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Summary. We propose Dagger, a lightweight system to dynamically vet sens-
itive behaviors in Android apps. Dagger avoids costly instrumentation of virtual
machines or modifications to the Android kernel. Instead, Dagger reconstructs
the program semantics by tracking provenance relationships and observing apps’
runtime interactions with the phone platform. More specifically, Dagger uses
three types of low-level execution information at runtime: system calls, Android
Binder transactions, and app process details. System call collection is performed
via Strace [7], a low-latency utility for Linux and other Unix-like systems. Binder
transactions are recorded by accessing Binder module logs via sysfs [8]. App pro-
cess details are extracted from the Android /proc file system [6]. A data proven-
ance graph is then built to record the interactions between the app and the phone
system based on these three types of information. Dagger identifies behaviors by
matching the provenance graph with the behavior graph patterns that are previ-
ously extracted from the internal working logic of the Android framework. We
evaluate Dagger on both a set of over 1200 known malicious Android apps, and a
second set of 1000 apps randomly selected from a corpus of over 18,000 Google
Play apps. Our evaluation shows that Dagger can effectively vet sensitive be-
haviors in apps, especially for those using complex obfuscation techniques. We
measured the overhead based on a representative benchmark app, and found that
both the memory and CPU overhead are less than 10%. The runtime overhead is
less than 63%, which is significantly lower than that of existing approaches.

1 Introduction

With the proliferation of Android smartphones and applications, there is a growing in-
terest in scalable tools and techniques for blackbox testing of applications. Of specific
interest are tools that enable screening for suspicious behavior patterns commonly ex-
hibited by malware. While a rich body of prior work exists, contemporary static and
dynamic analysis techniques fall short in many respects.

Static analysis techniques [55, 56, 48] analyze Android apps by disassembling them
into Dalvik (or Java) source code, and further evaluating the permissions list, analyz-
ing programming interfaces (i.e. Android APIs) and program logic used in the source.
However, such approaches are unable to cope with complex code obfuscation tech-
niques (e.g., source encryption, noise insertion, and use of Java reflection) or analyze
code logic that uses the Android Native Development Kit (NDK) '.

! The volume of apps involving native code has dramatically increased in recent years [53, 33].



In contrast, dynamic analysis approaches monitor apps’ behaviors by running them
in real or emulated Android environments. Certain systems (e.g., [51]) rely on applica-
tion source instrumentation to record API invocation details (e.g., API names and para-
meter values). However, such approaches are blind to malicious logic implemented us-
ing NDK. A few dynamic approaches [50, 41] employ virtual machine introspection
(VMI) techniques to gather the lower-level system information and thereby reconstruct
high-level application semantics. Such approaches typically incur high performance
overhead, especially when taint tracking is enabled. Thus, direct application of these
approaches is impractical for analysis of a large corpus of apps.

We present Dagger as a lightweight system to dynamically vet sensitive behaviors
in Android apps. Dagger avoids costly overheads and complexities associated with vir-
tual machine instrumentation and modifications to the Android kernel. Instead, Dagger
reconstructs the apps’ semantics by tracking its runtime interactions with the phone
platform and building provenance relationships. More specifically, at an app’s runtime,
Dagger uses the open source SPADE [26] provenance middleware to collect three types
of low-level execution information, including Linux system calls, Android Binder trans-
actions, and app process details. System call collection is done via Strace [7], a low-
latency utility for Linux and other Unix-like systems. Binder activity is recorded by
accessing transaction logs via sysfs [8]. App process details are extracted from the An-
droid /proc file system [6]. A data provenance graph is then built to record the interac-
tions between the app and the phone system based on these three types of information.
Dagger identifies behaviors by matching the provenance graph with a library of sensit-
ive provenance patterns that have been previously extracted by carefully studying the
inner workings of the Android framework.

We have built a prototype of Dagger, and evaluated both its effectiveness and ef-
ficiency. We first used Dagger to vet three representative Android malware families.
These case studies demonstrate the effectiveness of Dagger in vetting sensitive behavi-
ors that are implemented in more evasive ways (e.g., code obfuscation or encryption).
Then, we evaluated Dagger on a large corpus of apps, which consists of over 1200
known malicious apps, and 1000 official apps randomly selected from a set of over
18,000 samples downloaded from Google Play. Our evaluation demonstrates that Dag-
ger can effectively vet sensitive behaviors in a large scale of apps. To evaluate system
efficiency, we used a popular benchmark app called AnTuTu (v 3.0.3) [1] that measures
Android system overhead. We found both the memory and CPU overhead to be less
than 10% and the runtime overhead to be less than 63%, which is significantly lower
than that of existing approaches that utilize VMI techniques (e.g., [50]). To summarize,
the salient contributions of this paper include the following:

1. Design of a lightweight approach for runtime tracking of sensitive behavior that
does not rely on the high overhead techniques of virtual machine introspection or
Dalvik monitoring.

2. Development of the Dagger prototype that automates the abstraction of Android
apps’ runtime low-level execution information into high-level behavior semantics
using the data-provenance approach.

3. Development of a library of sensitive provenance patterns for vetting Android apps.



4. Comprehensive system evaluation on a corpus of over 2200 benign and malicious
applications that demonstrates how Dagger can be used to efficiently vet sensitive
behaviors with minimal memory and runtime overhead.

2 Background And System Goals

The Android operating system is built on the top of the Linux kernel and organized
in a layered architecture consisting of four layers: (¢) the Linux kernel, (i7) Android’s
native system libraries and Dalvik virtual machine runtime, (¢¢¢) Android’s application
frameworks, and (¢v) a collection of installed applications.

Linux Kernel: The bottom layer of the Android system is a customized Linux ker-
nel. It provides services such as memory and process management, access control, and
a driver framework. As the abstraction between the hardware and software, this layer
provides generic services to the user space layer above while hiding the details of the
hardware. Android also enhances the standard Linux kernel in several respects, includ-
ing inter-application communication and power management. Android implements a
custom inter-process communication (IPC) mechanism called Binder. Binder is used to
mediate interactions between apps, as well as between apps and the operating system.

Android Libraries and Runtime: This layer contains two major parts: Android lib-
raries and the Dalvik virtual machine runtime. The libraries consist of C and C++ code
that compiles to the native binary format. The functionality in these libraries is exposed
to applications from third party developers through the Android framework.

Android Framework: Many of the application-level functionalities for interacting with
system resources are provided by the Android framework. It provides the interfaces
(Android Framework APIs) to access the system apps; that is, components that provide
indirect access to the underlying system resources (such as reading contacts, record-
ing the current geographic location, or sending SMS messages) by invoking system
calls, low-level interactions between app processes and GNU/Linux. For instance, the
framework API of TelephonyManager.getDeviceld() provides the functionality of read-
ing device ID; SmsManager.sendTextMessage() supports sending text messages. These
framework APIs essentially achieve the functionalities by invoking low-level system
calls, e.g., open(), which opens file operators, and execve(), which executes shell com-
mands. Thus, the usage of the low-level system calls and the access of Android re-
sources in the runtime can indicate rich high-level behavior semantics.

Applications: Android distributions include a collection of system apps, including: one
that provides the functionality of a phone, another that allows short message service
(SMS) and multimedia message service (MMS) messages to be sent and received, an
email client, a calendar, and a contact manager. The core set of applications also export
services to third party applications through APIs in the Android application framework.

2.1 System Goals

Our objective is to design an effective and efficient system for vetting sensitive beha-
viors in Android apps that does not rely on VMI techniques or modifications to the
operating system. In Table 1, we list a set of sensitive behavioral patterns in Android
apps (Phone Call, Send SMS, Block SMS, Steal SMS, Steal Contact, Track Location,



Table 1. Malicious Android app behaviors targeted by prior work

[Work [ Type | Financial Charge [ Privacy Leak [Remote Control] Rooting |
System | Technique | Phone Call|Send SMS |Block SMS|Steal Contact LTraC.k Steal Phone Net Execute Shell
ocation| Number
[54] Static v V4 v v/ v/ v/
[51] | Dynamic V4 IV IV Vi VA
[50] | Dynamic v v/ v

Table 2. Fined-grained sensitive behaviors associated with malicious behaviors

[Index[Malicious Behaviors] Sensitive Behaviors [Index[Malicious Behaviors| Sensitive Behaviors |
1 Phone Call Phone Call 5 Steal Contact Read Contact and Net
2 Send SMS Send SMS 6 Track Location ~ |Read Location and Net
3 Block SMS Receive SMS, not Write SMSDB| 7 Execute Shell Execute Shell
4 Steal SMS Read SMSDB and Net 8 Net Net

Steal Phone Number, Network Connection, and Execute Shell) that have been targeted
by prior studies as indicators of malicious behavior.

Instead of focusing on such coarse-grained malicious behaviors, we designed Dag-
ger to vet fine-grained sensitive behaviors that may be launched by both malicious
and benign apps. As seen in Table 2, the aforementioned malicious functionalities can
essentially be achieved by multiple fine-grained sensitive behaviors. In Table 2, we
list 9 fine-grained sensitive behavioral patterns associated with the 8§ malicious beha-
viors listed in Table 1. These are: Phone Call, Send SMS, Receive SMS, not Write
SMSDB, Read SMSDB, Net, Read Contact, Read Location, and Execute Shell. (Read
SMSDB and Write SMSDB refer to reads from and writes to the Android provider con-
tent://sms/inbox/.)

3 System Design

A rich body of prior work have attempted to vet the behavior of desktop applications by
analyzing system call invocations. However, such approaches cannot be directly exten-
ded to vet the behavior on Android apps due to the unique aspects of the Android sys-
tem. (1) Android apps access kernel resources through the Android application frame-
work. Consequently, there is a semantic gap between low-level system call invocations
and high-level Android-specific behavior. (2) Android apps interact with system ser-
vices and the Android framework through the Binder IPC mechanism, which is unique
to Android. Thus, vetting Android app behavior requires analysis of the Binder trans-
actions that occur between apps and the system. (3) Android is an event-driven system,;
its multiple behavior patterns interweave together. Therefore, traditional temporal mon-
itoring approaches are not effective during analysis of Android malware.

Dagger’s design is motivated by the observations that an Android app’s behaviors
are achieved through (¢) low-level interactions (system calls and Binder IPC) between
app process and the Android kernel and (i¢) accesses to underlying system resources
(e.g., contacts, geo location, SMS messaging). Dagger uses data provenance analysis
to first translate an app’s runtime behaviors into a provenance graph that captures three
types of low-level information: system call invocations, Binder IPC transaction logs,
and process details. Essentially, the graph captures all interactions of the app with the
Android application framework and the OS kernel. Dagger further identifies sensitive
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Fig. 1. Dagger takes a corpus of apps, runs each one, collects provenance records, and performs
pattern matching to identify potentially sensitive behaviors.

behaviors by matching the provenance graph with sensitive provenance patterns that
have been extracted and developed through careful analysis of the inner workings of
the Android framework.

To understand the internal logic of the Android framework, we ran Android apps
with selected input that is known a priori to trigger sensitive behavior. We utilized two
broad approaches for this investigation. In the first approach, we manually selected rep-
resentative malware samples that belong to particular families with known sensitive
behavior. We then used Androguard, a static analysis tool, to extract the relevant logic
that would trigger sensitive behavior in each piece of malware. In a complementary
approach, we triggered flows in synthetic apps that were developed to contain repres-
entative sensitive behavior.

3.1 Design Overview

Dagger is built on the open source SPADE provenance middleware [26]. Dagger is
composed of five major components, as illustrated in Figure 1: AppExecutor, SysCall
Collector, ProvEst Daemon, Graph Reporter, and Behavior Identifier. Sample apps are
first loaded into the App Executor, which automatically executes the app in a sandbox
Android runtime environment. Once the app is executed, SysCall Collector starts to col-
lect the system call invocations, and ProvEst Daemon analyzes the binder transactions
and collects more detailed information of the process in order to build the provenance
relationships of the identities (e.g., processes and files) in the system call invocations.
The Graph Reporter outputs the data provenance graph according to the provenance re-
lationships established by the ProvEst Daemon. Finally, the Behavior Identifier detects
sensitive behaviors from the provenance graph according to the working mechanism of
the Android system. Below, we discuss each component in greater detail.

1. App Executor is a Python script for controlling app execution. It first extracts the
package and activity names (including the main activity) from the Android package
(APK file), installs the package, and then automatically launches selected activities by
using Android debugger adb commands.

App Executor uses MonkeyRunner [9] to drive the app with randomly generated
events (such as pressing buttons or touching the screen). It first extracts the main activity
of the app, and then sends an intent to initiate the activity. App Executor continues till
it has generated at least 500 events or the app has run for at least three minutes.

2. SysCall Collector records low-level system call invocations (e.g., fork, read, write,
setuid32) using the st race utility. Each system call invocation is internally recorded
in the following format:



[pid][timestamp][syscall(paramenters)] = [return]

for example, “183 16:54:15.805684 open(”/dev/binder”’, O_.RDWR) = 9”. The out-
put of SysCall Collector is persisted in non-volatile storage. To avoid app-specific stor-
age limits, the log is stored in the mobile device’s Secure Digital (SD) card. The SysCall
Collector functionality was developed by extending SPADE’s Strace Reporter so it can
run on Android (in addition to Linux).

3. ProvEst Daemon generates data provenance relationships by collecting system calls,
Binder transactions, and process details. A data provenance record describes how a
piece of information was derived, a historical approach which has been widely used in
a variety of fields such as performance optimization, scientific computation, security
verification, and policy validation. The data provenance graphs in Dagger conform to
the Open Provenance Model [34] which has three types of elements, as illustrated in
Figure 2. ProvEst leverages significant functionality from SPADE (that is summarized
below), and augments the Strace Reporter with Android-specific details (from Binder
transactions, for example).

Process Vertices. These are created to record dynamic entities; typically, these en-
tities are operating system processes created by app execution. Each vertex contains a
range of annotations, including the name of the process, the process identifier (pid), and
the owner (uid) and group (gid). It also records the parent process, the command line
with which it was invoked, and the values of environment variables.

Artifact Vertices. These are used to represent static elements that are consumed or
produced by processes. There are four subtypes of such vertices: (¢) File Vertex, which
represents a file read or written by a process at a particular point in time; (i¢) Binder
Vertex, which denotes a Binder transaction that occurred between a pair of processes;
(241) Socket Vertex, which indicates a communication from or to a process through a
socket; and (tv) Command Vertex, which records the details of high-level commands
(e.g., AT commands, described in Section 3.2) issued by a process.

Edges. These are directed and used to represent the dependency between a pair of
vertices. For example, an edge to a file vertex indicates that the file was read, and an
edge from a file vertex indicates that the file had been modified. There are four types
of edges: (¢) WasTriggeredBy, from a process to another process; (i¢) WasGeneratedBy,
from an artifact to a process; (ii7) Used, from a process to an artifact; and (1v) WasDe-
rivedFrom, from an artifact to another artifact.

Given the design of the provenance graph, once a new entry is collected by the Sy-
sCall Collector, the ProvEst Daemon parses it to extract the pid of its process. Based
on the pid, it further extracts its process details (e.g., process name, GID, UID, com-
mand line, etc.) from the “/proc” file system [6]. All these details are used to depict the
process as a vertex in the graph. Every file, socket, and pipe that is accessed by the pro-
cess is depicted as a single artifact vertex. Once the system call ioctl(), which leads to a
Binder transaction, is invoked by one process, the Daemon inspects the Binder transac-
tion log from sysfs [8], and extracts the communicated process in the transaction. Then,
a directional edge is built from the request process to the response process. Edges are
also generated to record accesses of sensitive system resources (e.g., read and write
operations of content providers) from the app’s process vertex to the resource artifact
vertex.
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Fig. 2. Apps are represented with rectangular vertices, annotated with the properties of the ex-
ecuting process. Data artifacts, such as files and Binder transactions, are denoted with elliptical
vertices. Edges have types define the operations being performed — for example, an artifact is
related to a process with a WasDerivedFrom edge when it has been written to. In general, the
types conform to the Open Provenance Model.

4. Graph Reporter generates a provenance graph using Graphviz [2] and based on
the low-level provenance relationships established by the ProvEst Daemon. Specific
patterns can be further extracted from the graph by using our graph-based query service,
which is implemented by Neo4j [4], an open-source graph-based database tool. This
component uses SPADE’s Graphviz Reporter to replay provenance records, sending
them through SPADE’s Kernel, and to its Neo4j Storage.

5. Behavior Identifier detects sensitive behaviors by using the provenance graphs out-
put by the Graph Reporter. Intuitively, we abstract each sensitive behavior into a proven-
ance graph pattern, according to the internal working logic in the Android platform to
perform that behavior. We then identify an app’s behaviors by mapping its provenance
graph with these provenance graph patterns. Next, we elaborate on a few exemplar
sensitive provenance patterns.

3.2 Exemplar Sensitive Provenance Patterns

We describe motivating examples, illustrated with figures that use a previously de-
scribed [26] provenance data model.

Pattern 1: Send SMS, Receive SMS and Phone Call. Figure 3 illustrates the working
logic of an app on the Android platform when sending an SMS, receiving an SMS,
and making a phone call. When an app attempts to perform one of these three behavi-
ors, it will first communicate with a process from the Telephony Manager Application
Framework. The Telephony Manager will call the Radio Interface Layer (RIL) daemon
in the Android’s using sockets for communication. RIL is radio-agnostic and provides
an abstraction layer between the Android Telephony Manager and the hardware. Once
it receives communications from Android’s Telephony Manager, the RIL daemon dy-
namically loads the Vendor RIL Library to dispatch the communications to the Vendor
RIL. The radio-specific Vendor RIL processes communicate with radio hardware by
using AT commands. The AT commands are used to control mobile modems in or-
der to perform the specified functions. For example, the AT commands for sending an
SMS, receiving an SMS and making phone calls are “AT+CMGS”, “AT+CNMI”, and
“ATD+CLCC”, respectively.
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Fig. 3. Working logic of sending an SMS, receiving an SMS, and making a phone call.

By exploiting an understanding of this functionality, the provenance patterns of

these behaviors can be abstracted as Figure 4. From this figure, we can see that for
each sensitive behavior, there is a provenance path from the app process to the final AT
command with different command parameters.
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Fig. 4. Provenance pattern for sending an SMS, receiving an SMS, and making a phone call.

Pattern 2: Read Geolocation. Figure 5 illustrates the system logic in the Android sys-
tem that runs when an app gets the current location. Once an app attempts to read the
geographic location, it will interact with the Location Manager Service, which will fur-
ther request the location from the GpsLocationProvider. From this logic we can abstract
the app’s provenance pattern as Figure 6, which has a path from the process vertex to
the GpsLocationProvider.

Pattern 3: Read SMSDB and Write SMSDB. The Android system workflow dictates
that once an app reads or writes the SMS database (i.e., the content provider of SMS
inbox), it will first interact with the TelephonyManager, and then read and write in the
“/data/data/com.android.providers.telephony/database/” directory, to the “mmssms.db”
file, in particular. The provenance pattern that results is illustrated in Figure 7.

Pattern 4: Read Contact, Net, and Rooting. On Android, the local Contacts resource
is uniquely managed by the Acore process>. An app must interact with this process to

2 The process is identified as “com.android.acore”.
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Fig. 7. Provenance pattern for reading from and writing to the SMS database.

read the contact list. If an app reads the contact, there is a path from the process of the
app to the Acore process. Network usage can be identified by analyzing whether the
process (or its descendants) makes system calls related to network sockets. Rooting be-
havior can be identified by analyzing whether the process (or a descendant) invokes the
exeve(“/system/bin/su”) system call to attain root privilege. Since our data provenance
graph will also record the UID of the process, if the app successfully roots the phone,
this behavior can be further identified by checking the change in UID from a non-zero
value to zero.

After generating these provenance patterns, we can vet app behavior by matching
these patterns in apps’ provenance graphs as they are generated at runtime. Note that
these provenance patterns are uniquely defined according to the working mechanism of
the Android system, from the top layer to the bottom layer, and are more likely to re-
main unchanged than the source code is. Thus, our approach is more general than other
approaches which rely on hooking specific APIs whose functions may be changed later.
Also, since the patterns cover all the layers, our approach can identify those behaviors
that are implemented by using both the Android SDK and NDK, as long as they follow
the same workflow.

4 System Evaluation

Our prototype implementation of Dagger is capable of running on both Android phones
and emulators. We evaluated the prototype implementation by running the app in a cus-
tomized Android emulator and using it to extract provenance graphs with pre-settings
of SMS inbox, contact list and geolocation information. Before each run, we restored
the image to a clean snapshot to mitigate interference from other apps.

We evaluated the effectiveness of Dagger from the following three perspectives: (7)
vetting real-world malware case studies, (i7) vetting Android Genome Project malware,
and (¢22) vetting official market (Google Play) apps. Then, we evaluated the efficiency



of Dagger by using a popular benchmark app to measure the performance overhead of
Dagger including CPU overhead, memory overhead, I/O overhead and processing time.

4.1 Effectiveness Case Study on Representative Malware Families

To evaluate the effectiveness and demonstrate its unique advantages, we applied Dagger
to vet sensitive behaviors on three representative real-world Android malware families:
Gamex, Gone60 and Zsone.

Gamex: Code Encryption. Gamex, one of the most evasive Android malware, uses
complex code obfuscation techniques. In an attempt to slow down discovery and de-
tection, Gamex [5] uses encryption (byte XOR with 0x12) to hide a package in a fake
image file named “assets/logos.png”. When the malware is activated, it uses a decryp-
tion function to decrypt the file, and launch sensitive functions. Thus, due to the en-
cryption, the static analysis will only find the paths that lead to the shell code execution
function, instead of knowing specific malicious behaviors. Upon using Dagger to vet
Gamex samples (MDS5: 50836808a5fe7febb6ce8b2109d6c93a), we find shell code ex-
ecution as well as hidden sensitive behaviors, including attempts to read contact list
information and sensitive network communications, such as exfiltration of IMSI/IMEI
numbers and malicious software downloads.

Gone60: Privacy Leakage. Gone60 steals private user information such as SMS mes-
sages, contact lists, recent call histories and browser-cached URLs by using the standard
query API on the content providers of SMS inbox and browser. The app can access these
content providers, which work as databases, by setting specific local URLs as the para-
meters. However, such parameters (i.e., strings) are easier for malware authors to ob-
fuscate than Android framework APIs (e.g., by using complex string operations). Thus,
simple approaches based on static analysis may fail to detect such malware. Upon us-
ing Dagger to vet a sample of Gone60 (MD5: 859cc9082b8475fe6102cd03d1df10e5),
we successfully identified many sensitive behaviors exhibited by this malware, includ-
ing reading of SMSDB and contact lists, as well as sensitive network communications.
Moreover, since Dagger recognizes the access of content providers by checking the read
operation of the file system instead of statically analyzing the parameters in the query
function, it is more robust against string-obfuscating malware.

Zsone: SMS Service Usage. Dagger can also be used to vet the malicious behavior
of blocking SMS by checking for the absence of a certain pattern in a specific event
(i.e., receiving an SMS message but not writing to SMSDB). We applied Dagger to an
exemplar Zsone malware sample (MDS5: cOe6ba0el1b757e3c506a02282ffc5b4), which
can both send and block SMS messages. In this experiment, we used Dagger to send the
same pre-customized SMS to the phone in two situations: running without and along-
side the malware sample. We found that while both receive the SMS message (observing
the AT command “AT+CNMA=1"), the provenance graph in the first scenario includes
the behavior pattern of writing SMSDB, while the second scenario does not. This val-
idates that Dagger can be used to identify the blocking SMS behavioral pattern.

4.2 Measuring Effectiveness Using a Large App Corpus

We further evaluated the effectiveness of Dagger on a corpus of 1,260 real-world mal-
ware samples collected from the Genome Project [55], and another corpus of 1,000 apps
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Table 3. Sensitive behaviors in different malware families identified by Dagger.
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that were randomly selected from 18,527 official market (Google Play) apps. For each
app, to increase the code path execution coverage, we added 500 random UI events by
using MonkeyRunner.

Table 3 shows the number of apps and corresponding malware families that per-
form each behaviors. Since there is no easy way to obtain complete ground truth about
the sensitive behaviors found in these specific malware samples, we simply show the
absolute number instead of the false positive/negative rate.

As summarized in the table, we find that Dagger can find sensitive behaviors from
all malware families. Moreover, Dagger can successfully find all three types of sens-
itive behaviors (Send SMS, Net and Execute Shell) in the malware families that were
reported by a prior measurement study on the same malware corpus [54].
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Table 4. Dagger analysis summary for 112 randomly selected malware samples.

Send|Block| Read | Write | Read Read |Execute|Net
SMS| SMS |SMSDB |SMSDB | Contact|Location| Shell

[oJw][ t [ o[ 271 3 [ 17 Jeo]

After using Dagger to vet 1000 official apps from Google Play, we found the follow-
ing. (¢) One app reads SMSDB, which is a TV Channel client embedded with multiple
advertisements, and reads users’ SMS messages. (i¢) Four apps have executed extern-
al/shell commands. After submitting them to VirusTotal, one app was recognized as
malware belonging to Plankton. This malware dynamically downloads additional code
from external server and executes it. The malware then executes shell commands (e.g.,
“/system/bin/cat /proc/cpuinfo”) to get the system information. Two apps were recog-
nized by VirusTotal as abusive adware. Both of them executed the shell commands to
use the Logcat to obtain the system runtime log information. The fourth app was not
recognized as malware by VirusTotal. However, it attempted to obtain root privilege by
executing “su”, which is recognized as a sensitive behavior by Dagger. (i2¢) Seven apps
read users’ geolocation information. More specifically, three apps use such geolocation
information for the usage of maps; two apps are used for car rental guides; one app is
for local shopping and another one is a photo editor app that can be used by users to
share photos with geolocation information to their friends. Our findings confirm that our
system has a low false positive rate, i.e., only a small number (< 2%) of official apps
are identified as performing sensitive behaviors, and the majority of these are related to
known malware/adware families.

Analysis of False Positives and Negatives. Since it is very challenging to obtain a
perfect ground truth for the Android malware dataset (i.e., knowing the exact sensitive
behaviors of each malware sample we collect), we further evaluated the accuracy of
Dagger by comparing it with other existing systems, instead of claiming accurate value
of the false positive and false negative rate. More specifically, we ran Dagger on 112
malware samples, which were randomly selected from the Genome malware dataset.
The specific number of malware samples that perform each type of sensitive behaviors
can be seen in Table 4.

To measure possible false positives, we examined those behaviors identified by Dag-
ger, which are not reported by [54]. [54] reports possible sensitive behaviors of the
malware samples in each family by statically extracting programming paths that may
execute sensitive behaviors. We found that only two apps, Asroot and DroidKungFuUp-
date, access the Internet but are not reported by [54]. We manually examined these two
apps, and found that they do indeed access the Internet to load advertisements when
they are activated.

To measure possible false negatives, we compared our system with CopperDroid.
(Since CopperDroid is not open-source, we obtained its results by submitting apps to its
public website.) Since CopperDroid instruments QEMU to intercept all instructions that
are executed in the Android emulator, it can report most sensitive behaviors. Compared
with CopperDroid, we find that Dagger misses one network behavior and 2 reading
contact behaviors due to the failure of triggering the execution paths. We also tested
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Table 5. Dagger’s performance overhead as measured using the AnTuTu benchmark app.

Metric ‘ OffScore ‘ OnScore ‘ Overhead ‘

CPU score | 7,199 6,522 9.40%
RAM score| 1,213 1,092 9.98%

these malware samples on TaintDroid, which only detects that 1 app reads location
information, and 23 apps access the Internet.

4.3 Measuring System Performance Overhead

To evaluate the efficiency of Dagger, we tested the performance overhead of Dagger by
using AnTuTu (v 3.0.3) [1]. AnTuTu is a popular Android benchmark app developed
to test the performance of Android devices. We are mostly interested in the major per-
formance benchmark metrics such as CPU score and RAM score. CPU score represents
the computation ability of the current CPU status; a higher score implies the CPU has
more free computation ability. RAM score reflects the real processing ability of RAM;
a higher score implies more free space in RAM.

Table 5 shows the scores of each benchmark metric while turning Dagger off/on
(denoted as OffScore and OnScore, respectively). In this table, the overhead of each
metric is calculated as: Overhead = (OffScore — OnScore)/ OffScore.

From this table, we can find that the overheads of CPU and RAM after turning
Dagger on are acceptable, which are less than 10%. This clearly indicates that Dagger
is a lightweight vetting approach that consumes a very small number of resources, an
advantage makes it attractive for practical use.

Besides the above metrics, we also measure the time overhead generated by Dagger.
The time spent running the Antutu benchmark app on an unmodified system was 1.89
seconds. When Dagger was used, Antutu took 3.07 seconds to run. From this we can see
that the time overhead is reasonably low: 62.43%. It is worth noting that in another rep-
resentative approach based on system call tracing, DroidScope [50], the slowdown was
around 11 to 34 times (with taint-tracking enabled). This experiment clearly demon-
strates that Dagger is a very lightweight tool.

In comparison with existing work, we can find that though it requires neither in-
strumentation of the system nor modification the OS, Dagger can achieve significantly
high accuracy with appreciably lower performance overhead. Note that queries are per-
formed offline using an indexed graph database. This ensures that complex graph quer-
ies can scale to large data sets, limited only by the underlying database Neo4;j (that is
used in production environments).

5 Related Work

We broadly classify related work into four major categories: detection of Android mal-
ware, security analysis and defense of the Android platform, and analysis of behaviors
in Android apps.

Detection of Android Malware: An extensive body of systems has been developed to
detect Android malware by monitoring system calls [15, 39, 42, 43, 50, 46, 30, 27],
analyzing the usage of Android permissions [24, 11, 23, 38], analyzing the usage of
Framework APIs [13, 55, 47, 56, 17, 52], and extracting information from the sysfs
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pseudofilesystem [12]. The design of these detection systems requires deep domain
knowledge about Android system and the development of Android malware. Most of
them also require effective and robust disassemblers to disassemble the target apps into
Dalvik bytecode. These static approaches achieve limited effectiveness when detecting
more evasive malware that is implemented with complex obfuscation techniques (e.g,
encrypting the source, inserting noisy code, using Java reflection) and NDK. In contrast,
Dagger does not require robust (or any) disassembly or deobfuscation technology.

Android Security Analyses: A few existing studies focus on analyzing the security
mechanism of the Android platform and its applications. Stowaway [24] is designed
to find those over-privileged apps. SmartDroid [52] finds UI triggers that result in
privacy leakage. DroidChameleon [40] demonstrates the vulnerability of existing an-
droid anti-malware tools. Other related studies include attempts to detect component-
hijacking vulnerabilities [32], inter-app communication vulnerabilities [19], and capab-
ility leaks [25, 16]. In contrast to these analyses which focus on the leakage of security
privileges, we focus on the leakage of sensitive data.

Android Platform Defenses: A variety of techniques have been developed to extend
the security policies that can be supported by Android. Quire [21] is designed to prevent
confused deputy attacks. Bugiel [14] et al. proposed a framework to prevent collusion
attacks with pre-defined security policies. Saint [37], Porscha [36], and CRepE [20]
were developed to isolate apps by designing more fine-grained access control policies.
AppFence [28] prevents privacy leaks by either feeding fake data or blocking the leak-
age path. Checking at install time, Apex [35] allows for the selection of granted per-
missions, and Kirin [23] performs lightweight certification of applications. Paranoid
Android [39], L4Android [31] and Cells [10] use virtualization as an isolation mech-
anism to manage the risk of running malicious applications on Android. A prototype
implementation of SELinux on an Android [3] device[44] provides mandatory access
control. Aurasium [49] protects the system by enforcing practical policies. Previous
work that relies on extensive modifications to the operating system that is brittle in
the face of evolving codebases. In contrast, we are able to support sensitive behavior
monitoring without modifying apps, the Dalvik virtual machine, or the Linux kernel.

Behavioral Analysis of Android Apps: Besides detecting malware and enhancing se-
curity mechanism of the Android platform, a few studies focus on analyzing sensit-
ive/malicious behaviors in Android apps.

Dalvik Monitoring. As summarized in Table 6, TaintDroid [22] is one of the first
few systems that are designed to track possible sensitive leak from Android apps. Vet-
Droid [51] vets sensitive behaviors by checking the permission usage at runtime. It
requires modification to both the Android Dalvik virtual machine to intercept API in-
vocations, and the Android framework to monitor invocations of app callbacks. Since
these two approaches achieve the goal by mainly monitoring the execution of the Java
instructions in the Dalvik, they are not effective when applied to finding sensitive beha-
viors that are implemented by Native Code. In addition, depending on whether hooks
in the source of Android OS are used, these approaches are limited to the periodical
change of the Android OS.

Virtual Machine Instrumentation (VMI). DroidScope [50] is designed to vet be-
haviors in Android apps by reconstructing both OS-level and Java-level semantics.
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Table 6. Comparison of Dagger with alternative sensitive behavioral vetting approaches.

[ [ TaintDroid | VetDroid | DroidScope [ NDroid [ CopperDroid | Dagger |
) i . Taint An'al)'/sm Taint Analysis| Taint Analysis VMI & Monitoring| Data Ptrov'enance Analyiss
Technique |Taint Analysis| & Permission System Calls  |& Monitoring System Calls,
. & VMI & VMI . .
Analysis and Binder Binder and Process
Runtime Modifying Modifying |Instrumenting | Instrumenting |  Instrumenting None
Modifications| Android OS | Android OS QEMU QEMU QEMU
Native Code No No Yes Yes Yes Yes
Support
Overhead Medium Medium High High High Medium

NDroid [18] is a supplementary of TaintDroid, which is aware of the JNI semantic
to track the data flow in the native code. CopperDroid [41] reconstructs malware be-
haviors by monitoring the system calls and the binder. Since these approaches rely
on instrumenting the Android emulator, which typically incurs high overheads, espe-
cially when taint tracking is enabled, their direct application to analysis of a large scale
of Android apps is inefficient. In addition, similar to the emulation-resistant desktop
malware, Android malware can evade such approaches by staying dormant or simply
crashing themselves, once the malware identifies that it is running within an emulated
environment [45, 29].

Motivated by the limitations of these approaches, Dagger is designed as a comple-
mentary and lightweight system to effectively and efficiently vet sensitive behaviors in
Android apps. Dagger fills the semantic gap by representing Android apps’ interactions
with the system in a data provenance graph, and further matching the provenance graph
with a library of sensitive provenance patterns.

6 Limitations and Future Work

Since Dagger’s approach relies on the analysis of the inner working flow of the An-
droid system to vet sensitive behaviors, it has to be updated if the workflow of the
Android system is significantly altered. However, due to the practical implications of
such design, e.g., changes on a huge system that is being used by millions of devices,
we believe that such significant changes are likely to be infrequent.

In the current design of Dagger, failed system call invocations are not captured in
its data provenance graph. Such failure information might be useful in capturing certain
sensitive behaviors that are missed by the current system. In the future work, we plan
to improve Dagger by incorporating these into our analyses.

A common limitation of dynamic analysis techniques is that an exhaustive search
of the space of all possible behavior of a target piece of code requires an untenable
amount of testing. Consequently, techniques such as “fuzz testing” use random inputs
or other methods for selecting a sparse subset of the test space. While Dagger is able to
trigger security-sensitive behavior that matches particular provenance patterns, it is not
exhaustive.

Finally, Dagger requires some manual effort to fine-tune the extracted provenance
patterns that are currently used in vetting sensitive behaviors. We plan to extend our
system with a learning-based approach to automatically mine graph patterns from apps
that share similar sensitive behaviors. Furthermore, Dagger’s provenance pattern library
may be easily extended with additional verified patterns.
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7 Conclusion

This paper presents Dagger, a novel and lightweight approach to dynamically vet sens-
itive behaviors in Android apps without system instrumentation or OS modification.
Dagger achieves its goals by collecting three types of lower-level information and sum-
marizing the app’s system interactions through a lightweight provenance graph. In ad-
dition, Dagger contains a library of sensitive provenance patterns that can be used to
automatically identify sensitive behaviors embedded in Android apps. Our evaluation
demonstrates that Dagger is able to quickly and effectively isolate sensitive behaviors
across a large corpus of (benign and malicious) real-world apps, with significantly lower
performance overhead than prior studies.
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