
1

An Inside Look at Botnets

Paul Barford Vinod Yegneswaran
{pb,vinod }@cs.wisc.edu

Computer Sciences Department
University of Wisconsin, Madison

Abstract

The continued growth and diversification of the Internet hasbeen accompanied by
an increasing prevalence of attacks and intrusions [40]. Itcan be argued, however,
that a significant change in motivation for malicious activity has taken place over
the past several years: from vandalism and recognition in the hacker community, to
attacks and intrusions for financial gain. This shift has been marked by a growing
sophistication in the tools and methods used to conduct attacks, thereby escalating
the network security arms race.

Our thesis is that thereactivemethods for network security that are predominant
today are ultimately insufficient and that moreproactivemethods are required. One
such approach is to develop a foundational understanding ofthe mechanisms em-
ployed by malicious software (malware) which is often readily available in source
form on the Internet. While it is well known that large IT security companies main-
tain detailed databases of this information, these are not openly available and we are
not aware of any such open repository. In this paper we begin the process of codify-
ing the capabilities of malware by dissecting four widely-used Internet Relay Chat
(IRC) botnet codebases. Each codebase is classified along seven key dimensions
including botnet control mechanisms, host control mechanisms, propagation mech-
anisms, exploits, delivery mechanisms, obfuscation and deception mechanisms. Our
study reveals the complexity of botnet software, and we discusses implications for
defense strategies based on our analysis.

1.1 Introduction

Software for malicious attacks and intrusions (malware) has evolved a great deal over
the past several years. This evolution is driven primarily by the desire of the authors
(black hats) to elude improvements in network defense systems and to expand and
enhance malware capabilities. The evolution of malcode canbe seen both in terms
of variants of existing tools (e.g.,there are over 580 variants of the Agobot malware

since it’s first release in 2002 [7]) and in the relatively frequent emergence of com-
pletely new codebases (e.g.,there were six major Internet worm families introduced
in 2004: Netsky, Bagle, MyDoom, Sassser, Korgo and Witty as well as the Cabir
virus - the first for cell phones [1]).

While worm outbreaks and DoS attacks have been widely reported in the pop-
ular press and evaluated extensively by the network and security research commu-
nities (e.g.,[16, 27–29]), perhaps the most serious threat to the Internet today are
collections of compromised systems that can be controlled by a single person. These
botnetshave actually been in existence for quite some time and tracetheir roots to
the Eggdrop bot created by Jeff Fisher for benign network management in 1993.
High level overviews of malicious botnet history and their basic functionality can
be found in [11, 31]. Over the years botnet capability has increased substantially to
the point of blurring the lines between traditional categories of malware. There have
been numerous reports of botnets of over one hundred thousand systems (although
the average size appears to be dropping) and the total numberof estimated systems
used in botnets today is in the millions [17,19,23].

A plausible reason for the rise of malicious botnets is that the basic motivations
for malicious activity are shifting. In the past, the primary motivations for attacks
appear to have been simple (but potent) “script kiddie” vandalism and demonstra-
tions of programming prowess in the black hat community. However, there are an
increasing number of reports of for-profit malicious activity including identity theft
and extortion that may be backed by organized crime (e.g.,[2, 35, 37]). This trend
toward an economic motivation is likely to catalyze development of new capabilities
in botnet code making the task of securing networks against this threat much more
difficult.

The thesis for our work is that effective network security inthe future will be
based on detailed understanding of the mechanisms used by malware. While this
high level statement does not represent a significant departure from what has been the
modus operandi of the IT security industry for some time, unfortunately, data sharing
between industry and research to date has not been common. Weargue that greater
openness and more detailed evaluations of the mechanisms ofmalware are required
across the network security research community. In some respects this broadens the
Internet Center for Disease Control vision outlined by Staniford et al. in [34]. We
advocate analysis that includes both static inspection of malware source code when
it is available and dynamic profiling of malware executablesin a controlled environ-
ment. An argument for the basic feasibility of this approachis that a good deal of
malware is, in fact, available on line (e.g.,[26]) and there are emerging laboratory
environments such as WAIL [10] and DETER [15] that enable safe evaluation of ex-
ecutables. It is important to emphasize that these analysesare meant tocomplement
the ongoing empirical measurement-based studies (e.g.,[9, 30, 36]) which provide
important insight on how malware behaves in the wild, and arecritical in identifying
new instances of outbreaks and attacks.

This paper presents a first step in the process of codificationof malware mech-
anisms. In particular, we present an initial breakdown of four of the major botnet
source codebases including Agobot, SDBot, SpyBot and GT Bot. We conduct this

analysis by creating a taxonomy of seven key mechanisms and then describe the
associated capabilities for specific instances of each bot family. Our taxonomy em-
phasizes botnet architecture, control mechanisms, and methods for propagation and
attack. Our objectives are to highlight the richness and diversity of each codebase, to
identify commonalities between codebases and to consider how knowledge of these
mechanisms can lead to development of more effective defense mechanisms.

A summary of our findings and their implications are as follows:

• Finding: The overall architecture and implementation of botnets is complex, and
is evolving toward the use of common software engineering techniques such as
modularity.Implication: The regularization of botnet architecture provides in-
sight on potential extensibility and could help to facilitate systematic evaluation
of botnet code in the future.

• Finding: The predominant remote control mechanism for botnets remains Inter-
net Relay Chat (IRC) and in general includes a rich set of commands enabling a
wide range of use.Implication: Monitors of botnet activity on IRC channels and
disruption of specific channels on IRC servers should continue to be an effective
defensive strategy for the time being.

• Finding: The host control mechanisms used for harvesting sensitive informa-
tion from host systems are ingenious and enable data from passwords to mailing
lists to credit card numbers to be gathered.Implication: This is one of the most
serious results of our study and suggests design objectivesfor future operating
systems and applications that deal with sensitive data.

• Finding: There is a wide diversity of exploits for infecting target systems written
into botnet codebases including many of those used by worms that target well
known Microsoft vulnerabilities.Implication: This is yet additional evidence
that keeping OS patches up to date is essential and also informs requirements for
network intrusion detection and prevention systems.

• Finding: All botnets include denial of service (DoS) attack capability. Implica-
tion: The specific DoS mechanisms in botnets can inform designs forfuture DoS
defense architectures.

• Finding: Shell encoding and packing mechanisms that can enable attacks to cir-
cumvent defensive systems are common. However, Agobot is the only botnet
codebase that includes support for (limited) polymorphism. Implication: A sig-
nificant focus on methods for detecting polymorphic attacksmay not be war-
ranted at this time but encodings will continue to present a challenge for defen-
sive systems.

• Finding: All botnets include a variety of sophisticated mechanisms for avoiding
detection (e.g.,by anti-virus software) once installed on a host system.Impli-
cation: Development of methods for detecting and disinfecting compromised
systems will need to keep pace.

• Finding: There are at present only a limited set of propagation mechanisms avail-
able in botnets with Agobot showing the widest variety. Simple horizontal and
vertical scanning are the most common mechanism.Implication: The specific

propagation methods used in these botnets can form the basisfor modeling and
simulating botnet propagation in research studies.

The remainder of this paper is structured as follows. While there have been rela-
tively few studies of botnets in the research literature to date, we discuss other related
work in Section 1.2. In Section 1.3 we present our taxonomy ofbotnet code and the
results of evaluating four instances of botnet source code.In Section 1.4 we summa-
rize our work and comment on our next steps.

1.2 Related Work

Empirical studies have been one of the most important sources of information on
malicious activity for some time. Mooreet al.characterized the Code Red I/II worm
outbreaks in [29] and the Sapphire/Slammer worm outbreak [27] providing key de-
tails on propagation methods and infection rates. Recently, Kumaret al.show how a
broad range of details of the Witty worm outbreak can be inferred using information
about that malware’s random number generator [24]. In [40],firewall and intrusion
detection system logs collected from sites distributed throughout the Internet are
used to characterize global attack activity. Several recent studies have demonstrated
the utility of unused address space monitors (honeynets) [21] that include active re-
sponse capability as a means for gathering details on network attacks [9, 30, 39].
Honeynet measurement studies have also provided valuable information on botnet
activity [18, 39]. Cookeet al. discuss the potential of correlating data from multi-
ple sources as a means for detecting the botnet command and control traffic in [12].
Finally, the virtual honeyfarm capabilities described in [38] could prove to be very
useful for botnet tracking in the future.

As we advocated in the prior section, another way to study malware is to gather
and then decompose instances of both source code (many instances of malware
source code can be found by searching the Web and Usenet news groups) and ex-
ecutable code (executables can be gathered by enhancing honeynet environments).
There are standard tools available for reverse engineeringexecutables including dis-
assemblers, debuggers and system monitors such as [4–6]. Despite the capabilities
of these tools, the complexity and deception techniques of certain instances of mal-
ware executables often complicate this analysis [3]. Likewise, there are many tools
available for static analysis of source code such as [13, 14]. While these tools are
often focused on the problems of identifying run time errorsand security vulnerabil-
ities, the general information they provide such as parse trees, symbol tables and call
graphs could be valuable in our malware analysis. While we present a simple taxon-
omy of malware mechanisms in this paper, we look forward to using both static and
dynamic analysis tools for in depth study in the future.

1.3 Evaluation

Our process of codification of malware begins with a comparison of four botnet
families: Agobot, SDBot, SpyBot and GT Bot. These were selected based on the
age of their first known instances, the diversity in their design and capabilities, and

reports in the popular press, commercial and research communities identifying these
as the most commonly used bot families. While each of these families have many
versions and variants, for this study we evaluate one version of source code from
each: Agotbot (4.0 pre-release), SDBot (05b) and SpyBot (1.4). GT Bot variants
are commonly listed with extensions after the word “Bot”e.g.,“GT Bot Foo” – we
evaluated the “GT Bot with DCOM” version of this code.

The attributes we consider in our analysis include: (i) architecture, (ii) botnet
control mechanisms, (iii) host control mechanisms, (iv) propagation mechanisms,
(v) target exploits and attack mechanisms, (vi) malware delivery mechanisms, (v)
obfuscation methods, and (vii) deception strategies. This taxonomy was developed
based on our goal of improving both host and network-based defensive systems by
exploiting knowledge of basic features of botnet systems.

1.3.1 Architecture

Architecture refers to the design and implementation characteristics of bot code. Ar-
chitecture is readily analyzed from source code and includes assessment of the over-
all organization, data design, interface design and component design of the system.
An important additional objective in this analysis is to assess the potential long term
viability of each bot family by considering how each codebase might be extended to
include new functionality.

• Agobot: The earliest references to Agobot that we could find were in the Oc-
tober, 2002 time frame [32]. There are now many hundreds of variants of this
code which is also commonly referred to as Phatbot. It is arguably the most so-
phisticated and best-written source code among the four families we evaluated.
A typical source bundle is around 20,000 lines of C/C++. The bot consists of
several high level components including, (i) an IRC-based command and control
mechanism, (ii) a large collection of target exploits, (iii) the ability to launch dif-
ferent kinds of DoS attacks, (iv) modules that support shell encodings and lim-
ited polymorphic obfuscations, (v) the ability to harvest the local host for Paypal
passwords, AOL keys and other sensitive information eitherthrough traffic sniff-
ing, key logging or searching registry entries, (vi) mechanisms to defend and
fortify compromised systems either through closing back doors, patching vulner-
abilities or disabling access to anti-virus sites, and (vii) mechanisms to frustrate
disassembly by well known tools such as SoftIce, Ollydbg andothers. Agobot has
a monolithic architecture, demonstrates creativity in design, and adheres to struc-
tured design and software engineering principles through its modularity, standard
data structures and code documentation.

• SDBot: The earliest references to SDBot that we could find were in theOcto-
ber, 2002 time frame [33]. There are now hundreds of variantsof this code that
provide a wide range of capabilities. In contrast with Agobot, SDBot is a fairly
simple, more compact instance of bot code written in slightly over 2,000 lines
of C. The main source tree does not include any overtly malicious code modules
such as target exploits or DoS capabilities, and is published under GPL. SDBot

primarily provides a utilitarian IRC-based command and control system. How-
ever, the code is obviously easy to extend, and a large numberof patches are
readily available that provide more sophisticated malicious capabilities such as
scanning, DoS attacks, sniffers, information harvesting routines and encryption
routines. This organization facilitates generation of custom botnets with special-
ized capabilities that suit a specific botmaster. We speculate that an important
motivation for this patch-style dissemination strategy isdiffusion of accountabil-
ity. We easily found around 80 patches for SDBot1 on the Web, not all of which
were malicious.

• SpyBot: The earliest references to SpyBot that we could find were in the April,
2003 time frame [25]. Like Agobot and SDBot there are now hundreds of vari-
ants of SpyBot. The codebase is relatively compact, writtenin under 3,000 lines
of C. Much of SpyBot’s command and control engine appears to be shared with
SDBot, and it is likely, in fact, that it evolved from SDBot. However, unlike
SDBot, there is no explicit attempt to diffuse accountability or to hide the mali-
cious intent of this codebase. The version of SpyBot that we evaluated includes
NetBIOS/Kuang/Netdevil/KaZaa exploits, scanning capability, and modules for
launching flooding attacks. Overall, the codebase for Spybot is efficient, but does
not exhibit the modularity or breadth of capabilities of Agobot.

• GT Bot: The earliest references to GT Bot that we could find were in theApril,
1998 time frame [8]. At present there are well over a hundred variants of GT
(Global Threat) Bot which is also referred to as Aristotles.GT Bot’s design is
quite simple, providing a limited set of functions based on the scripting capabil-
ities of mIRC which is a widely used shareware IRC client for Windows. mIRC
provides functionality for writing event handlers that responds to commands re-
ceived by remote nodes. GT Bot also includes the HideWindow program which
keeps the bot hidden on the local system. While this bot has proved easy to mod-
ify, there is nothing that suggests it was designed with extensibility in mind. GT
Bot capabilities including port scanning, DoS attacks, andexploits for RPC and
NetBIOS services. GT Bot scripts are commonly stored in a filecalledmirc.ini
on compromised local hosts. However GT Bot is often packagedwith its own
version of themIRC.exethat has been hex-edited to include other configuration
files. Other useful pieces of software that are often packaged with GT Bot in-
clude BNC (pronounced “bounce”) which is a proxy system thatallows users to
bounce through shells to a IRC server providing anonymity and DoS protection,
and psexec.exe(SysInternals) which is a utility that facilitates remote process
execution. Based on the limited capabilities in GT Bot, it appears that differ-
ent versions have been generated for specific malicious intent, instead of general
enhancement of the code to provide a broad set of capabilities. As the name sug-
gests, the “with DCOM” version of GT Bot that we evaluated includes DCOM
exploit capabilities.

1 These are not UNIX-style patches, rather they are simply well-commented source code
fragments that can be copied and inserted before recompilation.

Implications:While bot codebases vary in size, structure, complexity, and imple-
mentation approach, there appears to be a convergence in theset of functions that are
available (this will be further highlighted in subsequent sections of this report). This
suggests the possibility that defensive systems may be eventually be effective across
bot families. Further, as demonstrated by the fact that there are so many variants in
each codebase, all of the bot families are at least somewhat extensible. However, we
project that over the next several years, due to economic motivations, capabilities
and open availability, the Agobot codebase is likely to become dominant. It’s mod-
ular design makes it easy to extend, and we anticipate futureenhancements such as
improved command and control systems (e.g..,peer-to-peer) and additional target
exploits. While an open-source-like approach to Agobot’s development is somewhat
daunting, it’s open availability means that it can be examined for elements which can
be exploited by defensive systems.

1.3.2 Botnet Control Mechanisms

Botnet control refers to the command language and control protocols used to operate
botnets remotely after target systems have been compromised. The command and
control mechanisms for the bots that we evaluated are all based on IRC. Thus, an
understanding of that system (e.g.,see IETF RFC #1459 which defines IRC) will help
to make sense out of the botnet commands detailed in this section. In general, there
is a broad range of commands that are available. These include directing botnets to
deny service, send spam, phish, forward sensitive information about hosts, and look
for new systems to add to the botnet.

The most important reason for understanding the details of the communication
mechanisms is that their disruption can render a botnet useless. For example, by
sniffing for specific commands in IRC traffic, network operators can identify com-
promised systems, and IRC server operators can shutdown channels that are used
by botnets (this is commonly done today). Additionally, knowledge of these mecha-
nisms can be used in development of large botnet monitors (e.g.,via active honeynet
systems), and it also facilitates the process of detecting new variants. While con-
trol mechanisms occasionally change between versions, there is strong commonality
within each family we analyzed. This bodes well for continued focus on these mech-
anisms when designing network defenses against botnets.

• Agobot: The command and control system implemented in Agobot is a deriva-
tive of IRC. The protocol used by compromised systems to establish connec-
tions to control channels is standard IRC. The command language consists of
both standard IRC commands and specific commands developed for this bot. De-
tails of the command language are summarized in Table 1.1. The bot command
set includes directives that request the bot to perform a specific function e.g.,
bot.openwhich opens a specific file on the host. The control variables are used
in conjunction with thecvar.set command to turn on/off features or other-
wise manipulate fields that affect modes of operatione.g.ddos max threads
which directs the bot to SYN flood a specified host using a maximum number of
threads.

Table 1.1. Partial listing of the Agobot command and control language.The “variables” are
passed as parameters to thecvar.set set command.

Variable Description
bot ftrans port Set bot - file transfer port
bot ftrans port ftp Set bot - file transfer port for FTP
si chanpass IRC server information - channel password
si mainchan IRC server information - main channel
si nickprefix IRC server information - nickname prefix
si port IRC server information - server port
si server IRC server information - server address
si servpass IRC server information - server password
si usessl IRC server information - use SSL ?
si nick IRC server information - nickname
bot version Bot - version
bot filename Bot - runtime filename
bot id Bot - current ID
bot prefix Bot - command prefix
bot timeo Bot - timeout for receiving (in milliseconds)
bot seclogin Bot - enable login only by channel messages
bot compnick Bot - use the computer name as a nickname
bot randnick Bot - random nicknames of letters and numbers
bot meltserver Bot - melt the original server file
bot topiccmd Bot - execute topic commands
do speedtest Bot - do speed test on startup
do avkill Bot - enable anti-virus kill
do stealth Bot - enable stealth operation
asvalname Autostart - value name
asenabled Autostart - enabled
asservice Autostart - start as service
asservicename Autostart - short service name
scanmaxthreads Scanner - maximum number of threads
scanmaxsockets Scanner - Maximum number of sockets
ddosmaxthreads DDoS - maximum number of threads
redir maxthreads Redirect - maximum number of threads
identdenabled IdentD - enable the server
cdkeywindows Return windows product keys on cdkey.get
scaninfochan Scanner - output channel
scaninfolevel Info level 1 (less) - (3) more
spamaol channel AOL spam - channel name
spamaol enabled AOL spam - enabled ?
sniffer enabled Sniffer - enabled ?
sniffer channel Sniffer - output channel
vuln channel Vulnerability daemon sniffer channel
inst polymorph Installer - polymorphoic on install ?

Command Description
bot.about Displays information (e.g.,version) about the bot code
bot.die Terminates the bot
bot.dns Resolves IP/hostname via DNS
bot.execute Makes the bot execute a specific .exe
bot.id Displays the ID of the current bot code
bot.nick Changes the nickname of the bot
bot.open Opens a specified file
bot.remove Removes the bot from the host
bot.removeallbut Removes the bot if ID does not match
bot.rndnick Makes the bot generate a new random nickname
bot.status Echo bot status information
bot.sysinfo Echo the bot’s system information
bot.longuptime If uptime> 7 days then bot will respond
bot.highspeed If speed> 5000 then bot will respond
bot.quit Quits the bot
bot.flushdns Flushes the bot’s DNS cache
bot.secure Delete specified shares and disable DCOM
bot.unsecure Enable specified shares and enables DCOM
bot.command Executes a specified command with system()

NICK_USER

PONG

PING

JOIN

001/005

001/005

USERHOST

EST

302

NICK

rejoin

KICK

reset

PART/QUIT

action

PRIVMSG/NOTICE/TOPIC353

Fig. 1.1. Typical interaction between an SDBot and IRC server.

• SDBot: The command language implemented in SDBot is essentially a lightweight
version of IRC. Figure 1.1 illustrates the state transitionsequence of a compro-
mised host interacting with an IRC server. The bot begins by establishing a con-
nection to the IRC server through the following steps: (i) send NICK (name) and
USER (name) to login to the server, (ii) if a PING is received, respond with a
PONG, (iii) when connected to the server (i.e., return code 001 or 005), send a
JOIN message followed by a USERHOST request to obtain the hostname, (iv)
wait for a 302 response that indicates a connection is established, (v) listen and
react to commands sent by the master which can include the following:

1. KICK: the bot rejoins the channel if it is kicked off. Otherwise the bot resets
the master if the master is kicked.

2. NICK: if master’s nickname is replaced, then it is updatedon the bot.
3. PART (or QUIT): resets the master if the master parts or quits.
4. 353: return code that indicates that the bot has successfully joined the IRC

channel.

The bot then expects all other commands will be sent as part ofthe PRIVMSG,
NOTICE or TOPIC IRC messages. The commands available in SDBot are listed
in Table 1.2. Additional features supported by SDBot but absent from Agobot
include IRC cloning and spying. Cloning is when a bot connects to an IRC chan-
nel multiple times. This can be used to deny service on a particular IRC server.
Spying is simply the act of logging activity on a specified IRCchannel.

Table 1.2. Partial listing of the SDBot command language. These commands are passed to
bots via the PRIVMSG, NOTICE or TOPIC IRC commands.

Command Description
about Displays information about the bot code
action<channel/user>, <text> Perform specified action on the channel
addalias<alias, command> Add an alias
aliases Return a current list of aliases
cycle<N> <channel> Leave channel and return after N seconds
die Kill all threads, close IRC connection and stop running
disconnect Disconnect from channel and reconnect in 30 minutes
id Return the bot ID
join <channel> <key> Join specified channel with specified key
log Return a log of connections, logins and time stamps
nick <newnick> Changes bot’s nickname
part Part the specified channel
prefix Temporary change to bot’s IP prefix
quit Quit the channel, kill threads and close the bot
raw<text> Send the following text to server
reconnect Disconnect and reconnect to receive new nickname and ID
repeat<numtimes> <command> Act as if command was received numtimes
rndnick Change to random nickname
server<servername> Temporarily changes bot’s IRC server
status Echo with version number and bot’s uptime
Clones and Spies
clone<server><port><channel> Create clone on specified channel
c rndnick<threadnum> Causes clone to change to random nickname
c raw<threadnum> <text> Causes clone to send text to server
c quit <threadnum> Causes the clone/spy to quit the IRC server
c nick <threadnum> <nick> Causes the clone/spy to change its nickname
c privmsg<threadnum> <user> <text> Causes clone/spy to send message channel with text
c part<threadnum> <channel> Causes clone/spy to part channel
c mode<threadnum> <channel> <mode> <user> Causes clone to set a channel or user mode
c join <threadnum> <channel> Causes clone/spy to join channel
c action<threadnum> <channel> <text> Causes clone/spy to perform an action to the specified channel.
spy<nick> <server> <port> <channel> Creates spy with specified nickname on server,port,channel

• SpyBot: The command language implemented in SpyBot is quite simple and es-
sentially represents a subset of the SDBot command language. The commands
available in SpyBot are listed in Table 1.3. The IRC connection set up proto-
col for SpyBot is the same as SDBot, and the mechanisms to passand execute
commands on bots are also identical.

• GT Bot: Like the other families, GT Bot uses IRC as its control infrastructure.
The command language implemented in GT Bot is the simplest ofall of those
that we evaluated, but it varies quite a bit across versions within this family. This
is likely due to the architecture of GT Bot which facilitatescreation of versions
with specific intent instead of developing a broad range of capabilities within a
single line of the codebase. We provide a list of the commandssupported by the
GTBot-with-dcom source code used in our analysis in Table 1.4.

Implications:Understanding command and control systems has direct and im-
mediate implications for creation of methods and systems todisrupt botnets. The
continued reliance on IRC as the foundation for botnet command and control means
that IRC server operators can play a central role in blockingbotnet traffic (anec-
dotally, they already do). However, monitoring and shutting down botnet channels
by hand is arduous, and automated mechanisms for identifying botnet traffic are re-

Table 1.3. Partial listing of the SpyBot command language. These commands are passed to
bots via the PRIVMSG, NOTICE or TOPIC IRC commands.

Command Description
login < password> Login to the bot
info Provides information about host system
passwords Lists the RAS passwords in MS Windows 9x versions
disconnect< secs> Disconnect bot for t seconds (default is 30 minutes)
reconnect Disconnect and then reconnect
server< new server addr> Temporarily changes the bot’s IRC server
quit Quit the channel, kill threads and close bot
uninstall Uninstalls the bot
redirect<in port> <host> <out port> Redirect traffic from host to output port
raw<command> Echo command to server
download<url> <filename> Copy contents of url to filename
list <path+filter> List c:\ ∗ .∗
spy Redirects all traffic from the IRC server to the DCC chat
stopspy Stops the spy
redirectspy Redirects all traffic from the port redirect to the DCC chat
stopredirectspy Stops redirect spy
loadclones<server> <port> <numclones> Load numclones clones on server
killclones Kills all the clones
rawclones<command> Execute raw command on all clones

Table 1.4. Partial listing of the GT Bot command language. These commands are passed to
bots via the PRIVMSG, NOTICE or TOPIC IRC commands.

Command Description
!ver Returns the version of the botnet
!info Returns local host information e.g., OS, uptime, etc.
!scan<ip.*><port> Scan specified address prefix on specified port
!portscan<IP><sport><eport> Scan specified address across specified ports
!stopscan Stops all scans
!packet<IP><number> Start denial of service attack (ping.exe) of IP
!bnc Execute commands specific to the bounce proxy system
!clone.* Directs all IRC clone behavior (attacks, etc.)
!update<url> Update version of bot code from a specified Web page
!- Executes command on local host

quired. The botnet command languages outlined in this section can be used in the
development of such systems and we project this will be a fruitful short term focus
area. However, we anticipate that future botnet development will include the use of
encrypted communication, eventually a movement away from IRC and adopt peer-
to-peer style communication (some versions of Phatbot are already reported to have
rudimentary P2P capability). While this will certainly make defending against bot-
nets more difficult, botnet traffic may still be able to be identified via statistical finger
printing methods.

1.3.3 Host Control Mechanisms

Host control refers to the mechanisms used by the bot to manipulate a victim host
once it has been compromised. The general intent of host control is to fortify the
local system against other malicious attacks, to disable anti-virus software, and to
harvest sensitive information.

• Agobot: The set of host control capabilities provided in Agobot is quite compre-
hensive. These include, (i) commands to secure the systeme.g.,close NetBIOS
shares, RPC-DCOM, etc. (ii) a broad set of commands to harvest sensitive in-
formation (iii) pctrl commands to list the processes running on the host and
kill specific processes (iv) inst commands to add or delete autostart entries. A
summary of Agobot host control commands is provided in Table1.5.

Table 1.5. Agobot host control commands.

Command Description
harvest.cdkeys Return a list of CD keys
harvest.emails Return a list of emails
harvest.emailshttp Return a list of emails via HTTP
harvest.aol Return a list of AOL specific information
harvest.registry Return registry information for specific registry path
harvest.windowskeysReturn Windows registry information
pctrl.list Return list of all processes
pctrl.kill Kill specified process set from service file
pctrl.listsvc Return list of all services that are running
pctrl.killsvc Delete/stop a specified service
pctrl.killpid Kill specified process
inst.asadd Add an autostart entry
inst.asdel Delete an autostart entry
inst.svcadd Adds a service to SCM
inst.svcdel Delete a service from SCM

• SDBot: The host control capabilities provided in the base distribution of SDBot
are somewhat limited. They include some basic remote execution commands and
some capability to gather local information. The lack of host control capabilities
in the basic distribution is likely due to SDBot’s benign intent as described above.
However, these capabilities can be easily enhanced throughauxiliary patches and
a large number of these are readily available. A summary of SDBot host control
commands is provided in Table 1.6.

Table 1.6. SDBot host control commands.

Command Description
download<url> <dest> <action> Downloaded specified file and execute if action is 1
killthread<thread#> Kill specified thread
update<url> <id> If bot ID is different than current, download “sdbot executable” and update
sysinfo List host system information (CPU/RAM/OS and uptime)
execute<visibility> <file> parametersRun a specified program (visibility is 0/1)
cdkey/getcdkey Return keys of popular gamese.g.,Halflife, Soldier of Fortune etc.

• SpyBot: The host control capabilities included in SpyBot are relatively rich, and
similar in most respects to what is provided by Agobot. Theseinclude commands
for local file manipulation, key logging, process/system manipulation and remote
command execution. A summary of the SpyBot host control commands is pro-
vided in Table 1.7.

• GT Bot: The set of host control commands provided in GT Bot is the most
limited of all of the families we evaluated. The base capabilities include only
gathering local system information and the ability to run ordelete local files.

Table 1.7. SpyBot host control commands.

Command Description
delete<filename> Delete a specified file
execute<filename> Execute a specified file
rename<origfilename> <newfile> Rename a specified file
makedir<dirname> Create a specified directory
startkeylogger Starts the on-line keylogger
stopkeylogger Stops the keylogger
sendkeys<keys> Simulates key presses
keyboardlights Flashes remote keyboard lights 50x
passwords Lists the RAS passwords in Windows 9x systems
listprocesses Return a list of all running processes
killprocess<processname> Kills the specified process
threads Returns a list of all running threads
killthread< number> Kills a specified thread
disconnect<number> Disconnect the bot for number seconds
reboot Reboot the system
cd-rom<0/1> Open/close cd-rom. cd-rom 1 = open, cd-rom 0 = close
opencmd Starts cmd.exe (hidden)
cmd<command> Sends a command to cmd.exe
get<filename> Triggers DCC send on bot
update<url> Updates local copy of the bot code

However, like SDBot, there are many versions of GT Bot that include diverse
capabilities for malicious host control.

Implications:The capabilities and diversity of the host control mechanisms in
botnets are frightening and have serious implications. First they underscore the need
to patch and protect systems from known vulnerabilities. Second, they informs soft-
ware development and the need for stronger protection boundaries across applica-
tions in operating systems. Third, the capabilities of gathering sensitive information
such as Paypal passwords and software keys provide clear economic incentives for
people to operate botnets and for sponsorship by organized crime.

1.3.4 Propagation Mechanisms

Propagation refers to the mechanisms used by bots to search for new host systems.
Traditional propagation mechanisms consist of simple horizontal scans on a single
port across a specified address range, or vertical scans on a single IP address across a
specified range of ports. However, as botnet capability expands, it is likely that they
will adopt more sophisticated propagation methods such as those proposed in [34].

• Agobot: The scanning mechanisms included in Agobot are relatively simple and
do not extend very far beyond horizontal and vertical scanning. Agobot scanning
is based on the notion of network ranges (network prefixes) that are configured
on individual bots. When so directed, a bot can scan across a range or randomly
select IP addresses within a range. However, the current scanning command set
provides no means for efficient distribution of a target address space among a
collection of bots. Table 1.8 provides a summary of the scanning commands in
Agobot.

Table 1.8. Agobot propagation and scanning commands.

Command Description
scan.addnetrange<IP range><priority> Adds a network range to a bot
scan.delnetrange<IP range> Deletes a network range from a bot
scan.listnetranges Returns all network ranges registered with a bot
scan.clearnetranges Clears all network ranges registered with a bot
scan.resetnetranges Resets the network ranges to the localhost
scan.enable<module name> Enables a scanner modulee.g.,DCOM
scan.disable<module name> Disables a scanner module
scan.startall Directs all bots to start scanning their network ranges
scan.stopall Directs all bots to stop scanning
scan.start Directs all enabled bots start scanning
scan.stop Directs all bots to stop scanning
scan.stats Returns results of scans

• SDBot: As discussed in Section 1.3.1, by virtue of its benign intent, SDBot does
not have scanning or propagation capability in its base distribution. However,
many variants of SDBot include scanning and propagation capability. Among
these, the scanning control interface is often quite similar to Agobot providing
horizontal and vertical search capabilities. There are also instance where slightly
more complex scanning methods are available. For example, the interface for a
NetBIOS scanner for SDBot accepts starting and ending IP addresses as param-
eters and then randomly selects addresses between these twomarkers.

• SpyBot: The command interface for Spybot scanning is quite simple, consisting
of horizontal and vertical capability. A typical example isgiven below:

Command: scan <start IP address> <port> <delay>
<spreaders> <logfilename>

Example: scan 127.0.0.1 17300 1 netbios portscan.txt

Scanning begins at the start address and opens MAXPORTSCANSOCKETSTO USE
sockets. The default value for this parameter is set to 20. Scanning then proceeds
sequentially. The only spreader supported by the version ofSpyBot that we eval-
uated is via NetBIOS.

• GTBot: As shown in Table 1.4, GT Bot only includes support for simplehori-
zontal and vertical scanning.

Implications:There are several implications for bot propagation mechanisms.
First, at present, botnets use relatively simple scanning techniques. This means that
it may be possible to develop statistical finger printing methods to identify scans from
botnets in distributed monitors. Second, scanning methodsinform requirements for
building and configuring network defenses based on firewallsand intrusion detection
systems that consider scanning frequency. Finally, sourcecode examination reveals
detail of scanning mechanisms that can enable development of accurate botnet prop-
agation models for analytic and simulation-based evaluation. We project that future
versions of bot codebases will focus on propagation as an area of improvement, in-
cluding both flash mechanisms and more stealthy mechanisms.

1.3.5 Exploits and Attack Mechanisms

Exploits refer to the specific methods for attacking known vulnerabilities on target
systems. Exploits are usually attempted in conjunction with scanning for target hosts.
In this section we discuss the specific exploit modules included in each bot, and other
capabilities for launching remote attacks against target systems.

• Agobot: The most elaborate set of exploit modules among the familiesthat
we analyzed is included with Agobot. In contrast with the other bot families,
Agobot’s evolution has included an ever broadening set of exploits instead of
individual versions with their own exploits. This increases Agobot’s potential
for compromising targeted hosts. The exploits in the version of Agobot that we
evaluated include:

1. Bagle scanner: scans for back doors left by Bagle variantson port 2745.
2. Dcom scanners (1/2): scans for the well known DCE-RPC buffer overflow.
3. MyDoom scanner: scans for back doors left by variants of the MyDoom

worm on port 3127.
4. Dameware scanner: scans for vulnerable versions of the Dameware network

administration tool.
5. NetBIOS scanner: brute force password scanning for open NetBIOS shares.
6. Radmin scanner: scans for the Radmin buffer overflow.
7. MS-SQL scanner: brute force password scanning for open SQL servers.
8. Generic DDoS module: enables seven types of denial service attack against

a targeted host. A list of the commands used to control these attacks is given
in Table 1.9.

Table 1.9. Agobot DDos attack commands.

Command Description
ddos.udpflood<target> <port><0=rand> <time>(secs)<delay>(ms) Starts a UDP flood
ddos.synflood<host> <time> <delay> <port> Starts a SYN flood
ddos.httpflood<url> <number> <referrer> <delay> <recursive> Starts an HTTP flood
ddos.phatsyn<host> <time> <delay> <port> Starts a PHAT SYN flood
ddos.phaticmp<host> <time> <delay> Starts PHAT ICMP flood
ddos.phatwonk<host> <time> <delay> Starts PHATwonk flood
ddos.targa3<target> <time>(secs) Start a targa3 flood
ddos.stop stops all floods

• SDBot: As discussed in Section 1.3.1, by virtue of its benign intent, SDBot does
not have any exploits packaged in its standard distribution. There are, however,
numerous variants that include specific exploits. SDBot does include modules
for sending both UDP and ICMP packets. While not overtly malicious, these can
certainly be used for simple flooding attacks. Commands to control these capa-
bilities are listed in Table 1.10. As might be expected, there are also numerous
variants of SDBot that include different kinds of DDoS attack modules.

• Spybot: The exploits included in the version of Spybot that we evaluated only
included attacks on NetBIOS open shares. However, as with SDBot, there are
many variants that include a wide range of exploits. SpyBot’s DDoS interface is

Table 1.10. SDBot commands which could be used for DDoS attacks.

Command Description
udp<host> <# pkts> <pkt sz> <delay> <port> Send a specified number of UDP packets
ping<host> <# pkts> <pkt sz> <timeout> Send a specified number of ICMP echo packets

also closely related to SDBot and includes the capabilitiesfor launching simple
UDP, ICMP and TCP SYN floods.

• GTBot: As mentioned earlier, the exploit set for the GT Bot code thatwe eval-
uated was developed to include RPC-DCOM exploits. Like SDBot and Spybot,
there are many variants of GT Bot that include other well known exploits. Our
version of GT Bot only included capability to launch simple ICMP floods. How-
ever, there are many variants of GT Bot that have other DDoS capabilities such
as UDP and TCP SYN floods.

Implications:The set of exploits packaged with botnets suggest basic require-
ments for host-based anti-virus systems and network intrusion detection and preven-
tion signature sets. It seems clear that in the future, more bots will include the ability
to launch multiple exploits as in Agobot since this increases the opportunity for suc-
cess. The DDoS tools included in bots, while fairly straightforward, highlight the
potential danger of large botnets. They also inform possibilities for DDoS protection
strategies such as [22].

1.3.6 Malware Delivery Mechanisms

Packers and shell encoders have long been used in legitimatesoftware distribution
to compress and obfuscate code. The same techniques have been adopted in botnet
malware for the same reasons. GT/SD/Spy Bots all deliver their exploit and encoded
malware packaged in a single script. However, Agobot has adopted a new strategy for
malware delivery based on separating exploits and delivery. The idea is to first exploit
a vulnerability (e.g.,via buffer overflow) and open a shell on the remote host. The
encoded malware binary is then uploaded using either HTTP orFTP. This separation
enables an encoder to be used across exploits thereby streamlining the codebase and
potentially diversifying the resulting bit streams.

In Figure 1.2 we provide an example of the shell-encoder usedin Agobot for
malware delivery. An important function of a shell-encoderis to remove null bytes
(that terminate c-strings) from x86 instruction sequences. As can be seen in the Fig-
ure, the code begins with an XOR key value of 0x98 then checks to see if this results
in a string without null characters. If the check fails, it simply tries successive values
for the XOR key until it finds a value that works. This value is then copied over to
the shell code at position ENCODEROFFSETXORKEY.

Implications: The malware delivery mechanisms used by botnets have impli-
cations for network intrusion detection and prevention signatures. In particular,
NIDS/NIPS benefit from knowledge of commonly used shell codes and ability to
perform simple decoding. If the separation of exploit and delivery becomes more
widely adopted in bot code (as we anticipate it will), it suggests that NIDS could
benefit greatly by incorporating rules that can detect follow-up connection attempts.

char encoder[]=
"\xEB\x02\xEB\x05\xE8\xF9\xFF\xFF\xFF\x5B\x31\xC9\x 66\xB9\xFF\xFF"
"\x80\x73\x0E\xFF\x43\xE2\xF9";

int xorkey=0x98;

// Create local copies of the shellcode and encoder
char * szShellCopy=(char *)malloc(iSCSize);
memset(szShellCopy, 0, iSCSize); memcpy(szShellCopy, sz OrigShell, iSCSize);
char * szEncoderCopy=(char *)malloc(iEncoderSize);
memset(szEncoderCopy, 0, iEncoderSize);
memcpy(szEncoderCopy, encoder, iEncoderSize);

if(pfnSC)
pfnSC(szShellCopy, iSCSize);

char * szShellBackup=(char *)malloc(iSCSize);
memset(szShellBackup, 0, iSCSize);
memcpy(szShellBackup, szShellCopy, iSCSize);

// Set the content size in the encoder copy
char * szShellLength=(char *)&iSCSize;
szEncoderCopy[ENCODER_OFFSET_SIZE]=(char)szShellLen gth[0];
szEncoderCopy[ENCODER_OFFSET_SIZE+1]=(char)szShellL ength[1];

// XOR the shellcode while it contains 0x5C, 0x00, 0x0A or 0x0 D
while(contains(szShellCopy, iSCSize, ’\x5C’) ||

contains(szShellCopy, iSCSize, ’\x00’) || \
contains(szShellCopy, iSCSize, ’\x0A’) ||
contains(szShellCopy, iSCSize, ’\x0D’))

{
memcpy(szShellCopy, szShellBackup, iSCSize); xorkey++;
for(int i=0;i<iSCSize;i++) szShellCopy[i]=szShellCopy [i]ˆxorkey;
szEncoderCopy[ENCODER_OFFSET_XORKEY]=xorkey;

}

free(szShellBackup);

Fig. 1.2. Agobot shell-encoding routine for malware delivery.

1.3.7 Obfuscation Mechanisms

Obfuscation refers to mechanisms that are used to hide the details of what is be-
ing transmitted through the network and what arrives for execution on end hosts.
While none of the bots we evaluated included TCP obfuscations such as those de-
scribed in [20], the aforementioned encoders provide obfuscation in a limited way.
However, if the same key is used in each encoded delivery, then signatures could be
generated quickly that would recognize a particular bit sequence.Polymorphismhas
been suggested as a means for evading signatures based on specific bit sequences by
generating random encodings.

The only bot that currently supports any kind of polymorphism is Agobot. There
are currently four different polymorphic encoding strategies that are supported:
POLY TYPE XOR, POLY TYPE SWAP (swap consecutive bytes), POLYTYPE ROR
(rotate right), POLYTYPE ROL (rotate left). While this code appears to function as
advertised, thorough analysis of its capabilities is left for future work.

Implications:While polymorphic botnet delivery appears to be a reality, it is not
yet widely available across bot families. As such, a concentrated focus on polymor-
phism by the network security community may not be warrantedat this time. How-
ever, while the polymorphic routine packaged with Agobot israther simplistic, it is
conceivable that future botnets will have significantly support for polymorphism. As
a result, anti-virus systems and NIDS will need to eventually develop mechanisms to
account for this capability.

1.3.8 Deception Mechanisms

Deception refers to the mechanisms used to evade detection once a bot is installed
on a target host. These mechanisms are also referred to asrootkits. Of the four bots
we analyzed, only Agobot had elaborate deception mechanisms. These include (i)
tests for debuggers such as OllyDebug, SoftIce and procdump, (ii) test for VMWare,
(iii) killing anti-virus processes, and (iv) altering DNS entries of anti-virus software
companies to point to localhost.

Implications:The elaborate deception strategy of Agobot some ways represents
a merging of botnets with other forms of malware such as trojans and has several
implications. First, honeynet monitors need to be aware of malware that specifically
targets virtual machine environments. Second, it suggeststhe need for better tools
for dynamic analysis of this malware since simply executingthem in VMware or
debuggers will provide false information. Finally, as these mechanisms improve, it is
likely to become increasingly difficult to know that a systemhas been compromised,
thereby complicating the task for host-based anti-virus and rootkit detection systems.

1.4 Conclusions

Continued improvements and diversification of malware are making the task of se-
curing networks against attacks and intrusions increasingly difficult. The objective
of our work is to expand the knowledge base for security research through system-
atic evaluation of malicious codebases. We advocate an approach that includes both
static analysis of source code and dynamic profiling of executables. In this paper we
take a first step in this process by presenting an evaluation of four instances of botnet
source code. We selected botnet code as our initial focus dueto its relatively recent
emergence as one of the most lethal classes of Internet threats.

Overall, our source code evaluation highlights the sophistication and diverse ca-
pabilities of botnets. The details of our findings include descriptions of the primary
functional components of botnets organized into seven categories. Some of the most
important of findings within these categories include the diverse mechanisms for
sensitive information gathering on compromised hosts, theeffective mechanisms for
remaining invisible once installed on a local host, and the relatively simple com-
mand and control systems that are currently used. While the IRC-based command
and control systems remain an area that the network securitycommunity can poten-
tially exploit for defensive purposes, it is likely that these systems will evolve toward

something like a peer-to-peer infrastructure in the near future (if they are not already
doing so).

The results in this paper represent a first step in a much larger process of de-
composing and documenting malware of all types. Ultimately, we anticipate that the
resulting database will enableproactivenetwork security. Our immediate next steps
will be to begin the process of dynamic profiling of botnet executables using tools
like IDA Pro [4] and by running the executables in our own laboratory environment.
Beyond that, we plan to use the lessons learned from this study to begin an IRC
monitoring effort at our university border router with the objective of developing
new methods for identifying botnet communications. We alsoplan to expand our
on-going honeynet measurement efforts to include botnet monitoring.

Acknowledgements

This work is supported in part by ARO grant DAAD19-02-1-0304and NSF grant
CNS-0347252. The second author was supported in part by a Lawrence H.Landweber
NCR Graduate Fellowship. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of the above government agencies
or the U.S. Government.

References

1. F-Secure Corporation’s Data Security Summary for 2004. http://www.f-secure.com/2004,
2004.

2. California Man Charged in Botnet Attacks. Reuters, November 2005.
3. Honeynet Scan of the Month 32.http://www.honeynet.org/scans/scan32/, 2005.
4. IDA Pro. http://www.datarescue.com, 2005.
5. Regmon.http://www.sysinternals.com, 2005.
6. SoftICE Driver Suite.http://www.compuware.com/products/driverstudio/softice.htm, 2005.
7. Sophos virus analyses. http://www.sophos.com/virusinfo/analyses, 2005.
8. C. Associates. GTBot1.http://www3.ca.com/securityadvisor/pest/pest.aspx?id=453073312, 1998.
9. M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson. The Internet Motion Sen-

sor: A Distributed Blackhole Monitoring System. InProceedings of the Network and
Distributed Security Symposium, San Diego, CA, January 2005.

10. P. Barford. The Wisconsin Advanced Internet Laboratory. http://wail.cs.wisc.edu, 2005.
11. J. Canavan. The evolution of irc bots. InProceedings of Virus Bulletin Conference 2005,

October 2005.
12. E. Cooke, F. Jahanian, and D. McPherson. The zombie roundup: Understanding, detect-

ing and disrupting botnets. InProceedings of Usenix Workshop on Stepts to Reducing
Unwanted Traffic on the Internet (SRUTI ’05), Cambridge, MA, July 2005.

13. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mine, D. Monniaux, and X. Rival. The
Astree Static Analyzer.http://www.astree.ens.fr, 2005.

14. Coverity. Coverity Prevent.http://www.coverity.com, 2005.
15. DETER. A laboratory for security research. http://www.isi.edu/deter, 2005.
16. D. Dietrich. Distributed Denial of Service (DDoS) Attacks/tools.

http://staff.washington.edu/dittrich/misc/ddos/, 2005.

17. J. Evers. Dutch Police Nab Suspected Bot Herders. CNET News.com, October 2005.
18. German Honeynet Project. Tracking Botnets.http://]www.honeynet.org/papers/bots, 2005.
19. A. Gostev. Malware Evolution: January - March, 2005. http://www.viruslist.com, 2005.
20. M. Handley, C. Kreibich, and V. Paxson. Network Intrusion Detection: Evasion, Traf-

fic Normalization, and End-to-End Protocol Semantics. InProceedings of the USENIX
Security Symposium, Washington, DC, August 2001.

21. The Honeynet Project.http://project.honeynet.org, 2003.
22. S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-Sale: Surviving Organized DDos

Attacks That Mimic Flash Crowds . InProceedings of the USENIX Symposium on Net-
work Systems Design and Implementation, Boston, MA, May 2005.

23. D. Kawamoto. Bots Slim Down to get Tough. CNET News.com, November 2005.
24. A. Kumar, V. Paxson, and N. Weaver. Exploiting underlying structure for detailed re-

construction of an internet scale event. InProceedings of ACM Internet Measurement
Conference, November 2002.

25. McAfee. W32-Spybot.worm.http//vil.nai.com/vil/content/v 100282.htm, 2003.
26. Metasploit. http://www.metasploit.com, 2005.
27. D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,and N. Weaver. Inside the

slammer worm. InProceedings of IEEE Security and Privacy, July 2003.
28. D. Moore and C. Shannon. The Spread of the Witty Worm.http : // −

www.caida.org/analysis/security/witty/, 2004.
29. D. Moore, C. Shannon, and K. Claffy. Code red: A case studyon the spread and victims

of an internet worm. InProceedings of ACM Internet Measurement Workshop, November
2002.

30. R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson. Characteristics of
internet background radiation. InProceedings of ACM Internet Measurement Conference,
Taormina, Italy, October 2004.

31. B. Saha and A. Gairola. Botnet: An Overivew. CERT-In White Paper, CIWP-2005-05,
June 2005.

32. Sophos. Troj/Agobot-A.http//www.sophos.com/virusinfo/analyses/trojagobota.html, 2002.
33. Sophos. Troj/SDBot.http//www.sophos.com/virusinfo/analyses/trojsdbot.html, 2002.
34. S. Staniford, V. Paxson, and N. Weaver. How to Own the Internet in Your Spare Time. In

Proceedings of the 11th USENIX Security Symposium, 2002.
35. I. Thomson. Hackers Fight to Create Worlds Largest Botnet. http://www.vnunet.com,

August 2005.
36. J. Ullrich. Dshield. http://www.dshield.org, 2005.
37. D. Verton. Organized Crime Invades Cyberspace. http://www.computerworld.com, Au-

gust 2004.
38. M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. Snoeren, G. Voelker, and S. Sav-

age. Scalability, fidelity and containment in the potemkin virtual honeyfarm. InProceed-
ings of ACM Symposium on Operating Systems Principles (SOSP), Brighton, England,
October 2005.

39. V. Yegneswaran, P. Barford, and D. Plonka. On the design and use of Internet sinks for
network abuse monitoring. InProceedings of Recent Advances on Intrusion Detection,
Sophia, France, September 2004.

40. V. Yegneswaran, P. Barford, and J. Ullrich. Internet intrusions: Global characteristics and
prevalence. InProceedings of ACM SIGMETRICS, San Diego, CA, June 2003.

