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ARTICLE INFO ABSTRACT

Keywords: As Software-Defined Networking (SDN) is getting popular, its security issue is being magnified as a
Software-Defined Networking, secu- new controversy, and this trend can be found from recent studies of presenting possible security vul-
rity, network security, penetration test- nerabilities in SDN. Understanding the attack surface of SDN is necessary, and it is the starting point
ing to make it more secure. However, most existing studies depend on empirical methods in different

environments, and thus they have stopped short of converging on a systematic methodology or devel-
oping automated systems to rigorously test for security flaws in SDNs. Therefore, we need to disclose
any possible attack scenarios in diverse SDN environments and examine how these attacks operate in
those environments. Inspired by the necessity for disclosing the vulnerabilities in diverse SDN operat-
ing scenarios, we suggest an SDN penetration tool, DELTA, to regenerate known attack scenarios in
diverse test cases. Furthermore, DELTA can even provide a chance of discovering unknown security
problems in SDN by employing a fuzzing module. In our evaluation, DELTA successfully reproduced
26 known attack scenarios, across diverse SDN controller environments, and also discovered 9 novel
SDN application mislead attacks.

1. Introduction tiate attack cases against SDN elements across diverse en-
vironments, and which may assist in uncovering unknown
security problems within an SDN deployment. Motivated
by security testing tools in the traditional network security
domain [45, 15], DELTA represents the first security as-
sessment tool for SDN environments. Furthermore, we en-
hanced our tool with a specialized fuzzing module [30] to
exploit opportunities for discovering unknown security flaws
in SDNs.

In designing DELTA, we first assessed the overall oper-
ation of an SDN by tracking its operational flows. Opera-
tional flow analysis provides a basis for understanding the
attack surfaces available to external agents across an SDN
deployment, and is a generally applicable strategy for ap-
proaching any SDN stack. Based on the popular OpenFlow
protocol specification [36], we categorize operational flows
into five categories (see Section 2). In each category, we
explore possible security issues and assess which ones are
covered by existing studies.

Our intent is to design a testing framework that auto-
mates the systematic exploration of vulnerabilities exposed
in SDN deployments from multiple perspectives. Previous
studies are limited in their coverage of the SDN attack sur-
face, in that they usually depend on specific SDN elements or
network environments. To overcome this issue, we devised a
method to reveal possible unknown security problems in an
SDN by employing a blackbox fuzzing technique, which ran-
domizes message input values to detect vulnerabilities in the

*Corresponding author direct interface or failures in the downstream message pro-
ORCID(S):

Security has been a subject of controversy in many newly
emerged networked systems, such as peer-to-peer networks
and cloud networks. After their appearance, researchers and
practitioners have examined their security issues from var-
ious angles to verify their safeness, and this process makes
them more secure so that they can be adapted in a real-world
system. Software-Defined Networking (SDN), which man-
ages a network in a centralized way, is a recently proposed
networking technology, and now it is endorsed by both in-
dustry and academia. As SDN technology is getting popular,
its security problem is being at issue, and thus researchers
are investigating its security issues as they have conducted
in other networked systems [26, 46, 39, 20, 25, 1].

Such security-critical reviews of SDNs offer a view into
various breaches, but overall, the attack surfaces thus far ex-
plored have been quite limited to either highly targeted ex-
ploits, such as ARP spoofing or specific vulnerabilities that
arise in various SDN components. Each previous result may
not be applicable to other SDN environments (e.g., different
control planes). Hence, operators seeking to assess security
issues in their SDN environments need to survey existing
SDN security-related studies and determine relevance on a
case-by-case basis. Furthermore, an operator may have to
adapt or redesign deployment-specific security test suites.

This paper introduces a new SDN security evaluation
framework, called DELTA, which can automatically instan-
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cessing logic. When generating random test vectors, DELTA
uses the information from the analysis of the SDN operations
and focuses on the cases where vulnerabilities are likely to
be located.

We implemented a prototype framework for DELTA and
evaluated it with real-world SDN elements. For each con-
troller, DELTA is customized with a simple configuration
file. The flexible design of DELTA accommodates both open
source and commercial SDN controller implementations.
Our prototype can (currently) reproduce 26 known SDN-
related attack scenarios targeting several well-known SDN
elements, such as ONOS [2], OpenDaylight (ODL) [29],
Floodlight [3], Ryu [31], and the commercial Brocade Vy-
atta SDN controller [7]. In addition, DELTA was able to
discover 9 new attack scenarios by applying control flow
fuzzing techniques.

The results of our analysis have contributed to the Open
Networking Foundation (ONF) [35] technical reports defin-
ing best practices for securing SDN environments. New at-
tack scenarios exposed by DELTA have also been reported
to the ONF and, most recently, DELTA has been adopted by
ONOS for integration in the development test suite to profile
the ongoing security of the controller [42]. Furthermore, we
have shared our findings gained from DELTA with the atten-
dees in Black Hat USA that is one of the influential security
conferences in the world [4, 5, 6].

This paper describes the following contributions:

e An analysis of vulnerabilities in the SDN stack that
can mislead network operations. Through this analy-
sis, we can reconcile test input with erroneous SDN
errors and operational failures. We introduce seven
criteria for automatically detecting a successful attack
scenario from these failure conditions. We then show
how to combine this information for assessing root
cause analysis on successful attacks.

e The development of an automated security assessment
framework for SDN capable of reproducing diverse at-
tack scenarios. This framework currently reproduces
26 attack scenarios against real-world SDN elements
with simple configurations and is readily extensible to
support more scenarios.

e The incorporation of blackbox fuzzing techniques into
our framework to detect unknown attack scenarios. To
conduct an efficient fuzz-test, we present an opera-
tional state diagram that describes typical state tran-
sitions in OpenFlow protocol. Based on the derived
state diagram, we also propose a fuzzing algorithm
that randomizes OpenFlow control flow sequences.
Through our evaluation, we verified that this tech-
nique found 9 new attack cases.

e The demonstration of flexibility of system design by
evaluating it against four popular open-source SDN
controllers and one commercial SDN controller, Bro-
cade Vyatta controller.

The remainder of this paper is structured as follows; In
Section 2, the background and motivation for this work is
outlined. Related work is discussed in Section 3. The vul-
nerabilities in SDN flows are described in Section 4. Sec-
tion 5 introduces the system design. The implementation
and evaluation of DELTA are presented in Sections 6 and 7,
respectively. And the limitation and discussion are described
in 8. Finally, in Section 9, the conclusions are summarized.

2. Background and Motivation
2.1. SDN and OpenFlow

In traditional networks, a control plane computing so-
phisticated networking functions, and a data plane handling
low-level packet forwarding based on the policies of the con-
trol plane, are tightly coupled and usually colocated within
a single device. Since these two planes are often embedded
within a proprietary network device, it is inherently chal-
lenging to insert new functions into the device without spe-
cialized knowledge or vendor cooperation.

To overcome this fundamental problem, SDN presents
a new paradigm that emphasizes the decoupling of the con-
trol plane from the data plane, with a logically centralized
control plane operated using (high-performance) commod-
ity hardware. The key features of SDN are high-level net-
work abstraction providing a global view of the network, and
programmability.

OpenFlow: OpenFlow is the de-facto standard protocol
for the communication between the control plane (a.k.a., the
OpenFlow controller') and the data plane, and is widely de-
ployed [22, 19]. Although, OpenFlow does not cover all
parts of SDN, it reflects the most important part (i.e., an in-
terface between the control plane and the data plane). Hence,
considering OpenFlow in SDN networks is quite natural,
and many commercial deployments have successfully em-
ployed OpenFlow as the primary interface between those
two planes. As a protocol, OpenFlow has been rapidly evolv-
ing, most recently with the release of OpenFlow version 1.5
protocol specification [38]. However, most production de-
ployments rely on OpenFlow 1.0 and 1.3 because most net-
work devices (e.g., switches and routers) still only support
them.

2.2. SDN Control Flows

In addition to the OpenFlow protocol, there are many
types of control messages to operate SDN, and in this work,
we call it SDN control flows. The operations of SDN can be
classified into five types of control flows as shown in Figure
1: (1) symmetric, (2) asymmetric, (3) intra-controller, (4)
inter-controller, and (5) admin control flow operations.

Symmetric control flow operations: In these operations,
an SDN component sends a request to another component
and receives a reply back (i.e., a request-reply pair). Exam-
ple (1) in Figure 1 presents an instance illustrating this op-
eration. Consider a load balancer application on a controller

n the case of OpenFlow-based SDN networks, the term controller is
commonly used to denote the control plane. This paper uses both terms
interchangeably.
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Figure 1: Examples of the control flows in SDN: (1) symmetric,
(2) asymmetric, (3) intra-controller, (4) inter-controller, and
(5) admin

that needs switch statistics to distribute traffic loads. To re-
trieve statistics from the switch, the load balancer first issues
a statistics request event to the statistics service in the con-
troller core. Once the service receives the event, it sends the
STATS_REQUEST message to the switch through an OpenFlow
message. Then, the switch packs its statistics information in
the STATS_RESPONSE message and returns it to the controller.
Finally, the statistics core service returns the received statis-
tics to the load balancer application.

Asymmetric control flow operations: In contrast to the
previous operation, some SDN operations only involve uni-
directional messaging (e.g., messages that do not require a
reply). Technically, most SDN control-flow interactions fall
under asymmetric control flows (e.g., control for handling
packet arrival and inserting flow policy). Example (2) in
Figure 1 represents two kinds of asymmetric control flows
(PACKET_IN and FLOW_MOD). Once a packet arrives at the switch,
the switch first matches the packet with the flow entries in
its flow table. If the switch cannot find any matching flow
entries, it sends a PACKET_IN message containing a por-
tion of the packet header to the controller. Then, the con-
troller delivers the packet-arrival event to its applications.
The other asymmetric control flow is started from the appli-
cation on the controller. For example, once a routing ap-
plication receives the packet arrival event, it must decide
how best to process the event (e.g., forwarding the packet
to somewhere or dropping the packet). After the routing ap-
plication issues a packet-forwarding policy to the flow rule
service, the service sends a FLOW_MOD message to the
switch. Finally, the switch inserts the packet-forwarding pol-
icy into its flow table and forwards the packet.

Intra-controller control flow operations: Unlike sym-
metric and asymmetric control flows, intra-controller control
flows are initiated by applications or core services running
on a controller as shown in Example (3) in Figure 1 (i.e.,
control plane). When applications interact with one another
or use the core services of the controller, they do so by em-
ploying the APIs exposed by the controller. If a routing ap-
plication requires the topology information from the inter-
nal services to compute a dynamic routing path, the routing

( App 2 ) ( App 3 ) ( App 4 )

| lﬁm (3)T IN

(1): [ PACKET _IN Subscribers
1
----------- PP
Core Services (2) App4-
N
°
X
Controller Flow
PACKET IN ——» Packet
I:> ‘
a— > —
Host A OpenFlow Host B
Switch

Figure 2: Event Listener Unsubscription attack

application calls an API that returns the current topology in-
formation. This API function may in turn invoke several in-
ternal APIs. Finally, the topology information is delivered
to the routing application. This call-chain is an example of
intra-controller control flow.

Inter-controller control flow operations: To resolve a
single point of failure problem in one SDN controller, dis-
tributed SDN controller designs have been suggested [2,
32]. The distributed computing is a key to guarantee high-
performance and fault tolerance in large-scale networks.
Such distributed notion has also emerged as a critical con-
cept in many customers such as data center and telecommu-
nication operator who need a guarantee of availability [34].
In the distributed SDN controllers, it is necessary to maintain
the same states among the individual controller instances or-
ganizing a SDN cluster. To do this, the distributed SDN con-
troller utilizes a west-east protocol that provides keepalive
messages (Example (4) in Figure 1), a state synchronization,
and leader node decisions among the controller instances.

Admin control flow operations: By providing external
interfaces (e.g., RESTful services), SDN controllers allow
network administrators to manage complicated traffic within
a centralized network view manually as well. As shown Ex-
ample (5) in Figure 1, they can manually configure network
flow-handling policies (i.e., flow rules) for each network de-
vice through the interfaces. Besides, the administrators can
get the network (device) states by leveraging the key features
of SDN, which are high-level network abstraction and pro-
grammability. With this feature, it enables flow management
to be performed by remote location, offering much greater
diversity.

2.3. Motivating Example

Figure 2 illustrates how a malicious application could
render a benign application incapable of receiving any of
the necessary control messages from a switch. In this ex-
ample, we assume that a network operator has downloaded
and installed a malicious SDN application because an SDN
application ecosystem is similar to Android in a sense that
anyone can develop and distribute applications using open
APIs.

First, a malicious application (App 1) accesses the list
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identifying which application receives the PACKET_IN
control message (the most important control message in
OpenFlow-based SDNs), and discovers that App 4 is wait-
ing for PACKET_IN messages (1). Then, App 1 unsub-
scribes App 4 from the list (2), and thus App 4 is unable
to receive any PACKET_IN messages (3). If App 4 is a
security-sensitive application such as firewall, it can cause
unexpected network states because the application cannot
make a decision based on the PACKET_IN messages.

This example shows that abusing the inter-controller
control flows can remove the specific application that wishes
to listen the PACKET_IN message without any constraints.
And, this is a real working example (applicable to Floodlight
[3] and OpenDaylight [29] controllers), and it illustrates
how a malicious application confuses a benign application
by manipulating the intra-controller control flow operation.
The reason why the malicious application can manipulate
the other ones is that there is no mandatory permission sys-
tem in SDN.

Considering this example, SDN-specific attack and vul-
nerability cases are not trivial anymore. Besides, most attack
scenarios (will be described later) are based on SDN con-
trol flows, and it cannot be revealed by existing pen-testing
frameworks, such as metasploit [28] and nessus [45] because
those frameworks do not know how SDN works. We believe
that this example scenario clearly presents why we need a
new pen-testing framework for SDN.

3. Related Work

Our work is inspired by prior work in SDN security and
vulnerability-analysis techniques.

SDN Security and Attacks: There have been several
studies [25, 1] dealing with attack avenues in SDNs. Kreutz
et al. argue that the new features and capabilities of SDN,
such as a centralized controller and the programmability of
networks, introduce new threats [25]. Benton et al. point
out that failures due to lack of TLS adoption by vendors
for the OpenFlow control channel can make attacks such
as man-in-the-middle (MITM) attacks and denial-of-service
(DoS) attacks easier [1].  Furthermore, some researchers
have raised other issues, such as inter-application conflicts,
access control, topology manipulation, and sharing rela-
tionships [39, 47, 20, 12]. Ropke et al. [40] have demon-
strated that SDN applications can launch stealth attacks and
discussed how such applications can be easily distributed
via third-party SDN app stores, such as the HP App Store
[21]. Even without delivering malicious SDN applications
to SDNs, Dover et al. have also shown that it is possible
to launch DoS and spoofing attacks by exploiting the imple-
mentation vulnerability that exists in the switch management
module of Floodlight [14, 13].

Although there have been several studies on SDN vul-
nerabilities, contemporary controllers remain vulnerable to
many of these attacks. Hence, we proposed a software
framework that can simplify reproducibility and verification
of diverse attack scenarios [27]. Inspired by our effort, re-
cently, several works for evaluating SDN security have been

presented [50, 23]. However, while these works have mainly
focused on manipulating OpenFlow messages by sniffing
the control channel between the controller and the switch,
DELTA provides comprehensive security test cases includ-
ing the vulnerabilities of the application layer.

Vulnerability Detection Tools and Techniques: Tradi-
tional network security testing tools such as Metasploit [28],
Nessus [45], and Nmap [15] are equipped with a rich library
of vulnerabilities and composable attack modules. However,
because these tools are specialized for legacy and wide-area
networks, they are unsuitable for SDN networks. In a re-
cent BlackHat briefing, the authors explored the SDN attack
surface by systematically attacking each layer of the SDN
stack, and then demonstrating some of the most critical at-
tacks that directly affect the network availability and confi-
dentiality [17]. This illustrates that SDN-specific security
threats are complex and cannot be revealed by existing net-
work security testing tools as they are not SDN-aware.

Our goal is to develop an analogous tool for OpenFlow
networks. Fuzz testing was first proposed by Miller et al.
in the early 1990s and has steadily evolved to become a vi-
tal tool in software security evaluation [30, 49]. The current
body of work in black-box fuzz testing may be broadly di-
vided into mutational and generation- (or grammar-) based
techniques. While the former strategies rely on mutating in-
put samples to create test inputs, the latter develop models
of input to derive new test data. DELTA makes use of both
strategies, with mutational being the primary approach.

Examples of mutational fuzzers include SYMFUZZ [8]
and zzuf [18]. Unlike these approaches, our system employs
a fuzz-testing methodology that is specialized for SDNs.
We recognize that because the operations and topologies
of SDNs are more dynamic than traditional networks, ran-
domization of a specific portion of the packets is insuffi-
cient. Hence, we classify the operations of SDN into three
types of control based on the control flow, and incorporate
the features of those operations into DELTA’s fuzzing mod-
ule. ShieldGen is an example of a grammar-based fuzzer,
that uses knowledge of data formats and probing to auto-
matically generate vulnerability signatures and patches from
a single attack instance [10]. Godefroid et al. present a
grammar-based whitebox fuzz-testing approach inspired by
symbolic execution and dynamic test generation [16]. Un-
like such approaches, DELTA does not require the entire
source code of the target system. Scott et al. introduced
a troubleshooting system called STS that automatically in-
spects vulnerabilities in control platforms using a fuzzing
technique [43]. The focus of STS is identifying the MCS
(minimal causal sequence) associated with a bug. However,
DELTA reproduces known vulnerabilities and even finds un-
known ones by changing the parameters of its fuzzing mod-
ules without MCS. Yao et al. proposed a new formal model
and corresponding systematic blackbox test approach for the
SDN data plane [51]. While this approach mainly focuses
on the testing paths of SDN data planes, DELTA applies
fuzzing functions to discover unknown security flaws across
the SDN stack.
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Table 1
Summary of known SDN attack cases against control plane: O means the controller is
vulnerable to this attack, and X means that it is not vulnerable.

Controller
Flow Type Attack Code  Attack Name ONOS OpenDaylight  Floodlight  Ryu
SF-1 Switch Identification Spoofing [14] X (e} (¢] X
SF-2 Switch Table Flooding [13] X X (0] X
SF-3 Handshake without HELLO Message [41] X X X X
SF-4 Redundant Main Connection Request [41] X X X X
Symmetric Flows SF-5 TLS Connection Misuse [41] X X X X
SF-6 Auxiliary Connection Mismatch [41] X X X X
SF-7 Malformed Version Number [41] O O o o
SF-8 Corrupted Control Message Type [44] (0] (0] (6] (0]
AF-1 Control Message Drop [44] (0} (e} o X
AF-2 Control Message Infinite Loop [44] o (e} o o
AF-3 Flow Rule Modification [44] O O o o
AF-4 PACKET _IN Flooding [46, 48, 24] o O (0] o
AF-5 Flow Rule Flooding [11, 46] (0] (6] (0] (0]
Asymmetric Flows AF-6 Switch Firmware Misuse [44] (0} (e} (¢] X
AF-7 Flow Table Clearance [44] O (6} o O
AF-8 Eavesdrop [44] (0} O o o
AF-9 Man-In-The-Middle [44] (0] (6] (@] X
AF-10 Control Message before Connection [41] X X X X
AF-11 Unflagged Flow Remove Notification [41] O X X X
CF-1 Internal Storage Misuse [47] O O o X
Intra-Controller Flows CF-2 Application Eviction [47] o] o) X o
CF-3 Event Listener Unsubscription [47] X (e} (0] o
NF-1 System Command Execution [47] (0} o (¢] o
NF-2 Memory Exhaustion [47] o (e} (¢] o
Non Flow Operations NF-3 CPU Exhaustion [47] O O o o
NF-4 System Variable Manipulation [44] X o o X
4. Vulnerabilities in SDN flows switch according to a Data Plane ID (DPID). However, a

MITM concern arises, in which an attacker replays hand-
shake steps with the DPID of an already connected switch
causing Floodlight to disconnect itself from the switch (i.e.,
SF-1). Next, as the Floodlight controller manages the con-
nected switch’s information in its internal storage, it con-
sumes the memory resources within the host. An attacker
can persistently replay meaningless handshake messages to
exhaust the internal storage of the controller (i.e., SF-2).
Such an attack could result in a controller shut down.
Failing to conform to specifications also incurs security
problems in SDNs. In OpenFlow networks, the control and
data plane components must exchange HELLO messages to
initiate the connection. A handshake process must then be
completed before the specified timeout and any incomplete
controller-switch connection should be torn down to avoid
an adversary taking over the open (incomplete) connection.
Otherwise, the attacker can exploit the SDN controllers that
allow the initiation of controller-switch connections with-
out the exchange of HELLO messages (i.e., SF-3). In ad-
dition, each controller-switch connection should be reliably
maintained. However, an attacker could interrupt existing

This section explores how the SDN flow operations de-
scribed in Section 2 are related to vulnerabilities that can
harm SDN operations. Vulnerabilities related to the SDN
control flows are discussed in Section 4.1 and the locations
of vulnerabilities resulting from non-flow-related operations
are described in Section 4.2, and from the vulnerability dis-
cussion we derive the seven vulnerability detection criteria,
which are explained in Section 4.3.

Table 1 provides a high-level overview of the feasible
SDN attack cases against each SDN controller (i.e., control
plane). Here, we tested the control plane attacks against
the four most prevalent and well-known SDN controllers
(ONOS, OpenDaylight, Floodlight, and Ryu controllers).

4.1. SDN Control flow Operation Vulnerabilities
Symmetric Control flow Vulnerabilities: For the con-
trol plane, Table | identifies eight symmetric control flow
vulnerabilities. Two vulnerabilities raise in the presence
of weak authentication during the handshake step between
the controller and the switch as follows. First, the Flood-
light controller classifies the identification of the connected

Lee et al.: Preprint submitted to Elsevier Page 5 of 20
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legitimate controller-switch connections by sending out ad-
ditional connection requests in order to affect the network
availability (i.e., SF-4).

For a secure connection between the controller and the
switch, OpenFlow recommends the use of TLS. However, if
this protection is not in place, it is possible for an attacker
to intentionally attempt a failed TLS connection to gain an
insecure TCP connection (i.e., SF-5). For the high availabil-
ity, the OpenFlow provides two types of connection; main
and auxiliary connections. Thus, if the main connection is
set to TLS, the auxiliary one should also be TLS. Otherwise,
data tampering and information disclosure are feasible at the
controller through an auxiliary TCP connection. (i.e., SF-6).
Besides, there could be some malformed control message at-
tacks. For instance, the attacker manipulates the OpenFlow
version value (i.e., SF-7) or the header type value (i.e., SF-8)
in symmetric control messages with an invalid value in order
to cause an inconsistency issue, which may result in a switch
disconnection.

Asymmetric Control flow Vulnerabilities: Table 1
identifies 11 asymmetric control flow vulnerabilities. Most
controllers maintain a listener mechanism that allows appli-
cations to register to receive specific messages from the data
plane. When a message arrives at the controller, this mecha-
nism delivers the message to the applicable registered appli-
cations, either in sequence or parallel, depending on the im-
plementation of controllers. However, misbehaving or rogue
applications can interfere with the order of applications in
the list, and cause the application to drop the message (i.¢.,
AF-1). Also, malicious applications can alternatively imple-
ment an infinite loop to prevent other applications from act-
ing on the message (i.e., AF-2). Further, a malicious appli-
cation may also manipulate resident flow rules in the switch
that have been installed by other applications. For instance,
although a flow rule installed by a firewall application may
instruct the switch to drop the flows from the malicious host,
a peer application could modify the flow rule to forward cor-
responding flows from the malicious host (i.e., AF-3).

Controllers and switches are vulnerable to performance
degradation by malicious or erroneous applications. One
such example is that an adversary generates a number of
meaningless flows to other hosts in order to trigger a flood
of PACKET_IN messages to the controller, which eventually
degrades the performance of the controller (i.e., AF-4). On
the contrary to this, it is also possible for a malicious appli-
cation to generate numerous FLOW_MOD messages to the
flow table, which can lead the switch into an unpredictable
state (i.e., AF-5). Also, by changing the rules, the malicious
application can manipulate the flow table in the switch to
make the switch performance be unstable (i.e., AF-6 and AF-
7).

If the control messages between the controller and the
switch are unencrypted, an attacker located between them
can confuse the control plane. For example, the attacker
can guess what topology is constructed by sniffing control
messages in a passive manner (i.e., AF-8). Moreover, the
attacker may also intercept the control message and then

change some field values of the control messages with ma-
licious intent (i.e., AF-9). In addition, it is feasible for the
attacker to send a PACKET_IN message before a connection
between the controller and the switch is established in order
to install an improper flow rule to the switch (i.e., AF-10).
For the flow management, the controller can set the removal
notification flag when installing the flow rule on the switch
so that they can recognize if the flow rule is expired or not.
However, to abuse this feature, the attacker can send a fake
flow removal notification to the controller so that the con-
troller may have an erroneous flow management view from
the switch (i.e., AF-11).

Intra-Controller Control flow Vulnerabilities: Table
1 identifies three intra-controller control flow vulnerabili-
ties. Since most controllers do not provide access control
mechanisms to limit API usage among applications, a ma-
licious application may access and alter network topology
data within the internal storage of the controller, impacting
all peer applications that derive flow control decisions based
on this network topology data (i.e., CF-1). In addition, by
abusing those APIs, the malicious application can dynam-
ically unload a security-sensitive application (e.g., firewall
application) without any constraint (i.e., CF-2). Also, the
malicious application can prevent some applications which
want to receive the control message from being notified of
the control message (i.e., CF-3).

4.2. Non flow Operation Vulnerabilities

Table 1 identifies four non-flow operation vulnerabili-
ties. Although SDN controllers have been referred to as
network operating systems (NOS), most controllers are im-
plemented as general networking applications. Thus, con-
trollers are unfortunately subject to the same vulnerabili-
ties as found in normal applications. For instance, a devel-
oper who implements an application running on the con-
troller could make a mistake inside the application logic,
which can cause the termination of the application. How-
ever, since most controllers employ the multi-threaded pro-
gramming paradigm, the termination of the application can
mislead the controller into shutdown (i.e., NF-1). If a tar-
get network does not have controller redundancy, this could
result in a network-wide outage.

The malicious application can intentionally consume all
available system resources of a controller to affect other ap-
plications or even the controller. For instance, malicious ap-
plications can halt the control layer by intentional uncon-
strained memory consumption (i.e., NF-2), or by uncon-
strained thread creation to exhaust available CPU cycles (i.e.,
NF-3). System time is also considered a system resource
that is used to check the response time of symmetric control
flows. If the malicious application manipulates this system
time, the switch connected to the controller could enter an
unexpected state (i.e., NF-4).

4.3. Vulnerability Detection Criteria

Considering the impacts of the 26 vulnerabilities as de-
scribed above, we derive the following seven vulnerability
detection criteria: (i) a controller crash, (ii) an application
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crash, (iii) internal-storage poisoning, (iv) a switch discon-
nection, (v) switch-performance downgrade, (vi) inter-host
communication disconnection, and (vii) error-packet gener-
ation. By leveraging those criteria, we judge whether an
attack case is feasible against the target SDN environments
when reproducing the known attacks. Moreover, in addition
to the known attacks, it can also be used for discovering an
unknown attack case, which we will detail in later.

5. System Design

This section discusses the design considerations moti-
vating our design and then describes the DELTA system ar-
chitecture.

5.1. Design Considerations

The attacks outlined in Section 4 are a few examples
among the broader set of known SDN vulnerabilities. As
possible attack scenarios increase, so too increases the chal-
lenge of determining how and where to address these threats
among the various deployment-specific SDN instantiations.
Today, the cost associated with conducting security testing
within specific SDN network instances is high. SDN secu-
rity testing is ad-hoc and cumbersome, as attack scenarios
may arise uniquely from different SDN components, net-
work configurations, and testing inputs. To help reduce this
cost, we need a generalized SDN penetration testing frame-
work that can automatically reproduce diverse attack scenar-
ios as we have done in other areas (e.g., web security testing
tool), and this framework should be easy to use.

Given these practical testing concerns, the requirements
driving our penetration framework can be summarized as
follows: (i) it should cover as many attack scenarios as pos-
sible, (ii) it should be highly automated to minimize the hu-
man skills and time necessary to conduct testing, and (iii)
it should be inter-operable with a diverse set of SDN com-
ponents. In addition, we also require that our framework be
easily extensible to new test cases, and assist in the identifi-
cation of entirely new attack scenarios. The following sec-
tions will consider these requirements in more detail.

5.2. Blackbox Fuzzing

In addition to the known attack scenarios reviewed in
Tables 1, a wider range of undiscovered attack scenarios
against SDNs remain, which our framework can help oper-
ators to explore and discover. To identify unknown attack
cases, we borrow the notion of fuzz testing developed in the
context of legacy software and protocol testing. Fuzz testing
allows the development of entirely randomized testing vec-
tors to determine if program interfaces are subject to unex-
pected input handling errors. We choose blackbox fuzzing
rather than whitebox fuzzing, because the former does not
require the source code of target programs, and it can be ap-
plied to both open source and proprietary SDN components
and devices.

State Diagram of SDN Control Messages: A key anal-
ysis in blackbox fuzzing is that of determining the input pa-
rameters that must be subject to input randomization, which

recevie
@ FEATURES_RES @

receive
GET_CONFIG_RES

GET_CONFIG_REQ

update topology

STATS_REQ receive

STATS_RES

deliver
to applications

receive
ECHO_RES

send

BARRIER_REQ receive

VENDOR

receive
BARRIER_RES

Figure 3: A partial operational state diagram of typical SDN
controller and a fuzzing vector example

is a central consideration in our framework design. Instead
of selecting values for randomization in an ad hoc manner,
we derive those values from the analysis of SDN control
flows. The SDN operations of a typical SDN controller,
which employs OpenFlow protocol, can be represented in
an operational state diagram. Figure 3 shows a partial state
diagram of typical SDN controller, which specifically is rel-
evant to the symmetric control flows. Although we only
present the state diagram for OpenFlow v1.0, we have also
analyzed OpenFlow v1.3 [37] and it is a straightforward ex-
tension. The state diagram can be represented by a graph
abstraction which has vertices and edges. Thus, we can for-
mally define it as the following definition:

Definition 1. An operational state diagram is a directed
graph G that consists of V" which denotes a set of states (ver-
tices) v, and E which denotes a set of transitions (edges) e.

In the state diagram (Figure 3), label E is an end state
and label R stands for a ready (initial) state to receive or send
the control messages. Each edge’s label designates the type
of control message and the specific controller behavior that
triggered the state transition. For example, as shown in Fig-
ure 3, when a controller sends a HELLO message to a switch
for a new connection in R state, the state of the controller
moves to S1. In s1, the controller receives the HELLO mes-
sage from the switch, causing a state transition to s2. If the
handshake process with the switch is successful, the state
arrives at s7 and the controller then updates the topology in-
formation. From this example, we can derive a formal defi-
nition of the transition edges:

Definition 2. A set of state transitions E denotes a set of
labeled edges that represent a combination of a controller’s
behavior and type of control message.

In addition to the symmetric control flows, we derive
other control flows-related states as well, such as the asym-
metric, intra-controller, inter-controller, and admin control
flows. This state diagram can clearly describe the points at

Lee et al.: Preprint submitted to Elsevier

Page 7 of 20



Journal Pre-proof

A Comprehensive Security Assessment Framework for Software-Defined Networks

Controller Switch

HELLO
HELLO

FEATURES_REQUEST

GET_CONFIG_RESPONSE

SET_CONFIG

Figure 4: Symmetric flow sequence randomization example

which the controller takes the input and how each input in-
duces the state transition. Therefore, based on such an oper-
ational analysis result, we can effectively perform the input
randomization against the SDN controllers.

Based on the state diagram, we investigated (i) the se-
quence of control flows, presented in Section 2, to determine
whether there are candidate control flows for randomization,
and then examined the (ii) input values conveyed in each
control flow.

Randomizing Control Flow Sequence: We can ran-
domize the control flow sequence in two major steps: (i)
inferring current state of an SDN controller, and (ii) manip-
ulating the control flow sequence.

In the case of the symmetric control flows, the current
state of the controller can be inferred from the control mes-
sages intercepted from the control channel between the con-
troller and the switches. For example, as shown in Figure
3, the controller states from R to S7 represent the OpenFlow
handshake process. Meanwhile, in the case of the asymmet-
ric control flows, the state of the controller can be detected
by not only intercepting the control messages but also by
monitoring the changes in the controller behaviors, because
some of the state transitions in asymmetric control flows are
triggered by the controller operations. For example, when
PACKET_IN messages are delivered to applications, it is
difficult to detect state transitions within the state diagram by
intercepting the control messages. Thus, to detect such state
transitions, we monitor any changes in the controller behav-
ior and specifically in this example deploy an additional ap-
plication to confirm the reception of PACKET_IN.

Once the state of the controller is analyzed, we can ma-
nipulate the sequence of the control flow. To randomize
the sequence of the symmetric control flows, we intention-
ally drive an SDN controller to violate the standard protocol
(Fuzzing Vector in Figure 3) For example, as shown in Fig-
ure 4, it is possible to manipulate the sequence by omitting a
couple of message exchanges (crossed out) to test if the con-
troller or the switch is vulnerable to such protocol violations.

Such control flow manipulation can be also applied to
the asymmetric flows. If a PACKET_IN message is sent to
the controller by the network device, the controller sequen-
tially delivers the message to the applications in a specific
order. Figure 5 (Before) shows the default sequence where

After,

{APPDHAPPCHAPPBHAPPA)

Before

>( APPA }»( APPB }»( APPC )»( APP D )

= *E[ Control Message Notifier J

Figure 5: Asymmetric flow sequence (series) randomization
example
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APP X
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Figure 6: Asymmetric flow sequence (parallel) randomization
example
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SE——

[ Control Message Notifier ]

App A first receives the PACKET _IN message, and App D
receives the message last (i.e., A - B — C — D in series).
Here, we can change the control flow (i.e., shuffle the order
of the applications) randomly at runtime as shown in Figure
5 (After) and observe the system behavior.

In addition to the sequential asymmetric control message
delivery mechanism, messages can be delivered to applica-
tions in parallel as shown in Figure 6. For example, when the
controller receives a PACKET_IN message, it can simulta-
neously deliver the asymmetric message to the applications.
However, of those applications concurrently running on the
controller, a certain set of applications may be defined to fol-
low a particular order in receiving the message. In this ex-
ample, we arbitrarily injected App X, so that this application
can receive the message ahead of App B (Figure 6 (After)).
Again, it is possible to randomize such sequences to observe
the behavior.

Randomizing Input Values: The input values of a con-
trol flow can also be randomized. For example, we can se-
lect the FLOW_MOD message as shown in Figure 7, which
allows the controller to modify the state of a switch. Most
fields are defined as an unsigned integer type, and we can
randomize these values to mislead the switch into parsing
it (e.g., 0 or maximum). Since control messages between
the data plane and the control plane are commonly delivered
through a plain TCP channel?, all field values of the con-
trol messages can be intercepted at the control channel and
manipulated easily, which could result in critical network in-
stabilities. For example, a priority field in a FLOW_MOD

2The OpenFlow specification suggests an encryption transport (e.g.,
TLS) to encrypt outgoing messages. However, it is frequently disabled in
favor of performance [1].
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Figure 7: Input value randomization example: left is a header
format of FLOW _MOD message and right represents the flow
sequence

message can be maximized. Such field-value randomization
can also be applied to the other control flows. Most con-
trollers provide their own APIs to improve the flexibility of
intra-controller control flows. These APIs may be used by
any hosted network application, which means that any ap-
plication has a chance to change (or randomize) values. Our
framework adopts this idea to randomize input values of a
control flow.

Algorithm 1 Fuzzing Algorithm with the State Diagram

Input:
G’ is a fuzzing vector (subgraph)
v, is an initial state of G’
1: procedure INITIALIZE(G', v,)

2: w « an empty list

3: y < an empty list

4: CONTROLFLOWFUZZER(G', v, w, ¥)
Input:

w is a transition path that consists of visited v and e
y is a list of mutated transition paths

5. procedure CONTROLFLOWFUZZER(G, v, @, ¥)

6 append v - @

7: for all edges e € G.ad jacent Edges(v) do

8: if e.action = receive then

9 for all edges ¢’ € E where ¢’ # e do

10: result <~ SENDTOCONTROLLER(e'.msg)
11: if result = Error then

12: o —wue

13: append @' — y

14: if u exists, u € G.adjacentV ertex(v, e) then

15: append e - ®

16: y' « CONTROLFLOWFUZZER(G, u, w, y)
17: append y’ -y

18: return y

Fuzzing Algorithm: For efficiently randomizing the
fuzzing vectors, we design a graph traversal algorithm that
explores the operational state diagram (Figure 3) as shown
in Algorithm 1. When we choose a fuzzing vector, it is nec-
essary to include the ready state R as a subset of vertices and
the vertices that have all incoming edges. It guarantees that
a target controller reaches all selected states.

Definition 3. Fuzzing vector is a subgraph G’, where se-
lected vertices have all incoming edges and include the ready

state R.

The algorithm aims to incrementally mutate state transi-
tions by visiting each state, taking the chosen fuzzing vector
G’ from the operational state diagram. The list @ denotes
a transition path that is composed of visited v and e, where
v € V and e € E. The list y denotes a list of mutated tran-
sition paths @', which is an output of the algorithm.

The algorithm starts to traverse from the initial state
vy (line 4). When the procedure ControlFlowFuzzer visits
each state v, it appends the vertex v to w to record the tra-
versed states (line 6). Then, from the current state, the al-
gorithm visits all the adjacent edges (transitions) and checks
the edge’s action field (lines 7 to 8). If the action field con-
tains receive, the fuzzer selects an abnormal transition e’ that
is not the same with the original transition e from E. Upon
the current state v, the algorithm sends the message e’.msg
to the controller and retrieves a result. If the sent message
causes an error, the procedure makes a mutated path @’ as a
union of e’ and w. Then, the mutated path ' is stored to y
(lines 9 to 13). If there is an adjacent state u from the current
state, the procedure appends the current edge e to @ and calls
itself to visit all vertices recursively (lines 14 to 17).

Finally, the procedure returns a list of the mutated tran-
sition paths y, which is a set of generated fuzz cases. The
unexpected situation referred to in the fuzzing algorithm de-
scription is determined based on the seven test criteria that
we have defined in Section 4.3. If the fuzz cases generated by
DELTA result in any of these, the test inputs will be flagged
for ex-post-facto vulnerability assessment.

5.3. System Architecture

This section presents an overview of the overall archi-
tecture of DELTA and briefly explains each of its compo-
nents. For a more detailed description, we point the reader
to [27]. As shown in Figure 8, our framework consists of a
centralized agent manager and multiple agents. The agents
are classified into three different types based on their loca-
tion: application, channel, and host. Those agents are lo-
cated along the path of SDN control flows and implement
attack scenarios.

Agent Manager: The agent manager (AM) assumes the
role of a controller that manages all the agents. The AM
consists of four modules: Controller Manager, Attack Con-
ductor, Agent Handler, and Result Analyzer. The AM is not
coupled with SDN components; it independently conducts
two functions: (i) controls other agents remotely to replay
known attack scenarios or discover unknown attack scenar-
ios against the target network, and (if) retrieves the executed
results from each agent.

Remote Agents: The application agent is an SDN appli-
cation running inside the controller. It launches attacks un-
der the supervision of the AM. Since an SDN application can
be directly involved in SDN control flows, our framework in-
serts an application (i.e., application agent) into a controller
to intercept, forge, and change SDN control flows and input
variables, as applicable to the attack scenario. Application
agents are controller specific as they must interact directly
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Figure 8: Overall architecture of DELTA with four key compo-
nents: (/) Agent Manager, (ii) Application Agent, (iii) Chan-
nel Agent, and (iv) Host Agent

with each controller API. The application agent consists of
four modules: (i) Attack Simulator, (ii) AM Interface, (iii)
Control-Flow Fuzzer, and (iv) Value Fuzzer. The attack sim-
ulator includes known malicious functions for a target con-
troller, and it executes malicious functions as indicated by
the AM. The control-flow fuzzer and value fuzzer are used
to randomize SDN control flows and their input values.

The channel agent sniffs and modifies the control mes-
sages passing through the control channel between the con-
trol plane (i.e., controller) and the data plane. As the com-
munication is often unencrypted, the channel agent can ma-
nipulate control messages by intercepting them. While the
application agent is controller-dependent, the channel agent
is SDN protocol-dependent. DELTA currently supports
OpenFlow 1.0 and 1.3. The modules of the channel agent
are the same with those of the application agents.

The host agent behaves as a host (or multiple hosts) par-
ticipating in the target SDN network. It is capable of gen-
erating network traffic to any reachable targets (e.g., switch
and host), and such a remotely controllable host is useful for
launching some attacks initiated by hosts. The host agent
consists of three modules: (i) Flow Information Collector,
(ii) Flow Generator, and (iii) AM Interface. The flow infor-
mation collector captures diverse flow-related information,
such as latency and the number of sent and received flows.
The flow generator produces network flows under the control
of the AM.

Fuzzing Modules: An administrator who chooses to
employ the blackbox fuzzing functions of our framework can
set the AM to activate fuzzing functions for the application
and channel agents. If no guidelines are presented to the
fuzzing functions, they operate continuously until manual
termination. The operator can alternatively supply input to
narrow fuzzy testing to a boundary range of randomization
for the specific cases.

Currently, our framework provides two fuzzing mod-
ule randomizing functions: (i) Control-Flow Fuzzer and (i)
Value Fuzzer, which are both located within each agent. As
their name implies, the control-flow fuzzer randomizes SDN

control flow operations, and the value fuzzer randomizes the
input values of each function. These modules may operate
in tandem or independently.

Whenever a randomization procedure is completed, the
test results will be delivered to the result analyzer in the AM,
which then analyzes the results to verify the effectiveness of
an attack scenario. This evaluation for detecting new suc-
cessful attacks is currently based on the set of seven test cri-
teria mentioned in Section 4.3. If any of these seven out-
comes is detected, the result analyzer regards this as a new
attack and reports the test case to the operator.

6. Implementation

We have implemented an instance of DELTA to verify its
feasibility and effectiveness. To support the design features
described in Section 5, we implemented three types of agents
and an AM in Java, in approximately 12,000 lines of code.
DELTA has been open sourced as one of ONF’s official open
SDN projects [41].

DELTA currently includes application agents for four
well-known open source controllers and one commercial
controller, enabling it to replay attack scenarios and launch
fuzzing functions as shown in Table 2. As the controller
integration design involves the user of modular application
agents, we are able to minimize the integration cost (and im-
pact) of extending DELTA to other controllers. The channel
agent employs a packet capture library to capture and modify
control messages between a controller and network devices,
and it currently supports OpenFlow version 1.0 and 1.3. The
host agent is a Java application program that generates net-
work flows by creating new TCP connections or by using
existing utilities, such as Tcpreplay. It can also collect net-
work flow information by passively sniffing network pack-
ets. All agents have direct connections to the AM with TCP
connections. We implement fuzzing modules by modifying
functions for controlling SDN operations. In the case of the
application agent, the fuzzing modules parse arguments of
each function, track and randomize sequences of function
calls, and randomize arguments or the sequences based on
the information provided by the AM. With respect to the
channel agent, the fuzzing modules manipulate OpenFlow
messages and delay the sequence of message flows.

7. Evaluation

We have conducted a wide range of experiments and
performance evaluations involving the DELTA security as-
sessment framework with well-known SDN controllers,
ONOS (v1.9.0), OpenDaylight (Carbon), Floodlight (v1.2),
Ryu (v4.16) and a commercial controller (Brocade Vyatta
v2.3.0). In this section we present a range of results illus-
trating the penetration testing capability of DELTA across a
diversity of SDN stacks, as per the objective of our frame-
work.
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Table 2

Supported application agents for various controller versions

ONOS OpenDaylight Floodlight Ryu Brocade Vyatta
Version 1.6 1.9 2.1 Helium Lithium Carbon 0.91 1.1 1.2 4.16 2.3.0
Release Date 12/16/15 03/10/16 04/30/19 09/29 /14 06/29/15 05/26/17 12/30/14 04/17/15 02/07/16 08/02/17 2016
Supported v v v v v v v v v v v

Table 3

Unknown attack case classification: ASY (Asymmetric),
SYM (Symmetric), INTRA (Intra-controller), INTER (Inter-
controller), and ADMIN (admin) control flows

Unknown Attack Name Flow
Sequence and Data-Forge ASY FL

Target

Stats-Payload-Manipulation SYM FL, ODL
Echo-Reply-Payload-Manipulation  SYM ODL
Service-Unregistration INTRA  ODL
Flow-Rule-Obstruction INTRA  ONOS
Host-Tracking-Neutralization INTRA  ONOS
Link-Discovery-Neutralization INTRA FL
Heartbeat-Delay-Randomization INTER  ONOS
Missing-Prerequisite ADMIN FL

7.1. Use Case 1: Finding Unknown Attacks

Among the key features of DELTA is its ability to use
specialized fuzz testing to uncover new SDN vulnerabili-
ties. Here, we highlight this capability using experiments we
conducted on ONOS, OpenDayLight (ODL), and Floodlight
(FL) controllers. Table 3 summarizes 9 new attack scenar-
ios? that were revealed through our evaluation. These sce-
narios span all five SDN control flow categories (symmet-
ric, asymmetric, intra-controller, inter-controller, and admin
control flows).

7.1.1. Sequence and Data-Forge Attack

In the implementation of the Floodlight controller, when
PACKET_IN messages arrive at the controller, it sequen-
tially delivers the messages to a set of applications that have
registered callbacks. Moreover, any application that receives
the messages can get, insert, and even remove the payload
within a message. Thus, the combination of these two fea-
tures can be misused by a malicious or buggy application
(e.g., delivering crafted payloads). Furthermore, this prob-
lem can result in the network entering an unstable state.

Using the control-flow fuzzer and the value fuzzer in the
application agent, Figure 9 illustrates the attack scenario,
highlighting the points where the fuzzing modules random-
ize. Specifically, the control-flow fuzzer randomizes the de-
livery sequence of PACKET_IN messages (A in Figure 9),
and the value fuzzer randomizes the message payloads (B
in Figure 9). When the fuzz modules change the sequence
and remove all payload bytes in a PACKET_IN message,
DELTA discovers the vulnerability. Due to the removal of
the payload, the Topology Manager (in Figure 9) is unable to

3The first 7 unknown attack cases refer to [27]
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Figure 9: Fuzz points of the Sequence and Data-Forge attacks
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Figure 10: Results of the Sequence and Data-Forge attack
experiment

receive the original payload and thus causes an exception er-
ror (e.g., NULL pointer exception). As a result, the switch
that sends the PACKET_IN message is disconnected be-
cause the controller has no exception-handling mechanism.
Since the switch disconnection is one of the criteria that de-
termines whether this finding is an unknown attack, the AM
determines that this case is a previously unknown attack sce-
nario.

Based on the log file generated by the result analyzer in
the AM, we re-examine the unknown case. Figure 10 il-
lustrates the output of the controller’s console during this
analysis process. Initially, the application agent is located at
the end of the sequence (in the ‘Before’ column of Figure
10). However, after modifying the sequence, the applica-
tion agent is moved to the first entry of the ‘After’ column in
Figure 10.

Finally, the controller shows a NULL pointer exception
because the Topology Manager cannot properly handle a
PACKET_IN message, as the application agent removes the
payload from the message, and then the switch that sent the
PACKET_IN message is subsequently disconnected (i.e.,
criterion (iv) switch disconnection as defined in Section 4.3).
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Figure 11: Results of the Stats-Payload-Manipulation attack
experiment

7.1.2. Stats-Payload-Manipulation Attack:

As mentioned in Section 2.2, the STATS_REQUEST
and STATS_RESPONSE messages are the representative
messages for symmetric control flows. If an application
wants to know specific flow statistics, the controller sends
a STATS_REQUEST message to solicit switch status infor-
mation, then the switch responds to the controller with the
STATS_RESPONSE message.

In this case, the DELTA operator first targets symmetric
control flows. Then, the value fuzzer in the channel agent
randomizes control messages passing through the control
channel. Technically, when the fuzzing module modifies the
type of STATS_REQUEST message to an undefined value
(before fuzzing: flow stats, after fuzzing: undefined), the
AM notices the switch disconnection matched to our criteria.

Figure 11 shows the results of the Stats-Payload-
Manipulation attack. When the value fuzzer changes the
type of the STATS_REQUEST message to a randomized
value, the switch sends an error message (see Packet Cap-
ture in Figure 11) to the controller, and the switch is dis-
connected from the controller (see Controller in Figure 11),
which violates the switch-disconnection criterion.

7.1.3. Echo-Reply-Payload-Manipulation Attack

In the case of the symmetric control flows, the ECHO_-
REQUEST and ECHO_REPLY messages are popularly
used in OpenFlow to exchange information about latency,
bandwidth, and liveness on connected switches. If the con-
troller does not receive a reply to the ECHO_REQUEST in
time, it assumes that the switch is disconnected.

The operator first selects the symmetric control flows
as the target flow type. Then, the AM randomly picks
the ECHO_REPLY message type, and the value fuzzer in
the channel agent starts to randomize the message passing
through the control channel. When the fuzz module in the
channel agent randomizes the length field of the ECHO_RE-
PLY message as an undefined value (before: 8, after fuzzing:
0), the switch disconnection event is triggered in the con-
troller (i.e., criterion (iv) switch disconnection).

Packet Capture
ARP 60 10.0.0.216 is at 44:8a:5b:ec:51:ed
OFP 74 Echo Reply (SM) (8B)
ARP 60 Who has 10.0.0.2117 Tell 10.0.0.242

0000 64 e5 99 fO e9 65 44 8a 5b ec 51 ed 68 00 45 00 d....
0010 00 30 2a 89 00 00 40 06 3a 76 Ga 00 60 f2 Ga 00
0020 00 d8 e7 19 19 e9 78 ff f7 2c 27 21 50 18
0030 81 7c 60 f6 00 00 01 03 |00 e0|ff ff ff f2

Length Field

Controller

n: New I/0 worker #20]

OFParseError
protocol.verl®-0 SRea Zad Y ReD .

protocol.verl0. OFMessageVerlesReader readFrom(OFnessaquerlo java:70
protocol.verlf.0FMessageVerl@$Reader. readFrom(0FMessageVerl®.java:37

Figure 12: Results of the Echo-Reply-Payload-Manipulation
attack experiment

From the log information, we try to reproduce this
attack case. Figure 12 shows the results of the Echo-
Reply-Payload-Manipulation attack. When the value fuzzer
changes the length field of the ECHO_REPLY message to
o value (Packet Capture in Figure 12), the controller causes
the exception to parse the wrong length value of the mes-
sage. Finally, the switch is disconnected from the controller
(Controller in Figure 12).

7.1.4. Service-Unregistration Attack:

OpenDaylight provides a substantial diversity of network
services, and OpenDaylight-hosted applications can dynam-
ically register and use these services. For example, appli-
cations can freely register for the DataPacketService to parse
control messages arriving from the switch (e.g., PACKET_-
IN). While the application can register these services at ini-
tialization, the applications can dynamically change the ser-
vices of other applications without constraint, and poten-
tially with malicious intent.

During one experiment, the value fuzzer in the appli-
cation agent found that it is possible to unregister certain
services from other applications resulting in a significant
disruption of network connectivity. For this experiment, a
DELTA operator targets intra-controller control flows and
fuzzes only input values. The value fuzzer chooses the
DependencyManager, one of the available services to fuzz.
While fuzzing input parameters, DELTA will try to unreg-
ister all services of ArpHandler which manage ARP packets.
Ultimately, the connection between hosts is disconnected.
Since this fuzz value causes the disconnection of hosts, the
AM determines this case as a newly found attack scenario.

Based on the log file, we can backtrack this attack sce-
nario. As shown in Figure 13, the ArpHandler initially reg-
istered three kinds of services: IHostFinder, IListenData-
Packet, and ICacheUpdateAware (Before in Figure 13). Af-
ter the fuzzing modules unregister the services, the network
loses its functionality, since ARP packets play a critical role
during the initiation of network communications (After in
Figure 13). Therefore, two hosts that are connected to the
switch cannot communicate with each other (i.e., criterion
(vi): inter-host communication disconnection).
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Before

org.opendaylight.controller.arphandler
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v OpenFlow Protocol
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org.opendaylight.controller.arphandler
[Appagent] : unregister service

{org.opendaylight.controller.sal.core.IContainerAfyare}={service.i
d=158} Y

Figure 13: Results of the Service-Unregistration attack exper-
iment
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Figure 14: Results of the Flow-Rule-Obstruction attack exper-
iment

7.1.5. Flow-Rule-Obstruction Attack

In the implementation of ONOS, some applications may
have configuration properties. For example, if an appli-
cation declares a specific variable as a configuration prop-
erty, the network administrator can change the variable dy-
namically. In addition to manually changing the properties,
ONOS provides ComponentConfigService, which tracks and
changes configuration properties for its applications. While
the service allows applications to dynamically change the
configuration of each component, it can also change unnec-
essary configurations.

This attack scenario was discovered by targeting DELTA
to the intra-controller control flows. The value fuzzer in
the application agent chooses the ComponentConfigSer-
vice among available services for randomizing input val-
ues. When the value fuzzer randomizes certain proper-
ties of ReactiveForwarding, the default application to send
flow rules to the switch, the AM detects noticeable per-
formance degradation of the switch. More specifically,
the fuzzing module randomizes the Packet_Out_Only prop-
erty of the ReactiveForwarding service (default: false, after
fuzzing: true), and the ReactiveForwarding service sends no
FLOW_MOD messages to the switch.

With the log file, we can verify the feasibility of this at-
tack. Figure 14 shows the difference of the latencies before
and after the attack. Since the ReactiveForwarding service
does not send FLOW_MOD messages to the switch, every

Code: Problem validating output action (4)

Figure 15: Results of the Host-Tracking-Neutralization attack
experiment

new flow arriving at the switch keeps generating PACKET _-
IN messages to the controller. Thus, the average of latencies
becomes slower (about 4 ms in Figure 14 bottom) than the
average before the attack (about 1 ms in Figure 14 top) as
the workload of the controller increases (i.e., criterion (v):
switch performance downgrade).

7.1.6. Host-Tracking-Neutralization Attack:

ONOS keeps track of the location of each end-host con-
nected to switches through the HostLocationProvider, which
maintains host-related information (e.g., an IP address, a
MAC address, a VLAN ID, and a connected port). For ex-
ample, it an end-host attaches to a switch, the service iden-
tifies this and updates the information of the end-host. As
mentioned in the previous unknown attack scenario, Com-
ponentConfigService can also change some configuration
properties belonging to the HostLocationProvider service.

An operator can aim DELTA at the intra-controller flows
for input value fuzzing (not flow sequence), then the Com-
ponentConfigService is selected by the value fuzzer in the
application agent for input-value randomization. While the
value fuzzer runs, the controller receives error messages
from the switch. Since the switch sending error messages
to the controller matches one of the seven vulnerability de-
tection criteria, the AM logs information that the fuzzing
module randomized the hostRemovalEnabled property of the
HostLocationProvider (default: true, after fuzzing: false).
This change effectively prevents the tracking of end-host lo-
cations. For example, if a host is disconnected from the
switch, the controller does not detect this disconnection.

To verify this unknown attack scenario, we analyzed the
log information and backtracked the attack. Figure 15 shows
the outputs from a packet capture tool [9] in the channel
agent. The channel agent senses the error messages from
the switch, which means that the controller for the flow rules
is not available due to the invalid host. However, although
the communication ends, error messages are sent to the con-
troller every 10 seconds until the controller shuts down (i.e.,
criterion (vii): error-packet generation).

7.1.7. Link-Discovery-Neutralization Attack:
Floodlight also provides diverse network services in the
controller core for use by applications. Among these ser-
vices, the LinkDiscoveryService offers a way of managing
the link information by sending LLDP packets to other ap-
plications. For example, an application can read what link
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Before After
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-
e
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Switch

Host
Figure 16: Results of the Link-Discovery-Neutralization attack
experiment. A red circle (before) represents a live link between

two switches, and a red dotted line (after) represents a failed

link.

10.0.0.1 08:62:66:7d:4f:c8

10.0.0.2 44:8a:5b:13:1a:13

is connected to a specific switch, or send LLDP packets to
other switches using this service.

We found that an application can prevent the controller
from sending LLDP packets to all switches that are con-
nected to the controller. This misleads the controller about
tracking the link information. For the discovery, an operator
selects intra-controller control flows as the target to be ma-
nipulated by the value fuzzer module in the application agent
(not in the channel agent). The value fuzzer module feeds all
switch information to an API provided by the LinkDiscov-
eryService, which suppresses the sending of LLDP packets.

As aresult of this attack, the controller is forced to misin-
terpret the link-state information. Using a post-mortem anal-
ysis of the log information, we can reproduce this attack sce-
nario to check if this attack really violates the criferia (i.e.,
criterion (iii) internal-storage poisoning). As shown in Fig-
ure 16, the controller web UI displays the correct network
topology information (Before in Figure 16). However, after
the attack is conducted, the topology information is changed,
although the real topology has not been altered (After in Fig-
ure 16).

7.1.8. Heartbeat-Delay-Randomization Attack

To implement synchronization among distributed ONOS
controllers, they leverage a RAFT algorithm [33], which is
a consensus algorithm that achieves a leader selection from
those instances. By synchronizing the different state transi-
tions with the eventual consistency concept, the RAFT en-
ables the instances to decide a single leader per a switch.
Thus, the selected leader has an authority of the switch.
Also, for each instance, receiving heartbeat messages from
their neighbors through the east-west interface is important
to know whether the neighbors are alive or not. If an in-
stance does not receive the heartbeat message, it thinks that
the neighbor is dead and tries to elect a new leader.

Paying attention to this, using DELTA, we were able
to find out that there exists a vulnerability of the heartbeat
mechanism operated in the distributed ONOS controllers,
and its scenarios is as follows: the channel agent in DELTA
conducts the port scanning to one of the instances from the
cluster first. If the agent detects the port 9876 (i.e., the de-
fault port for ONOS inter-controller communication) of the
instance is opened, it assumes that the port is used for ex-

Controller GUI

v 10.0.3.204 v 10.03.211 7 10.0.3.96
Devices: 2 Devices: 0 Devices: 1

ONOS Summar
Version : 1.80
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Hosts :
Topology SCCs :

0 Ve, Intents :

S, Tunnels :
@ disappear Flows :
o,

0 >,

23] 6}:0000000000000003 .E 0f:0000000000000001

~oo0 Nwo

@

Host Agent

mininet> pingall

*¥** Ping: testing ping reachability
hl -> X X

h2 -> X X

h3 -> X X
*¥** Results: 100% dropped (0/6 received)
mininet> I

Figure 17: Results of the Heartbeat-Delay-Randomization at-
tack experiment.

Controller
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18:03:33.024 INFO [n.f.c.1i.0FSwitchHandshakeHandler:nioEventLoopGroup-3-1] Switch OFSwitch DPID|
[00:00:00:00:00:00:00:02] bound to class class net.floodlightcontroller.core.internal.OFSwitch,
description SwitchDescription [manufacturerDescription=Nicira, Inc., hardwareDescription=Open
\VSwitch, softwareDescription=2.7.0, serialNumber=None, datapathDescription=s2]
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Figure 18: Results of the Missing-Prerequisite attack experi-
ment

changing the heartbeat messages among the instances, so the
agent starts to sniff the packets going through it. Here, when
the fuzzing module in the channel agent drops and delays
the messages arbitrarily, the network state becomes unstable
as shown in Figure 17. Specifically, each instance cannot
keep the link states for the entire network, resulting in that all
the links disappear from the ONOS cluster database (Con-
troller in Figure 17), which violates one of our criteria (i.e.,
criterion (iii) internal-storage poisoning). Thus, this unsta-
ble link information can affect other applications to make
a wrong decision. More seriously, the host agent cannot
communicate each other again although the channel agent
stopped dropping and delaying the heartbeat messages (Host
Agent in Figure 17).

7.1.9. Missing-Prerequisite Attack

According to the OpenFlow specification [37], If a user
wants to use the TCP/UDP port numbers in match fields of
a flow rule, she should specify which IP protocol will be
used together, which is called a prerequisite. If they do not
comply with this, the SDN controller should deny such flow
rule request from the users, and then notify them of an error.

In this instance, the DELTA operator targets the admin
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Ryu Web Ul: Switches Information

Ryu Topology Viewer ‘ Pica8 Switch 1
packet_count: 184467440737
byte count: 5696
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Pica8 Switch 2
packet count: 18446744073
byte count: 5632
flow _count: 24992

*:[1, "idle_timeout": 0, “cookie": 0, "packet count": 0, *hard timeout': 0, "byte_count: 0,
15, “duration nsec": 936000000, “priority": 32768, “length": 64, “flags": 0, "table_id": 0, “match|
183

Host Agent

From 10.0.0.3 icmp_seq=6|Destination Host Unreachable
From 10.0.0.3 icmp_seqg=7|Destination Host Unreachable
From 10.0.0.3 icmp_seg=8|Destination Host Unreachable
From 10.0.0.3 icmp_seg=9|Destination Host Unreachable

Figure 19: Results of the Flow Rule Flooding attack experi-
ment

control flows first. Then, the value fuzzer in the applica-
tion agent randomly generates the flow rule request that in-
cludes the source IP address and IP protocol as the match
fields through the RESTful services. At this time, the flow
rule requests are remotely pushed in the same way that the
administrator manually configures. After receiving the re-
quests from the RESTful services, the controller builds the
FLOW_MOD messages, but here the fuzzer disrupts the pre-
requisite by removing the IP protocol from the match fields.
Finally, when processing the flow rule, the controller discon-
nects the switch, the AM notices this disconnection event
(i.e., criterion (iv) switch disconnection).

Figure 18 shows the results of the Missing-Prerequisite
attack. When the value fuzzer manipulates the prerequisite
of FLOW_MOD message by removing the IP protocol field,
it causes a CPU burst (CPU Usage in Figure 18) due to an
infinite loop within the controller, so the switch is discon-
nected from the controller (Controller in Figure 18).

7.2. Use Case 2: Reproducing Known Attacks

Since the procedures and outputs of known attack scenar-
ios are pre-specified, each agent needs to follow the steps and
sequences of those scenarios with the pre-defined parame-
ters. In the case of reproducing the known attack scenarios,
we will illustrate two example cases: Flow-Rule-Flooding
Attack and Application Eviction attack.

7.2.1. Flow Rule Flooding Attack

To issue flow rules on the switches, SDN applications
can employ useful APIs provided by SDN controllers. How-
ever, the problem is that there are no restrictions on issuing
flow rules. Thus, a malicious application can keep gener-
ating flow rules to fill up the flow tables of SDN enabled
switches to mislead the switches into performance degrada-
tion or unexpected status.

Figure 19 shows an example of conducting this attack
with the Ryu controller. It denotes the Ryu web UI (Fig-
ure 19 top) and ping results from the host agent (Figure

@ oot>bundle:List | grep flownanager
264 | Active | 80 | 2.0.0 | com. IN—— —-zpp»-model
265 | Active | 80 | 2. | COM. INN. T o - 2 pp - (LIRSS - provider
>bundle:list | grep delta A
342 | Active | 80 | 0.4.0.SNAPSHOT | [FSEE. appagent ( )
@

>[DELTA-APPAGENT] Application Eviction Attack!
[DELTA-APPAGENT] STOP 264:com . IS M. M 8 - app - f Lownanager -model
[DELTA-APPAGENT] STOP 265:Com . IS TR 4 8 - app - f Lowmanager -provider

>bundle:list | grep flowmanager
264 | Resolved | 80 | 2.0.0
265 | Resolved | 80 | 2.0.0

@ ool

| Com. IN——— i—-zpp»-model (B)

| com. IN—— . - app - [AETLEREE - provider

Figure 20: Results of the Application Eviction attack experi-
ment

19 bottom). When reproducing this attack, the number of
flow rules in the switch significantly increases within sec-
onds (Figure 19 top), and thus it exhausts the flow table of
the switch. Then, the host agent cannot communicate with
other hosts (Figure 19 bottom), because there is no space to
add new flow rules corresponding to the connections of the
host agent (i.e., criterion (vi) inter-host communication dis-
connection).

7.2.2. Application Eviction Attack

Most controllers adopt a mechanism that can allow users
to dynamically load and unload an application running on
the controller. However, due to no restriction on using this
mechanism, an application can arbitrarily unload other ap-
plications. Here, we demonstrate an attack against the com-
mercial Brocade Vyatta SDN controller [7], which is based
on OpenDaylight.

Once the target controller has been initialized, as shown
in Figure 20 (A), the application agent and the target ap-
plication to evict are up and running (both are in ACTIVE
state). Here, we attempt to evict the flowmanager applica-
tion, which plays a critical role in managing flow rules on
the switches. Then, once the target is confirmed, the agent
executes the attack to stop the target application. As a result,
one can see that the flowmanager application is no longer in
an ACTIVE state after the attack (Figure 20 (B)).

The demonstration of this range of attack cases (both
known and unknown) across the diversity of commercial and
open source controllers illustrates the flexibility of DELTA
design, and the potential for its use in security testing across
an even broader range of controllers.

7.3. Performance

For finding unknown attack cases, DELTA serially exe-
cutes fuzz modules in each agent. Upon completion of each
fuzz test cycle, the analyzer in AM checks if the attack was
successful. Table 4 shows the amount of time taken to com-
plete one fuzz test cycle. Actually, it can be dependent on
the scale of the testbed and the number of the fuzz points.
But, the results in Table 4 take the simple test topology as
shown in Figure 9 and one fuzz point per each cycle.

8. Limitation and Discussion

Like other research work, our system also has some lim-
itations. First, some testing cases require installing a spec-
ified agent (i.e., Application Agent) to an SDN controller.
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Table 4
Finding unknown attack microbenchmark

Control Flow Type Average Running Time

Asymmetric control flow 82.5 sec
Symmetric control flow 80.4 sec
Intra-controller control flow 75.2 sec
Inter-controller control flow 89.2 sec
Admin control flow 76.5 sec

For example, reproducing the Internal Storage Misuse at-
tack in each controller requires the installation of our Agent
Manager for each controller. This limitation may slow the
adaptation of our tool to diverse control platforms. How-
ever, currently our framework covers most well-known open
source controllers, and we will provide an interface module
for other control platforms to easily integrate or extend our
framework.

Second, some operations require human involvement.
We have tried to minimize the amount of human interac-
tion, and our framework can be operated with simple config-
urations. However, some cases, such as adding new attack
scenarios, require manual modifications to some parts of the
framework. This situation happens when our framework dis-
covers a new type of attack through the fuzzing module. In
this case, we can understand an attack scenario through the
log information, but this may require a new way to handle
SDN control flows or messages. We will revise this in the
near future to automatically handle all (or most) operations.

9. Conclusion

This paper describes an important first step toward de-
veloping a systematic methodology for automatically explor-
ing the critical data flow exchanges that occur among SDN
components in search of known and potentially unknown
vulnerabilities. To our knowledge, this framework, called
DELTA, represents the first and only SDN-focused security
assessment tool available today. It has been designed for
OpenFlow-enabled networks and has been extended to work
with the most popular OpenFlow controllers currently avail-
able. We also presented a generalizable SDN-specific black-
box fuzz testing algorithm that is integrated into DELTA.
This fuzz testing algorithm enables the operator to conduct
in-depth testing of the data input handling logic of a range of
OpenFlow component interfaces. We demonstrate the effec-
tiveness of this fuzz testing algorithm by presenting 9 pre-
viously unknown attack scenarios that were detected by our
tool.
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