // esi@l
char =ul; /f esi@7
int result; // eax@8
struct in_addr wé; /f ST@4_4@7
struct hostent =u7; /7 ebp@9
char =u8; // eax@29
char =xy9; //f edx@17 |
char =y18; J/ eax@22
struct hostent =u11; // eax@28
signed int v12; // [sp+Ch] [bp-C4h]E1
int v13; // [sp+16h] [bp-CBh]@1
int namelen; /7 [sp+14h] [bp-BCh]@1
struct sockaddr name; // [sp+18h] [bp-B8h]@1
struct in_addr in[18]; // [sp+28h] [bp-ABh]E7
char v17; // [sp+58h] [bp-88h]@27

uZ = B8;
vi2 = 8;
namelen = 16;
getsockname(s, &name, &nanelen);
v3 = =(_DWORD =)&name.sa_data[2];
13 = ={_ DWORD =)&name.sa_data[2];
vg = inet_ntoa(*({struct in_addr =)&name.sa_data[2]};
if { tstrstr{vg, "127._0.") && v3 *= -1 && v3 || gethostname(&u17, 128))
{
result = v3;
H
else
{
uil = gethostbyname (&u17);
v?i = vil;
if (vi1)
{

while { 1)
{
u? = v7->h_addr_list;
if (tuo[uZ])
break;
if { v2 »= 18)
break;
vh = ={struct in_addr =)u9[v2];
*{_ DWORD =)&in[v2].S_un.S_un_b.s_b1 = wvi;
ul = inet_ntoadvs);
if { tstrstr(us, "127.0.") && tstrstr(vh, "255.") && tstrstr(uvi, "0.") && f*strstr(uvis, "92."))

|sub_1o0014F1:10

Clutput window

Figure 4: Deobfuscated Function at Offset 0x14F1 in Hydraq

call analyses are critical for understanding the semantics of functions, loss of these
references poses a significant problem to code interpretation.

Control Flow Obfuscation: The control flow of Conficker’s P2P module has been sig-
nificantly obfuscated to hinder its disassembly and decompilation. Specifically, the
contents of code blocks from each subroutine have been extracted and relocated
throughout different portions of the executable. These different blocks (or chunks)
are then referenced through unconditional and conditional jump instructions. In
effect, the logical control flow of the P2P module has been obscured (spaghettied)
to a degree that the module cannot be decompiled into coherent C-like code, which
typically drives more in-depth and accurate code interpretation.

Calling Convention Obfuscation: Decompilers depend on their ability to recognize
compilation convention such as function epilogues and prologues. Such segments
help the decompiler interpret key information, such as calling conventions for each
subroutine, which in turn enable the decompiler to interpret the proper number of

12

function arguments and local variables. Unfortunately, the P2P module has been
transformed to disrupt such interpretations. Each subroutine has been translated
such that some parameters are passed through the stack using push instructions,
while others are passed by registers, and in unpredictable order. In effect, these
transforms utterly confuse decompilation attempts, generating inaccurate function
argument and local variable lists per subroutine. In the presence of such errors,
code interpretation is nearly futile.

Due to these obfuscations, the resulting source code derived from the decompiler in-
corporates fundamental misinterpretations that hinder semantic analyses. We have been
able to systematically undo all the binary transformations in the P2P module, and have
produced a full decompilation of this module to a degree that approximates its original
implementation. The full code is available in [10]. We identified all 88 obfuscated APIs.
We normalized all calling conventions to the cdecl calling convention. We then system-
atically undid the dechunking obfuscation for all functions and managed to decompile
properly each of them. Unlike the Conficker P2P logic, Hydraq [4] did not exhibit the
same level of obfuscation. It did, however, share some obfuscation features with Con-
ficker. The functions of the Hydraq binary have been subjected to dechunking, which
renders decompilation difficult. We applied our transformations to automatically gener-
ate the C-like code for each subroutine and build a complete CFG of the binary. The IDA
disassembler identified 185 subroutines in the binary prior to our analysis. After running
the dechunking transformation, only 158 subroutine remained and were decompiled. Our
analysis allowed us in many instances to merge several subroutines into a single one.

9 Implementation

We have implemented our deobfuscation techniques into an IDA plug-in that is available
for versions 5.X of the popular disassembler. After using the plug-in, it is possible to
invoke the Hex-Rays decompiler [8] to validate the result of deobfuscation.

10 Conclusion and Future Work

We have presented a set of techniques for automatically undoing the work of obfuscators
to help with the reverse engineering of malware. We have applied our techniques to two
highly publicized examples of malware: Aurora and Conficker. We have shown that our
techniques in the case of the heavily obfuscated Conficker P2P protocol can uncover the
entire logic of the protocol, therefore enabling reverse engineering of the worm. Our
work is readily available as a plug-in for the popular IDA disassembler to assist reverse
engineers in their task. We plan on extending our work to handle the increasingly used
virtualization and emulation, and on exploring automated ways to detect and undo wider
classes of obfuscation techniques.

Acknowledgment

This material is based upon work supported through the U.S. Army Research Office
under the Cyber-TA Research Grant No. WO9I11NF-06-1- 0316. The views expressed
in this document are those of the authors and do not necessarily represent the official
position of the sponsors.

13

References

1]
2]
[3]
[4]
[5]
[6]

http://en.wikipedia.org/wiki/Conficker.
http://mtc.sri.com/Conficker /addendumC/.
http://mtc.sri.com/Conficker/contrib/scanner.html.
http://en.wikipedia.org/wiki/Operation_Aurora.

IDAPro Dissasember . http://www.hex-rays.com/idapro/.

D. Brumley, C. Hartwig, M. G. Kang, Z. Liang, J. Newsome, P. Poosankam, D. Song,
and H. Yin. Bitscope: Automatically dissecting malicious binaries. CMU Technical
Report, 2007.

C. Collberg, C. Thomborson, and D. Low. A taxonomy of ob-
fuscating transformations. Technical Report 148, July 1997.
http://www.cs.auckland.ac.nz/~collberg/Research/Publications//.

Hex-Rays. The Hex-Rays Decompiler. http://www.hex-rays.com/decompiler.shtml,
2009.

A. Moser, C. Kruegel, and E. Kirda. Exploring multiple execution paths for malware
analysis. In SP ’07: Proceedings of the 2007 IEEE Symposium on Security and
Privacy, pages 231-245, Washington, DC, USA, 2007. IEEE Computer Society.

P. Porras, H. Saidi, and V. Yegneswaran. Conficker ¢ p2p proto-
col and implementation. Technical report, SRI International, 2009.
http://mtc.sri.com/Conficker/P2P /index.html.

P. Porras, H. Sadi, and V. Yegneswaran. A multi-perspective analysis of the storm
(peacomm) worm. Technical report, Computer Science Laboratory, SRI Interna-
tional, October 2007.

M. Sharif, V. Yegneswaran, H. Saidi, P. Porras, and W. Lee. Eureka: A framework for
enabling static malware analysis. In ESORICS ’08: Proceedings of the 13th European
Symposium on Research in Computer Security, pages 481-500, Berlin, Heidelberg,
2008. Springer-Verlag.

U.Bayer, C.Kruegel, and E.Kirda. Ttanalyze: A tool for analyzing malware. In
FEICAR, 2006.

C. Willems, T. Holz, and F. Freiling. Toward automated dynamic malware analysis
using cwsandbox. IEEE Security and Privacy (Vol. 5, No. 2), March/April 2007.

14

