
An Attacker-Defender Game for Honeynets

Jin-Yi Cai, Vinod Yegneswaran, Chris Alfeld and Paul Barford
{jyc alfeld, pb}@cs.wisc.edu, vinod@csl.sri.com

University of Wisconsin, Madison, SRI International

No Institute Given

Abstract. A honeynet is a portion of routed but otherwise unused address space
that is instrumented for network traffic monitoring. It is an invaluable tool for
understanding unwanted Internet traffic and malicious attacks. We formalize the
problem of defending honeynets from systematic mapping (a serious threat to
their viability) as a simple two-person game. The objective of the Attacker is to
identify a honeynet with a minimum number of probes. The objective of the De-
fender is to maintain a honeynet for as long as possible before moving it to a new
location within a larger address space. Using this game theoretic framework, we
describe and prove optimal or near-optimal strategies for both the Attacker and
the Defender. This is the first mathematically rigorous study of this increasingly
important problem on honeynet defense. Our theoretical ideas provide the first
formalism of the honeynet monitoring problem, illustrate the viability of network
address shuffling, and inform the design of next generation honeynet defense sys-
tems.

1 Introduction

Malicious activity in the Internet is a significant and growing problem. The spectrum
of threats includes denial-of-service (DoS) attacks, self-propagating worms, spam, spy-
ware, and botnets. Malicious parties (Black Hats) are constantly looking for new poten-
tial victim systems, which are typically identified by scanning across large portions of
the Internet address space. Many tools have been developed to facilitate this task, and
researchers describe and evaluate the magnitude of the threat posed by highly efficient
scanning methods (e.g., [9]).

The network security community has recognized that the process of scanning for
victims actually offers a unique opportunity to track malicious activity in the Internet.
Standard configurations for destination networks typically drop packets destined for
addresses that are not associated with a live system. Changing this configuration to
route packets to a monitoring system enables passive collection of scanning packets.
Even more compelling is the notion of routing these packets to systems with the ability
to engage in conversations with the malicious hosts, thereby enabling a detailed attack
profile to be gathered. This configuration is commonly referred to as a honeynet (i.e., a
network of honeypots).

Over the past several years, many honeynet installations have emerged across the
globe, which have been used to monitor and identify many important details of ma-
licious activity, such as the characterization studies of Internet “background radia-
tion” [5], large worm outbreaks [3], and botnet activity [4]. Furthermore, research on

honeynet systems is active and focused on enabling scalable and secure measurement
at greater levels of detail.

The successes and utility of honeynets are not likely to be lost on the Black Hats.
Several recent studies have shown that well-known monitoring entities such as Dshield.org [10]
can be identified effectively by using different probing methods [1, 8, 7]. Black Hats can
adopt these techniques to create blacklists of address space for honeynets, which would
effectively render them useless.

In this paper, we address the problem of how to thwart attempts to map honeynets.
To the best of our knowledge, we are the first to address this problem formally (it is
mentioned briefly at the end of [11]). We will model the situation as a two-player game
between an Attacker and a Defender. The objective of the Attacker is to identify the
segment of monitored addresses (i.e., the honeynet) within a larger address space. The
Attacker does this by sending probes to the address space. The responses typically re-
veal distinguishing characteristics of the type of addresses being probed, i.e., corre-
sponding with either a live system or an address within the honeynet. An important
capability in some honeynets is that they can respond to probes in a protocol compliant
way (e.g., [13]). When a probe is received on a honeynet address, the Defender can
obfuscate its response by mimicking what would have been sent by a live system on a
regular IP address. However, this obfuscation takes resources, and for a given resource
bound, the Attacker will eventually be able to distinguish those responses coming from
a honeynet.

The objective of a honeynet is to collect data as long as possible without being
mapped by an Attacker. However, once identified, a honeynet will have to be assigned
to a new set of addresses. This remapping or shuffling is a costly process. An addi-
tional objective of the Attacker is to identify the honeynet with a minimum number of
probes. The Defender has two objectives. The first is to prevent the honeynet from be-
ing identified, which is done by periodically shuffling its location within the address
space. The second objective is to extend the duration of shuffling epochs in order to
minimize demands on the system responsible for shuffling. The Defender can use its
protocol mimicking capability as a means for delaying the reshuffling. The game itself
will focus on what transpires between shuffling epochs.

Mathematically, we model the response by the Defender for any probe as either 0 or
1. If the probe is sent to an IP address that is not part of the honeynet, then the response
is 0. If the probe is sent to an IP address that is part of the honeynet, then the Defender
may either respond truthfully with 1, or obfuscate with a “lie” 0. We assume that the
Attacker cannot distinguish between a lie and the response from a live host. We model
resource limitations as a global lie budget for the Defender. Within this context, we are
able to prove optimal or near-optimal strategies for both the Attacker and Defender.

In Section 2.1, we first formally define the game. Then we develop general bounds,
and the analysis leads to two particular strategies. The main theorem is Theorem 2,
which establishes a unique optimality result. The proof is based on a key combinatorial
lemma (Lemma 1) about certain optimal packing strategies. This lemma is easy to un-
derstand and quite plausible intuitively, but, its proof is more difficult. We then extend
our basic formulation of the game to consider the situation of having multiple segments

of honeynets within the address space. Here we introduce a strategy with an amortized
complexity analysis that is optimal up to a constant factor.

Our basic game theoretic formulation plus the extensions enable us to analyze the
processes of attacking and defending honeynets experimentally. We conducted a series
of evaluations over a range of possible configurations to assess the trade-offs between
address space size, honeynet size, probe rates, and shuffling frequency. In [12], we
discuss practical considerations involved in network address shuffling and evaluate our
implementation of a network address shuffling middlebox called Kaleidoscope.

The remainder of this paper is organized as follows. In Section 2 we formally define
our game theoretic formulation of the problem along with some preliminary results. In
Section 3 we prove our main theorem, assuming a key combinatorial lemma. The proof
for this lemma and an extension to the basic game that considers multiple blocks of
monitor segments is provided in the techreport [2] due to space constraints. We further
discuss our basic model in Section 4 and summarize our conclusions in Section 5.

2 The Attacker-Defender Game

2.1 Basic Formulation

We model the adversary/honeynet interaction within a reshuffling epoch as a 2-person
game between an Attacker and a Defender. A contiguous segment of monitored ad-
dresses is placed randomly within an address space. We call monitored addresses (i.e.,
the honeynet) “black” and all other addresses “white”. During the game the Attacker
queries addresses and receives a reply based on the color of the address queried. White
addresses must reply “white” (represented by a bit 0) but black addresses may answer
black (represented by a bit 1) or “lie” and answer “white” (a bit 0). We impose a global
limit on the number of lies allowed but they can be used flexibly. This global limit is
imposed to reflect the cost on total system memory and other resources (within a reshuf-
fling epoch). (See appendix for more discussions on the model and its variations.)

Formally, let m,k and ` be positive integers. Let n = mk. Our address space is a
circular array of n cells, identified with the additive group Zn, i.e., each cell is indexed
by some i ∈ Zn. We use the following notation:

Definition 1. A block is a contiguous subset of Zn of size m. Denote by B j = { j, j +
1, . . . , j+m−1} (indices are mod n), the block that starts at the j-th cell. As an alternate
notation, B j = { j−m + 1, . . . , j− 1, j} denotes the block that ends at j. The honeynet
monitors are identified with a single block of black addresses Bc that ends at some c.

The game starts with a random spin of Bc, that is, a uniformly distributed c ∈ Zn.
We assume that both players know the parameters m,k, and `. The position c is known
to the Defender D but unknown to the Attacker A whose aim is to find it. In a round of
the game (i.e., between shuffling epochs), A moves first and the two players alternate
their moves until A knows c. A move of A consists of a query at a cell j. If j 6∈ Bc then D
replies with the bit b = 0. If j ∈ Bc then D has a choice: D can either answer b = 1 or,
commit a lie by answering b = 0. However, D can only lie < ` times in total. In short, n
is the size of the circular address space, m is the length of a monitor block, k = n/m,

and ` is the quota of lies. (Note that ` = 1 is the smallest possible and represents no lies
allowed. We also note that the lie quota should only be considered a fixed parameter
for the duration between resuffling epochs. The assumption that an attacker knows the
block size is in keeping with the tradition in security where we want to err on the side
of giving attackers extra information. This information of block size is hard to keep
as a secret at any rate, and one can reasonably expect that an estimate by attackers
can be obtained with some probes. See more discusions in the choice of model in the
appendix.)

Denote by A (respectively D) a strategy by the Attacker (respectively the Defender).
We will primarily analyze pure (nonrandomized) strategies; but with a slight abuse of
notation we will use the same notation for randomized strategies. Let V = V (A,D) de-
note the number of queries A makes against D until A learns the value c. Thus, V is a
variable randomized over the uniform choices of c∈Zn (and possibly over the random-
ization of the randomized strategies of the two players). Let v denote the expectation
v = v(A,D) = E[V (A,D)]. The objective of the Attacker is to minimize this quantity v.
The objective of the Defender is to maximize v.

2.2 The Strategies: Round-Robin (RR) and Delay-Delay (DD)

Before giving a more detailed analysis of this game, we make some general observa-
tions. Suppose, during a round of the game, A learns a cell j ∈ Bc. If m = 1, then c = j
and the game is over. If m > 1, then, because Bc occupies a contiguous segment of
cells, A can be sure that Bc is located in one of the following m possible ways (addition
is done in Zn): c = j, j + 1, . . . , j + m− 1. Then A can “zero-in” on the boundaries of
Bc by performing the following binary search. First, A queries the cells j− = j−bm/2c
and j+ = j + bm/2c. At least one of j− and j+ must belong to Bc because the number
of cells located strictly in between these two cells is 2bm/2c− 1 < m. Thus, D must
either choose to answer truthfully b = 1 at least once, or (if permissible by the quota)
commit an additional lie. If A receives both answers with b = 0, then he knows that a lie
has been committed. So A continues to query j+ and j− until D answers b = 1. Assume
D answers b = 1 to the query j+; the case for j− is symmetric. At this point, A knows
that c is among the following dm/2e locations: c = j+, j+ +1, . . . , j +m−1. So A can
effectively consider a “shrunken” version of the problem as follows: Identify the cells
between j and j+ as a single cell. This identification effectively reduces the length of
the block by bm/2c to dm/2e. Now we can consider the problem of placing the short-
ened block on the condition that it contains a certain cell (the identified j and j+). This
describes a “binary search” process.

It is clear that every step of this “binary search” reduces the length from m′ to
dm′/2e. When the length has shrunk to 1, the game is over. If 2r−1 < m ≤ 2r, then it
takes exactly r = dlog2 me steps to reduce the length to 1. If A queries j− and j+ in
random order, then on average each step takes 1.5 queries. Let `′ be the number of lies
D is still allowed to commit (`′ < ` and may be much less because of lies committed
prior to the “binary search”). Then we have an upper bound of 2`′+1.5dlog2 me queries
under this Attacker strategy, valid for any D.

We see that once the Attacker gains the knowledge of one j ∈ Bc, A can zero-in
fairly rapidly. Therefore, it is reasonable to assume that a rational Defender will not

reveal any j ∈ Bc until being forced to (this statement will be qualified, see below).
This reasoning leads us to the following Delay-Delay (DD) strategy for the Defender.

Definition 2. The strategy Delay-Delay (DD) is as follows. Lie as long as the quota of
lies allows.

Definition 3. The strategy Round-Robin (RR) is as follows. Pick any cell to start, e.g.,
j = 0. Query j consecutively ` times. Then set j := j+m, and repeat. As soon as a reply
of b = 1 is received switch to a “binary search” strategy to zero-in. 1

Note that with at most k` queries, RR will obtain a b = 1 answer, and commence its
“binary search”. Indeed, when RR has made k` queries, these would have been for each
j = im for 0 ≤ i < k and each such j is queried exactly ` times. For any c, some query
j will be in Bc (in particular, for i = bc/mc). For any D, up to ` repeated queries at this
j must yield an answer b = 1. On average, RR will take 1

k ∑
k
i=1 i` = (k +1)`/2 queries

against DD to arrive at its First-Time T . Therefore,

V (RR,DD)≤ k`+2dlog2 me (1)

in the worst case, and

(k +1)`/2+ dlog2 me ≤ v(RR,DD)≤ (k +1)`/2+1.5dlog2 me (2)

on average. And against any other D,

v(RR,D)≤ k`/2+1+1.5dlog2 me+2(`−1). (3)

2.3 Delay-Delay against Any Attacker

We provide a simple lower bound for v(A,DD). These considerations justify our adop-
tion of DD for the Defender in the following. (Curiously, if the Defender knew that the
Attacker is RR, then he actually should do the opposite of DD, and save his entire quota
of lies for the “binary search” stage, saving a constant factor.) We note that (1) DD per-
forms well against any A, and (2) for one particular A, namely A = RR, DD performs
almost as well as any D (Section 2.2).

Definition 4. For an Attacker A and Defender D, the Capitulation-Time, L = L(A,D), is
the first time (the number of queries made) when A has made ` queries in Bc against D.

For an arbitrary pair (A,D) it is possible that the game ends (when A learns c)
before A ever hits ` times in Bc. In this case we define L = ∞.

We can prove the following

Theorem 1.
E[L(A,DD)]≥ (bk`/2c+1)/2 > k`/4.

1 If the game is slightly modified so that Defender picks c in secret, then a modified Round-
Robin strategy where the Attacker randomly picks a starting j will achieve the same perfor-
mance as below.

Note that our bound on E[L(A,DD)] is within a factor 2 of the case when the At-
tacker uses RR against any Defender strategy D. Once the Attacker is at Capitulation-
Time, all that remains is to pinpoint c. Doing so takes Ω(logm) time. Thus we arrive at
the following corollary.

Corollary 1. v(A,DD) > kl/4+Ω(logm).

3 Round-Robin is optimal against Delay-Delay

In this section we establish our main result that RR is optimal against DD. In fact, we
will prove a stronger theorem of unique optimality (Theorem 2).

Definition 5. An Attacker strategy A is essentially Round-Robin (eRR) if it is of the
following form. The strategy A first makes ` queries at some cell j. It then updates j to
j′ where j′ ≡ j (mod m) and j′ has not been queried and makes ` queries at j′. The
strategy repeats this behavior until it finds some j ∈ Bc, i.e., receives b = 1, at which
point it switches to a “binary-search”.

(This requirement that the queries be mutually congruent modulo m (not that their
blocks be mutually disjoint) is necessary for the proof.)

Clearly,
E[L(eRR,DD)] = E[L(RR,DD)]. (4)

Theorem 2. For any Attacker A that is not eRR,

E[L(RR,DD)] < E[L(A,DD)]. (5)

Lemma 1. Let m, k, p and ` be positive integers, and n = mk. Let S be a multi-set
{S1,S2, . . . ,Sp}, where each Si ⊂ Zn is a contiguous segment with |Si| = m. We say
c ∈ Zn is heavy with respect to S if c is covered by at least ` blocks Si ∈ S . Then,

|{c ∈ Zn | c is heavy}| ≤ m · b p
`
c.

Let C(S) = |{c ∈ Zn | c is heavy}| denote the number of heavy points w.r.t. S . We
note that a weaker bound C(S) ≤ bm · p

` c follows easily from a volume argument. But
we need the stronger version to prove Theorem 2. The proof of the lemma is presented
in the appendix. Here we prove the Theorem assuming the Lemma.

Proof (Proof of Theorem 2). Clearly Pr[L(RR,DD) = ∞] = 0. If Pr[L(A,DD) = ∞] 6= 0,
then (5) is obvious. Suppose Pr[L(A,DD) = ∞] = 0. We are concerned with

E[L] =
∞

∑
i=1

Pr[L ≥ i] = 1+
∞

∑
i=1

Pr[L > i], (6)

for L = L(A,DD) and L(RR,DD). Our goal is to show that RR minimizes E[L]. Let
EA[L] = E[L(A,DD)] denote the expectation of the Capitulation-Time for Attacker A

against Defender DD. Similarly, PrA indicates the probability for Attacker A against
Defender DD. Our first goal is to prove the (nonstrict) dominance of RR:

EA[L]≥ ERR[L]. (7)

We establish EA[L] ≥ ERR[L] by proving term by term PrA[L > i] ≥ PrRR[L > i]
in the sum (6). Observe that if i ≥ k`, then PrRR[L > i] = 0. Thus, we only need to
consider i < k`. The inequality is equivalent to PrA[L ≤ i] ≤ PrRR[L ≤ i]. Define Hi to
be the number of hits Bc received among the first i queries. Then the event [L ≤ i] is
equivalent to [Hi ≥ `]. Thus, we seek to show for all i,

Pr
A

[Hi ≥ `]≤ Pr
RR

[Hi ≥ `]. (8)

Imagine that we are given the first i (not necessarily distinct) query points. Each
query point j defines a block B j. We observe that j hits Bd iff d belongs to the block
B j. Let Si be the configuration consisting of i blocks corresponding to the queries the
Attacker would make assuming the Defender answers b = 0 to the first i− 1 queries.
We claim

Pr
A

[Hi ≥ `] =
C(Si)

n
. (9)

The equality is clear if all first i answers are indeed b = 0. We prove that (9) is valid
for the actual interaction that defines Hi. We prove this by induction. For i = 1 the result
holds. Assume the result holds up to < i. The probability PrA[Hi ≥ `] is 1/n times the
number of d such that Bd was hit at least ` times during the first i queries.

Pr
A

[Hi ≥ `] = Pr
A

[Hi−1 ≥ `]+Pr
A

[(Hi = `)∧ (Hi−1 < `)]. (10)

By induction PrA[Hi−1 ≥ `] = C(Si−1)
n . Now, for the second term, the conjunction

(Hi−1 < `) implies that DD answers the first i− 1 queries with b = 0. Thus, the prob-
ability PrA[(Hi = `)∧ (Hi−1 < `)] counts the number of heavy points d ∈ Zn that are
heavy in Si but not heavy in Si−1. It follows that the sum of these two probabilities is
exactly C(Si)

n , completing the induction.
By Lemma 1, the probability PrA[Hi ≥ `] is maximized by RR. Therefore, by the

dominance of RR, term by term in (6), we obtain ERR[L]≤ EA[L].
To prove the strict dominance of RR (and eRR) over any other A against DD, we

reason as follows. If the first ` queries are not at the same cell, then at the `-th query,
RR produces exactly m heavy points while A has strictly less. Thus, at the `-th term in
the sum for EA[L], the inequality PrA[H` ≥ `] < PrRR[H` ≥ `] is strict. As we have the
(nonstrict) dominance of RR for every term we arrive at ERR[L] < EA[L].

We now assume that the first ` queries are at a single cell. Let j1 be that location.
If the next ` queries are not at some cell j2 then consider the time step 2`. By the same
argument, at 2` we have a strict inequality and a (nonstrict) dominance of RR elsewhere,
that again gives ERR[L] < EA[L]. This argument proves that to be optimal, the locations
of the queries j1, j2, . . . must be repeated ` times each in succession.

Finally, consider the possibility of two query locations j and j′ with j 6≡ j′ (mod m).
Then at time step i = k`, RR produces a perfect cover of all Zn with multiplicity `.
Meanwhile, A has an imperfect cover of all Zn that produces a strict inequality in favor
of RR. So again, we find that ERR[L] < EA[L].

This proves the strict optimality of RR (and eRR).

4 Model Discussion

In this section, we discuss various choices we made for the game theoretic model, along
with a number of alternatives.

It is natural to model the landscape of network threats and security safeguards as an
Attacker-Defender game. As is often the case, to model real-world systems as complex
as operational computer networks, one has to focus on certain aspects of the problem
and be willing to abstract away many others. This is particularly true for a theoretical
investigation if we hope to prove something elegant and exact. Otherwise it is often hard
to prove things in real-world settings. However, our goal is an abstraction that captures
some key relevant aspects of the real problem, and provides some insight to the practice
in the real-world.

We chose to first consider a single contiguous segment of the address space as a
honeynet space. This is perfectly reasonable since many existing honeynets are config-
ured in such a way. Frequently the honeynet size is a power of 2, which does divide the
entire address space. In some instances one uses several contiguous segments to be hid-
den honeynet space. It would be typical to keep them the same size as well. To view the
entire address space to be a circular array is a mathematical abstraction, which makes
the theorems and proofs elegant. However, to consider the address space simply as an
array would not change the essential conclusions of the theorems. One can always think
of a new segment to be defined as starting at the boundary. Similarly, in addition to con-
sidering several contiguous segments of equal size, one can vary these sizes. However,
our results will still be generally valid, with some modifications.

One can argue that the Attacker should not be assumed to know the block size m.
This is reasonable; however, an Attacker can always try to “learn” the size information,
by probing first at a large m, and then at m/2, and so on. This strategy incurs at most
twice as much cost to the Attacker. (But the exactitude of Theorem 2 will be replaced
by something weaker.) The following concern also contributes to the choice of our
model. In cryptography and security work, one generally tries to err on the side of
assuming an Attacker knows more rather than less information about the system. It can
be argued that the information about the size m is generally not that secure (it may
even be published), and it typically does not change from one reshuffling epoch to the
next. Also, an Attacker can always learn m (approximately) as in the above strategy of
doubling the number of inquiry cells (the effect of replacing m by m/2), without too
much extra work. At any rate the approach of assuming m is public knowledge gives a
stronger security conclusion.

Another issue is modeling the cost of obfuscation by a total lie budget `. Maintaining
this obfuscation in real-world systems requires a certain amount of resources [6]. We
provide some example shuffling policies in our Kaleidoscope implementation [12]. One

extreme model is a perfect honeypot, where each packet is allocated a permanent space
in system memory, because the ideal honeypot’s response depends on all questions it
has observed and how it has answered them. Shuffling is resource intensive because
of the cost required to safely migrate legitimate network connections. However, the
more the adversary can probe within an epoch, the more likely it can tell the difference
between a real system and a honeypot. A Defender can only effectively obfuscate a
certain amount; after which it is neither feasible nor cost effective. We model this cost
of maintaining complete honeynet interaction history within an epoch in terms of the
global lie budget `. The duration within a reshuffling epoch should not be considered as
indefinite; the trade-off between the cost of obfuscation and reshuffling determines this
lie budget `.

Another issue is why we assume the Attacker knows the lie budget `. The argument
is the same as for the Attacker knowing m: that this information is not that secure, that
an Attacker can use a doubling strategy to approximate this `, etc. If an Attacker uses a
guessed value for `, he can still implement RR (with suitable modifications, namely in
the i-th iteration he can query Round-Robin with a guessed value 2i where he guessed
`≤ 2i), this incurs again a cost only a constant factor more. One could also posit that in
the network defense game, there could be multiple (and independent) Attackers against
a single honeynet (or defender). This situation in our model is simply treated as if the
Attackers are colluding. This makes a stronger Attacker, and thus our security results
more valid. There are possibly other issues one can raise about the model. While other
reasonable choices are possible and can possibly serve for future research, we believe
that our model serves as a good starting point for consideration of the problem.

5 Summary and Conclusion

In the perennial struggle against network intruders and malicious attacks, safeguarding
honeynet monitors is becoming an urgent problem. This paper abstracts the problem
in a game theoretic framework, and analyzes optimal strategies for both the Attacker
and Defender. To achieve provable results and mathematical elegance, it is necessary
to abstract away many systems details. But these abstractions aim to capture the most
salient features of the network reality, and to achieve a reasonable balance of system
relevance and theoretical tractability. As far as we know, our paper is the first to provide
a theoretical foundation for honeynet defense. It has also proven useful in guiding the
development of Kaleidoscope, an experimental middlebox for safeguarding honeynet
monitors. Our experience with Kaleidoscope also reveals a number of system issues
and variants that can be further analyzed in a game theoretic setting.

References

1. J. Bethencourt, J. Franklin, and M. Vernon. Mapping Internet Sensors with Probe Response
Packets. In Proceedings of USENIX Security Symposium, 2005.

2. J.-Y. Cai, V. Yegneswaran, C. Alfeld, and P. Barford. Honeygames: A Game Theoretic Ap-
proach to Defending Network Monitors. In University of Wisconsin, Technical Report #1577,
2006.

3. E. Cooke, M. Bailey, M. Mao, D. Watson, F. Jahanian, and D. McPherson. Toward Un-
derstanding Distributed Blackhole Placement. In Proceedings of CCS Workshop on Rapid
Malcode (WORM ’04), October 2004.

4. German Honeynet Project. Tracking Botnets. http://www.honeynet.org/papers/bots, 2005.
5. R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson. Characteristics of Inter-

net Background Radiation. In Proceedings of the ACM SIGCOMM Internet Measurement
Conference, 2004.

6. N. Provos. A virtual honeypot framework. In Proceedings of USENIX Security Symposium,
2004.

7. M. A. Rajab, F. Monrose, and A. Terzis. Fast and Evasive Attacks: Highlighting the Chal-
lenges Ahead. In RAID, 2006.

8. Y. Shinoda, K. Ikai, and M. Itoh. Vulnerabilities of Passive Internet Threat Monitors. In
Proceedings of USENIX Security Symposium, 2005.

9. S. Staniford, V. Paxson, and N. Weaver. How to 0wn the Internet in Your Spare Time. In
Proceedings of the 11th USENIX Security Symposium, 2002.

10. J. Ullrich. Dshield. http://www.dshield.org, 2005.
11. M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. Snoeren, G. Voelker, and S. Savage.

Scalability, Fidelity and Containment in the Potemkin Virtual Honeyfarm. In Proceedings of
ACM SOSP ’05, Brighton, UK, October 2005.

12. V. Yegneswaran, C. Alfeld, P. Barford, and J.-Y. Cai. Camouflaging Honeynets. In Proceed-
ings of IEEE Global Internet Symposium, 2007.

13. V. Yegneswaran, P. Barford, and D. Plonka. On the Design and Use of Internet Sinks for
Network Abuse Monitoring. In Proc. RAID, 2004.

6 Appendix: The Packing Lemma

In this section we prove Lemma 1 which is a lemma about a packing problem.
We first remark that the lemma assumes m|n. This integral divisibility is essential.

Here is a counter example when this is not true. Let n = 3, m = 2, ` = 2 and p = 3.
Define S = {{1,2},{2,3},{3,1}}. Then, the number of heavy points C(S) = 3, but the
bound is m · b p

` c= 2. This is one indication of the subtlety of this lemma.
The bound in the Lemma is trivial if p ≥ k · `. So we assume p < k · `. Write p =

q · `+ r, where q = b p
` c< k and 0 ≤ r < `.

Consider RR (or eRR). Each query at j defines a block B j = { j, j+1, . . . , j+m−1}
that is a contiguous segment of m cells, starting at j. It is obvious that j ∈ Bc iff c ∈ B j.
Now it is clear that the upper bound in the Lemma is achieved by RR (and eRR), since
each batch of ` repeated queries defines a block, each of which is repeated ` times, and
these blocks are spaced exactly m cells apart from one batch to the next. Thus, the first
q · ` queries define q distinct and disjoint blocks each repeated ` times, and together
they cover m · q heavy points. The point of the lemma is that one cannot possibly use
the leftover “capacity” of rm to cover more heavy points. (The example above shows
that this “no use of leftover capacity” is a subtle point.)

We note that if p ≡ 0 (mod m), then the lemma is trivial. However, this is not
sufficient for the proof of the Main Theorem. We assume p 6≡ 0 (mod m).

Proof (Proof of Lemma 1). Fix p. Let S be a configuration of p blocks that maximizes
the number of heavy points, denoted by C(S). The proof of the lemma consists of two

major steps. In the first step we will show that we may always modify the configuration
S to another S ′ with the same number of blocks, such that C(S) ≤C(S ′), and in S ′ no
point c is covered by more than ` blocks. The second step of the proof shows that for
such configurations S ′, C(S ′)≤ m · b p

` c.
Step 1: Given S . Define a k×m matrix N as follows: The entries of N will be indexed
by (i, j), where 0 ≤ i < k and 0 ≤ j < m, and Ni, j is the number of blocks in S covering
the cell c = im+ j. For later purposes we will also denote Nc = Nim+ j = Ni, j. Note that
each cell c ∈ Zn has a unique expression c = im + j, where 0 ≤ i < k and 0 ≤ j < m.
On each column j of N, the blocks counted in Ni, j, for 0 ≤ i < k, all come from distinct
blocks in S , because each block has length m, and therefore cannot appear in more than
one count in a column.

Each block in S contributes a total of m to the sum ∑i, j Ni, j. In fact on each col-
umn, each block contributes exactly 1; therefore for every 0 ≤ j < m, ∑

k−1
i=0 Ni, j = p. In

particular, since p < k`, there must be at least one Ni, j < ` for every column 0 ≤ j < m.
If all entries Ni, j ≤ `, then Step 1 is done. Assume otherwise. We now perform

what we call a sequence of “wipe-the-cream” operations: Start at any c0 = i0m + j0
with Ni0, j0 ≤ `. Cyclically increase c0 by 1, until we find the first c = im + j such that
Ni, j > `. If c′ = c−1 = i′m+ j′ is the previous cell, then it is clear that Ni, j > `≥ Ni′, j′ ,
and that the increase must be due to some blocks starting at the location c. Let f be
the number of blocks starting at the location c, then f ≥ Ni, j − `. Let f ′ = Ni, j − `, then
f ≥ f ′ > 0. Now move f ′ of the f starting blocks one cell to the next, to start at c + 1
instead. Note that for the new configuration the new value at c is Ñi, j = `.

We then start at c and repeat. This step of “wipe-the-cream” operation is continued
until there is no more Ni, j > `. We claim this happens eventually.

Consider the effect of one step of this “wipe-the-cream” operation on the matrix
N. Exactly two entries of this matrix N are changed by this one step: the entry Ni, j,
which is changed from > ` to = `, and the entry Ni+1, j, which is increased by f ′.
Hence the number of heavy points C is not decreased. Moreover, if we perform the
above sequence of “wipe-the-cream” operations in row major order, but we focus on its
effect on each column of the matrix exclusively, the entire cyclic sequence of “wipe-
the-cream” operations can be viewed as if it were to be performed on each column
individually, in a parallel fashion. (At this point, the reader probably can see why we
call it a “wipe-the-cream” operation, i.e., visualize a long row of beer bugs some with
overflowing foam floating on top.) One can think of the effect on any column j as a
virtual “wipe-the-cream” operation that merely shifts the numbers Ni, j in excess of ` to
the next entry on the same column, as described above: If Ni, j > `, then the new Ñi, j = `
and the new Ñi+1, j = Ni+1, j + f ′ = Ni+1, j +(Ni, j − `).

We note that when we perform one step of this “wipe-the-cream” operation at c, the
sum of two consecutive terms on a column at c and c + m is unchanged. If we actu-
ally shifted some blocks for r consecutive terms in one column, this creates a plateau
of r consecutive terms with the respective Ni, j = `. These terms effectively no longer
participate in any future “wipe-the-cream” operations; in any future rounds they simply
pass any leftover “cream” (if there is any) from the previous cell to the next cell on
the same column. If we focus on an individual column, and consider the virtual “wipe-
the-cream” operation, this effectively reduces the length of the column on which we

perform this virtual “wipe-the-cream” operation. If we disregard the cells already hav-
ing Ni, j = ` (and thus removed for the virtual “wipe-the-cream” operation), every actual
step that shifts a positive amount from one cell to the next strictly reduces the length of
the column. However, each column sum is p < k` and is preserved throughout, some
entry < ` on each column must remain all the time. Therefore, this virtual length of the
column cannot be reduced to 0. This proves that the sequence of the “wipe-the-cream”
operation must terminate on each column, and therefore must terminate overall. Step 1
is proved.
Step 2: Assume S is a configuration with all Nc ≤ `, and achieves maximum count C(S)
of heavy points.

We have assumed that p < k` and p 6≡ 0 (mod `), for otherwise the Lemma is
easy to prove. Note that these two conditions imply q < k and 1 ≤ r < ` in p = q`+
r. In particular, we may assume ` > 1. We may consider the Lemma already proved
inductively for any smaller values of `. The base case ` = 1 is trivially true. We may
also consider the Lemma already proved inductively for any smaller values of p; again
the base case is trivial.

Now we define two notions: a gap and a train. A gap G is a contiguous set of
points {a,a + 1, . . . ,b−1} ⊆ Zn, where a 6= b (thought of as a < b < a + n), such that
Na−1 = Nb = ` and Na,Na+1, . . . ,Nb−1 are all < `. We say the length of the gap is b−a.
(Strictly speaking we take the positive modulus of b−a (mod n).)

A (w, t)-train T is a collection of w · t many blocks, such that there exists a c ∈ Zn,
and for all 0 ≤ i ≤ t − 1, there are exactly w blocks in T that start at the cell c + im.
Thus, a (w, t)-train T covers tm contiguous cells starting at c, each with multiplicity w.
We say T has width w and length tm.

For any w > 0, a (w,k)-train T is called a complete train. A complete train wraps
around the whole circular array Zn. If we have a complete train, we can remove all the
blocks in a (1,k)-complete train, and obtain a configuration S∗ which covers the same
number of heavy points for the parameters `′ = `−1 and p′ = p−k. i.e., C(S) =C(S∗).
By inductive hypothesis, this C(S∗)≤ bp′/`′c ·m. But by k > q,

p′ = q`+ r− k ≤ q`+ r− (q+1) = q(`−1)+(r−1),

where 0 ≤ r−1 < `−1 = `′. Thus, bp′/`′c ≤ q. It follows that C(S)≤ q ·m. Thus, any
complete train finishes the proof.

The strategy in Step 2 will be the following. We will consider a gap with minimum
length, and define an appropriate train and a movement of the train. Assume there are
at least two gaps in S . The movement of the train will not change C(S), and will either
(a) reduce the number of gaps in S , or (b) reduce the length of the minimum-length
gap without increasing the total number of gaps in S , or (c) move the minimum-length
gap one cell closer to another gap while not affecting any gap other than the minimum-
length gap. In case (c), if repeated, a sequence of such train movements will eventually
merge the minimum-length gap with a nearby gap and thus reducing the total number
of gaps. It is clear by p < k` that there must be at least one gap. The above sequence of
train movements will eventually reduce the situation to a configuration with only one
gap, which will be directly handled.

Now we carry out this plan. Let G = {a,a + 1, . . . ,b− 1} be a gap with minimum
length. If s is the number of blocks starting at b and e is the number of blocks ending at

b−1, then s− e = Nb −Nb−1 > 0. Let w = s− e. We will define a (w, t)-train for some
t. As w ≤ s there are at least w blocks starting at b. Choose any such w starting blocks.
Consider cell b+m−1. If Nb+m−1 < `, then we may move these w blocks one cell to the
left, thereby producing a new configuration with Ñb−1 = `, Ñb+m−1 = Nb+m−1−w, and
with no other changes to N. As b+m−1 was already not a heavy point, this movement
would have increased C(S) by 1. Since S was assumed to be optimal, this is impossible.
Therefore we may assume Nb+m−1 = `.

Next, consider cell b + m. Either Nb+m < `, or Nb+m = `. If Nb+m = `, then since
there are at least w blocks ending at b + m−1, there must be at least that many blocks
starting at b+m. We pick any w of these starting blocks and together with the w blocks
starting at b to form a (w,2)-train. On the other hand, if Nb+m < `, then b + m must be
the starting cell of a gap G′.

In the case with Nb+m = `, we will, by the same argument, continue at b + 2m,
b + 3m, . . ., and keep “hooking up” the train until we have defined a (w, t)-train that
borders on a gap G′ that starts at the next cell b + tm. Note that if the (w, t)-train is
extended all the way by wrapping around to b− 1, we would have a complete (w,k)-
train. As noted earlier, this completes the proof of the Lemma. Thus, we assume t < k.

Now there are two cases: Either G′ = G or G′ 6= G. If G′ 6= G, then by moving the
(w, t)-train one cell to its left, we change Nb−1 from < ` to Ñb−1 = ` and Nb+tm−1 from
= ` to Ñb+tm−1 < `. No other changes occur to N. This keeps C(S) unchanged, thus still
optimum, while removing one cell out of the gap G and adding one cell to the gap G′,
which was to start at b+ tm. No changes occur to any other gap. Of course it is possible
that the gap G disappears (if its length was 1), or its length is reduced by 1. The gap G′

may stay as a single gap, with size increased by 1, or it may be merged with another
gap to its left. In any case, either the number of gaps is reduced or the number of gaps
stays the same with the length of the minimum gap reduced (or both).

Let’s consider the case G′ = G. (Note, this does not imply that S has only one gap.)
This means the (w, t)-train wraps around all the way to end in a−1; in particular a ≡ b
(mod m). If we also move the (w, t)-train one cell to its left, we would have effectively
moved the cell locations of the minimum-length gap G one cell to its left. No changes
occur to any other gap. This may of course merge G with a gap to its left, or it simply
moves the location of G one cell to its left without changing the status of any other gap.
In the latter case, both the total number of gaps and the minimum length of a gap are
unchanged. We can then proceed to define another (w′, t ′)-train starting at b− 1 and
repeat the above process. (Note that it is possible that w′ 6= w and t ′ 6= t.)

We have proved that the goals (a), (b) and (c) can be accomplished as stated earlier.
It follows that eventually we can arrive at a configuration that has the same p, still
having maximum C(S), and at most one gap. Since p < k ·`, a gap must exist, therefore
it has exactly one gap.

If we start at this unique gap G = {a,a+1, . . . ,b−1} and repeat the above process
of finding a (w, t)-train, it must end in the same gap G′ = G. Thus a ≡ b (mod m),
and therefore the gap G has a length a positive multiple of m. Let b− a = g ·m, then
0 < g < k. This is the length of the train defined.

Since G is unique, all b−a points are heavy points covered by S with multiplicity
exactly `. Thus by a volume argument, (b− a)` ≤ pm, and thus g` ≤ p. However g is

an integer, so g ≤ b p
` c. It follows that the total number of heavy points C(S) = b−a =

g ·m ≤ m · b p
` c. This completes the proof.

