1

An Inside Look at Botnets

Paul Barford Vinod Yegneswaran
{pb,vinod }@cs.wisc.edu

Computer Sciences Department
University of Wisconsin, Madison

Abstract

The continued growth and diversification of the Internet beasn accompanied by
an increasing prevalence of attacks and intrusions [4@aiit be argued, however,
that a significant change in motivation for malicious atyiias taken place over
the past several years: from vandalism and recognitiondgrhitker community, to

attacks and intrusions for financial gain. This shift hasnbemarked by a growing

sophistication in the tools and methods used to conduatkattahereby escalating
the network security arms race.

Our thesis is that theeactivemethods for network security that are predominant
today are ultimately insufficient and that mgmactivemethods are required. One
such approach is to develop a foundational understandirigeofnechanisms em-
ployed by malicious software (malware) which is often réadvailable in source
form on the Internet. While it is well known that large IT seitpicompanies main-
tain detailed databases of this information, these are pertly available and we are
not aware of any such open repository. In this paper we bégiptocess of codify-
ing the capabilities of malware by dissecting four widebed Internet Relay Chat
(IRC) botnet codebases. Each codebase is classified alorg &ey dimensions
including botnet control mechanisms, host control medrasj propagation mech-
anisms, exploits, delivery mechanisms, obfuscation awdpgtéeon mechanisms. Our
study reveals the complexity of botnet software, and weudises implications for
defense strategies based on our analysis.

1.1 Introduction

Software for malicious attacks and intrusions (malwars)dlved a great deal over
the past several years. This evolution is driven primaniyte desire of the authors
(black hats) to elude improvements in network defense systnd to expand and
enhance malware capabilities. The evolution of malcodebeaseen both in terms
of variants of existing toolsy.g.,there are over 580 variants of the Agobot malware

since it’s first release in 2002 [7]) and in the relativelyguent emergence of com-
pletely new codebases.{.,there were six major Internet worm families introduced
in 2004: Netsky, Bagle, MyDoom, Sassser, Korgo and Witty afi as the Cabir
virus - the first for cell phones [1]).

While worm outbreaks and DoS attacks have been widely regant the pop-
ular press and evaluated extensively by the network andigecesearch commu-
nities €.9.,[16, 27-29]), perhaps the most serious threat to the Inteouay are
collections of compromised systems that can be controfealdingle person. These
botnetshave actually been in existence for quite some time and traieroots to
the Eggdrop bot created by Jeff Fisher for benign networkagament in 1993.
High level overviews of malicious botnet history and theastr functionality can
be found in [11, 31]. Over the years botnet capability hasdased substantially to
the point of blurring the lines between traditional catég®of malware. There have
been numerous reports of botnets of over one hundred thdssatems (although
the average size appears to be dropping) and the total nwohbstimated systems
used in botnets today is in the millions [17,19, 23].

A plausible reason for the rise of malicious botnets is thatliasic motivations
for malicious activity are shifting. In the past, the primanotivations for attacks
appear to have been simple (but potent) “script kiddie” \edisth and demonstra-
tions of programming prowess in the black hat community. Etlosv, there are an
increasing number of reports of for-profit malicious adgiiihcluding identity theft
and extortion that may be backed by organized crimg.([2, 35, 37]). This trend
toward an economic motivation is likely to catalyze develgmt of new capabilities
in botnet code making the task of securing networks agdiistiireat much more
difficult.

The thesis for our work is that effective network securitythie future will be
based on detailed understanding of the mechanisms used lsaraaWhile this
high level statement does not represent a significant dapedrom what has been the
modus operandi of the IT security industry for some timeputuinately, data sharing
between industry and research to date has not been commasrgiie that greater
openness and more detailed evaluations of the mechanismalware are required
across the network security research community. In sonpeots this broadens the
Internet Center for Disease Control vision outlined by 8tad et al. in [34]. We
advocate analysis that includes both static inspectionadfvare source code when
it is available and dynamic profiling of malware executalires controlled environ-
ment. An argument for the basic feasibility of this approacthat a good deal of
malware is, in fact, available on line.g.,[26]) and there are emerging laboratory
environments such as WAIL [10] and DETER [15] that enable sahluation of ex-
ecutables. It is important to emphasize that these analysasieant tcomplement
the ongoing empirical measurement-based studies, (9, 30, 36]) which provide
important insight on how malware behaves in the wild, anctatieal in identifying
new instances of outbreaks and attacks.

This paper presents a first step in the process of codificafiomalware mech-
anisms. In particular, we present an initial breakdown aofr fof the major botnet
source codebases including Agobot, SDBot, SpyBot and GT \Betconduct this

analysis by creating a taxonomy of seven key mechanismsterddescribe the
associated capabilities for specific instances of eachamily. Our taxonomy em-
phasizes botnet architecture, control mechanisms, andagefor propagation and
attack. Our objectives are to highlight the richness andrdity of each codebase, to
identify commonalities between codebases and to consmekhowledge of these
mechanisms can lead to development of more effective defaeshanisms.

A summary of our findings and their implications are as foow

e Finding: The overall architecture and implementation of botnetemmlex, and
is evolving toward the use of common software engineeringrt&ues such as
modularity.Implication: The regularization of botnet architecture provides in-
sight on potential extensibility and could help to faciéaystematic evaluation
of botnet code in the future.

e Finding: The predominant remote control mechanism for botnets mesriater-
net Relay Chat (IRC) and in general includes a rich set of cands enabling a
wide range of usémplication: Monitors of botnet activity on IRC channels and
disruption of specific channels on IRC servers should castio be an effective
defensive strategy for the time being.

e Finding: The host control mechanisms used for harvesting sensitiegma-
tion from host systems are ingenious and enable data froewoads to mailing
lists to credit card numbers to be gatheredplication: This is one of the most
serious results of our study and suggests design objedtvdsture operating
systems and applications that deal with sensitive data.

e Finding: There is a wide diversity of exploits for infecting targessms written
into botnet codebases including many of those used by wdnatstarget well
known Microsoft vulnerabilitiesI mplication: This is yet additional evidence
that keeping OS patches up to date is essential and alsoisf@quirements for
network intrusion detection and prevention systems.

e Finding: All botnets include denial of service (DoS) attack cap#pilimplica-
tion: The specific DoS mechanisms in botnets can inform desigrigtime DoS
defense architectures.

e Finding: Shell encoding and packing mechanisms that can enablé&sttacir-
cumvent defensive systems are common. However, Agobotioiiy botnet
codebase that includes support for (limited) polymorphisnplication: A sig-
nificant focus on methods for detecting polymorphic attatie/ not be war-
ranted at this time but encodings will continue to preserttalenge for defen-
sive systems.

e Finding: All botnets include a variety of sophisticated mechanisonsfoiding
detection €.g.,by anti-virus software) once installed on a host systempli-
cation: Development of methods for detecting and disinfecting campsed
systems will need to keep pace.

e Finding: There are at present only a limited set of propagation mestreavail-
able in botnets with Agobot showing the widest variety. Serporizontal and
vertical scanning are the most common mechanisnplication: The specific

propagation methods used in these botnets can form thefoasimdeling and
simulating botnet propagation in research studies.

The remainder of this paper is structured as follows. Whitxeé have been rela-
tively few studies of botnets in the research literaturegttedwe discuss other related
work in Section 1.2. In Section 1.3 we present our taxonontyodifiet code and the
results of evaluating four instances of botnet source dodgection 1.4 we summa-
rize our work and comment on our next steps.

1.2 Related Work

Empirical studies have been one of the most important ssusEénformation on
malicious activity for some time. Moo al.characterized the Code Red I/l worm
outbreaks in [29] and the Sapphire/Slammer worm outbredkgfoviding key de-
tails on propagation methods and infection rates. Recdfitijnaret al. show how a
broad range of details of the Witty worm outbreak can be nef¢using information
about that malware’s random number generator [24]. In [@@wall and intrusion
detection system logs collected from sites distributedughout the Internet are
used to characterize global attack activity. Several restenlies have demonstrated
the utility of unused address space monitors (honeynet}fiat include active re-
sponse capability as a means for gathering details on nktattacks [9, 30, 39].
Honeynet measurement studies have also provided valuafoleniation on botnet
activity [18, 39]. Cookeet al. discuss the potential of correlating data from multi-
ple sources as a means for detecting the botnet command atrdldeaffic in [12].
Finally, the virtual honeyfarm capabilities described 38] could prove to be very
useful for botnet tracking in the future.

As we advocated in the prior section, another way to studywvana is to gather
and then decompose instances of both source code (manpdastaf malware
source code can be found by searching the Web and Usenet newssyjand ex-
ecutable code (executables can be gathered by enhanciegrteirenvironments).
There are standard tools available for reverse engineexiegutables including dis-
assemblers, debuggers and system monitors such as [4-fjit®the capabilities
of these tools, the complexity and deception techniquegdain instances of mal-
ware executables often complicate this analysis [3]. Likewthere are many tools
available for static analysis of source code such as [13\4ijle these tools are
often focused on the problems of identifying run time eraord security vulnerabil-
ities, the general information they provide such as paesstrsymbol tables and call
graphs could be valuable in our malware analysis. While vesgmt a simple taxon-
omy of malware mechanisms in this paper, we look forward togusoth static and
dynamic analysis tools for in depth study in the future.

1.3 Evaluation

Our process of codification of malware begins with a comparisf four botnet
families: Agobot, SDBot, SpyBot and GT Bot. These were selbédased on the
age of their first known instances, the diversity in theirigesnd capabilities, and

reports in the popular press, commercial and research caitiegiidentifying these
as the most commonly used bot families. While each of thesdliés have many
versions and variants, for this study we evaluate one versicsource code from
each: Agotbot (4.0 pre-release), SDBot (05b) and SpyBdf)(I5T Bot variants
are commonly listed with extensions after the word “Bet§.,"GT Bot Foo” — we
evaluated the “GT Bot with DCOM” version of this code.

The attributes we consider in our analysis includg:afchitecture,) botnet
control mechanisms;4;) host control mechanismsiu] propagation mechanisms,
(v) target exploits and attack mechanisms) (malware delivery mechanisms;)(
obfuscation methods, andif) deception strategies. This taxonomy was developed
based on our goal of improving both host and network-baséhdive systems by
exploiting knowledge of basic features of botnet systems.

1.3.1 Architecture

Architecture refers to the design and implementation attaristics of bot code. Ar-
chitecture is readily analyzed from source code and indadgsessment of the over-
all organization, data design, interface design and compiaesign of the system.
An important additional objective in this analysis is toessthe potential long term
viability of each bot family by considering how each codebasgght be extended to
include new functionality.

e Agabot: The earliest references to Agobot that we could find were énQila-
tober, 2002 time frame [32]. There are now many hundreds oants of this
code which is also commonly referred to as Phatbot. It isatyuthe most so-
phisticated and best-written source code among the fouitiéemve evaluated.
A typical source bundle is around 20,000 lines of C/C++. Thedwnsists of
several high level components including),&n IRC-based command and control
mechanism,i¢) a large collection of target exploitg;{) the ability to launch dif-
ferent kinds of DoS attacksj«) modules that support shell encodings and lim-
ited polymorphic obfuscations,) the ability to harvest the local host for Paypal
passwords, AOL keys and other sensitive information eitmeugh traffic sniff-
ing, key logging or searching registry entriesi)(mechanisms to defend and
fortify compromised systems either through closing baakrdppatching vulner-
abilities or disabling access to anti-virus sites, and)(mechanisms to frustrate
disassembly by well known tools such as Softlce, Ollydbgathdrs. Agobot has
a monolithic architecture, demonstrates creativity inglesand adheres to struc-
tured design and software engineering principles throtsyhodularity, standard
data structures and code documentation.

e SDBot: The earliest references to SDBot that we could find were inQbto-
ber, 2002 time frame [33]. There are now hundreds of variahtis code that
provide a wide range of capabilities. In contrast with Agpl8DBot is a fairly
simple, more compact instance of bot code written in sligbtler 2,000 lines
of C. The main source tree does not include any overtly nmlgicode modules
such as target exploits or DoS capabilities, and is pubdisheler GPL. SDBot

primarily provides a utilitarian IRC-based command andtoarsystem. How-
ever, the code is obviously easy to extend, and a large nuoflygatches are
readily available that provide more sophisticated malisioapabilities such as
scanning, DoS attacks, sniffers, information harvestmgines and encryption
routines. This organization facilitates generation ofteasbotnets with special-
ized capabilities that suit a specific botmaster. We spézubat an important
motivation for this patch-style dissemination strateggiffusion of accountabil-
ity. We easily found around 80 patches for SDBain the Web, not all of which
were malicious.

SpyBot: The earliest references to SpyBot that we could find wereen?bril,
2003 time frame [25]. Like Agobot and SDBot there are now hredd of vari-
ants of SpyBot. The codebase is relatively compact, writtemder 3,000 lines
of C. Much of SpyBot’s command and control engine appeargtshiared with
SDBot, and it is likely, in fact, that it evolved from SDBot.oever, unlike
SDBot, there is no explicit attempt to diffuse accountapitir to hide the mali-
cious intent of this codebase. The version of SpyBot that veduated includes
NetBIOS/Kuang/Netdevil/lKaZaa exploits, scanning caligband modules for
launching flooding attacks. Overall, the codebase for Spigledfficient, but does
not exhibit the modularity or breadth of capabilities of Agad.

GT Bot: The earliest references to GT Bot that we could find were inAjel,
1998 time frame [8]. At present there are well over a hundmibnts of GT
(Global Threat) Bot which is also referred to as Aristotléd. Bot’s design is
quite simple, providing a limited set of functions based o $cripting capabil-
ities of mIRC which is a widely used shareware IRC client fandéws. mIRC
provides functionality for writing event handlers thatpeads to commands re-
ceived by remote nodes. GT Bot also includes the HideWindmgam which
keeps the bot hidden on the local system. While this bot hasegreasy to mod-
ify, there is nothing that suggests it was designed withresitglity in mind. GT
Bot capabilities including port scanning, DoS attacks, exyloits for RPC and
NetBIOS services. GT Bot scripts are commonly stored in actiléedmirc.ini
on compromised local hosts. However GT Bot is often packagéuits own
version of themIRC.exehat has been hex-edited to include other configuration
files. Other useful pieces of software that are often padkagth GT Bot in-
clude BNC (pronounced “bounce”) which is a proxy system #ilatvs users to
bounce through shells to a IRC server providing anonymity@aS protection,
and psexec.ex¢SyslInternals) which is a utility that facilitates remotegess
execution. Based on the limited capabilities in GT Bot, ipagrs that differ-
ent versions have been generated for specific malicioustintestead of general
enhancement of the code to provide a broad set of capahilkgethe name sug-
gests, the “with DCOM” version of GT Bot that we evaluatediiies DCOM
exploit capabilities.

! These are not UNIX-style patches, rather they are simply-eeehmented source code
fragments that can be copied and inserted before recoiopilat

Implications:While bot codebases vary in size, structure, complexity,iemple-
mentation approach, there appears to be a convergencesattbefunctions that are
available (this will be further highlighted in subsequestttions of this report). This
suggests the possibility that defensive systems may bdwalgnbe effective across
bot families. Further, as demonstrated by the fact thatthes so many variants in
each codebase, all of the bot families are at least somewteat®ble. However, we
project that over the next several years, due to economidvatioins, capabilities
and open availability, the Agobot codebase is likely to Imeeaominant. It's mod-
ular design makes it easy to extend, and we anticipate fefulnancements such as
improved command and control systenesy(.,peer-to-peer) and additional target
exploits. While an open-source-like approach to Agobasaiopment is somewhat
daunting, it's open availability means that it can be exadifor elements which can
be exploited by defensive systems.

1.3.2 Botnet Control Mechanisms

Botnet control refers to the command language and contodbpols used to operate
botnets remotely after target systems have been comprdmite command and
control mechanisms for the bots that we evaluated are afidban IRC. Thus, an
understanding of that system §.,see IETF RFC #1459 which defines IRC) will help
to make sense out of the botnet commands detailed in thi®sebt general, there
is a broad range of commands that are available. These mdiuecting botnets to
deny service, send spam, phish, forward sensitive infaomatout hosts, and look
for new systems to add to the botnet.

The most important reason for understanding the detailsetommunication
mechanisms is that their disruption can render a botnetsseFor example, by
sniffing for specific commands in IRC traffic, network operatoan identify com-
promised systems, and IRC server operators can shutdowmelsathat are used
by botnets (this is commonly done today). Additionally, lubedge of these mecha-
nisms can be used in development of large botnet moniéogsYia active honeynet
systems), and it also facilitates the process of detectavg variants. While con-
trol mechanisms occasionally change between versiong ifietrong commonality
within each family we analyzed. This bodes well for contidfigcus on these mech-
anisms when designing network defenses against botnets.

e Agobot: The command and control system implemented in Agobot is iader
tive of IRC. The protocol used by compromised systems tobéstaconnec-
tions to control channels is standard IRC. The command lagegconsists of
both standard IRC commands and specific commands developinikf bot. De-
tails of the command language are summarized in Table 14 béhcommand
set includes directives that request the bot to perform aifspéunctione.g.,
bot . open which opens a specific file on the host. The control variabiessed
in conjunction with thecvar . set command to turn on/off features or other-
wise manipulate fields that affect modes of operadanddos_nmax_t hr eads
which directs the bot to SYN flood a specified host using a marimumber of
threads.

Table 1.1. Partial listing of the Agobot command and control langudee “variables” are
passed as parameters to thear . set set command.

Variable Description

botftransport [Set bot - file transfer port

botftransport ftp|Set bot - file transfer port for FTP
si.chanpass IRC server information - channel password
si.mainchan IRC server information - main channel
si_nickprefix IRC server information - nickname prefix
si_port IRC server information - server port
si_server IRC server information - server address
si.servpass IRC server information - server password
si_usessl| IRC server information - use SSL ?

si_nick IRC server information - nickname
botversion Bot - version

botfilename Bot - runtime filename

botid Bot - current ID

bot prefix Bot - command prefix

bottimeo Bot - timeout for receiving (in milliseconds)
botseclogin Bot - enable login only by channel messages

bot.compnick
botrandnick
botmeltserver
bottopiccmd
do_speedtest
do_avkill
do_stealth
asvalname
asenabled
asservice
asservicename
scanmaxthreads
scanmaxsockets
ddosmaxthreads|
redir.maxthreads|
identdenabled
cdkeywindows
scaninfachan
scaninfalevel

Bot - use the computer name as a nickname
Bot - random nicknames of letters and numbers
Bot - melt the original server file

Bot - execute topic commands

Bot - do speed test on startup

Bot - enable anti-virus kill

Bot - enable stealth operation

Autostart - value name

Autostart - enabled

Autostart - start as service

Autostart - short service name

Scanner - maximum number of threads
Scanner - Maximum number of sockets
DDoS - maximum number of threads
Redirect - maximum number of threads
IdentD - enable the server

Return windows product keys on cdkey.get
Scanner - output channel

Info level 1 (less) - (3) more

spamaolchannel| AOL spam - channel name
spamaolenabled AOL spam - enabled ?

sniffer.enabled |Sniffer - enabled ?

sniffer.channel |Sniffer - output channel

vuln_channel Vulnerability daemon sniffer channel
instpolymorph |Installer - polymorphoic on install ?
Command Description

bot.about Displays information€.g.,version) about the bot co
bot.die Terminates the bot

bot.dns Resolves IP/hostname via DNS
bot.execute Makes the bot execute a specific .exe
bot.id Displays the ID of the current bot code
bot.nick Changes the nickname of the bot

bot.open Opens a specified file

bot.remove Removes the bot from the host
bot.removeallbut| Removes the bot if ID does not match
bot.rndnick Makes the bot generate a new random nickname
bot.status Echo bot status information

bot.sysinfo Echo the bot’s system information
bot.longuptime |If uptime > 7 days then bot will respond
bot.highspeed |If speed> 5000 then bot will respond
bot.quit Quits the bot

bot.flushdns Flushes the bot's DNS cache

bot.secure Delete specified shares and disable DCOM

bot.unsecure

bot.command

Enable specified shares and enables DCOM
Executes a specified command with system()

e

NICK_USER

ﬁNG

PONG 01/005

%1/005

JOIN

|

USERHOST

Fig. 1.1. Typical interaction between an SDBot and IRC server.

SDBot: The command language implemented in SDBot is essentidtiptneight

version of IRC. Figure 1.1 illustrates the state transiBequence of a compro-

mised host interacting with an IRC server. The bot beginsdtgt#ishing a con-

nection to the IRC server through the following stepssénd NICK (hame) and

USER (name) to login to the servei;)if a PING is received, respond with a

PONG, (i) when connected to the servee(, return code 001 or 005), send a

JOIN message followed by a USERHOST request to obtain thim&ioe, (v)

wait for a 302 response that indicates a connection is éstial, {/) listen and

react to commands sent by the master which can include tlosviol:

1. KICK: the bot rejoins the channel if it is kicked off. Otlndse the bot resets
the master if the master is kicked.

2. NICK: if master’s nickname is replaced, then it is updaiadhe bot.

3. PART (or QUIT): resets the master if the master parts aisqui

4. 353: return code that indicates that the bot has sucdlysgfined the IRC
channel.

The bot then expects all other commands will be sent as painedPRIVMSG,
NOTICE or TOPIC IRC messages. The commands available in $Bigdisted
in Table 1.2. Additional features supported by SDBot butealbsrom Agobot
include IRC cloning and spying. Cloning is when a bot consézin IRC chan-
nel multiple times. This can be used to deny service on aqudati IRC server.
Spying is simply the act of logging activity on a specified IR@nnel.

Table 1.2. Partial listing of the SDBot command language. These condsane passed to
bots via the PRIVMSG, NOTICE or TOPIC IRC commands.

Command

Description

about

action<channel/uses, <text>
addalias< alias, commang
aliases

cycle<N> <channe}>

die

disconnect

id

join <channet <key>

log

nick <newnick>

part

prefix

quit

raw <text>

reconnect

repeat<numtimes> <command>
rndnick

server<servernamg

status

Displays information about the bot code

Perform specified action on the channel

Add an alias

Return a current list of aliases

Leave channel and return after N seconds

Kill all threads, close IRC connection and stop running
Disconnect from channel and reconnect in 30 minutes
Return the bot ID

Join specified channel with specified key

Return a log of connections, logins and time stamps
Changes bot’s nickname

Part the specified channel

Temporary change to bot’s IP prefix

Quit the channel, kill threads and close the bot

Send the following text to server

Disconnect and reconnect to receive new nickname and I
Act as if command was received numtimes
Change to random nickname

Temporarily changes bot's IRC server
Echo with version number and bot’s uptime

Clones and Spies

clone <servep> <port><channep
c_rndnick <threadnum>

c-raw <threadnum- <text>

c_quit <threadnum-

c_nick <threadnum> <nick>

c_privmsg <threadnum> <user> <text>
c_part <threadnum> <channe}>
c.mode<threadnum>- <channe}> <mode> <user>
cjoin <threadnum-> <channe}>
c_action<threadnum> <channep> <text>
spy <nick> <server> <port> <channe}>

Create clone on specified channel

Causes clone to change to random nickname

Causes clone to send text to server

Causes the clone/spy to quit the IRC server

Causes the clone/spy to change its nickname

Causes clone/spy to send message channel with text
Causes clone/spy to part channel

Causes clone to set a channel or user mode

Causes clone/spy to join channel

Causes clone/spy to perform an action to the specified ch
Creates spy with specified nickname on server,port,chann|

nne

SpyBot: The command language implemented in SpyBot is quite simqulesa-
sentially represents a subset of the SDBot command langidgecommands
available in SpyBot are listed in Table 1.3. The IRC conmecset up proto-
col for SpyBot is the same as SDBot, and the mechanisms togpakexecute
commands on bots are also identical.

GT Bot: Like the other families, GT Bot uses IRC as its control infrasture.
The command language implemented in GT Bot is the simpleatl @f those
that we evaluated, but it varies quite a bit across versiatigmthis family. This
is likely due to the architecture of GT Bot which facilitatergation of versions
with specific intent instead of developing a broad range phbdities within a
single line of the codebase. We provide a list of the commangported by the
GTBot-with-dcom source code used in our analysis in Talde 1.

Implications: Understanding command and control systems has direct and

im

mediate implications for creation of methods and systemdisupt botnets. The
continued reliance on IRC as the foundation for botnet conthaand control means
that IRC server operators can play a central role in blockiatnet traffic (anec-
dotally, they already do). However, monitoring and shgttitown botnet channels
by hand is arduous, and automated mechanisms for idergifyotnet traffic are re-

Table 1.3. Partial listing of the SpyBot command language. These camahare passed to
bots via the PRIVMSG, NOTICE or TOPIC IRC commands.

Command Description

login < password> Login to the bot

info Provides information about host system

passwords Lists the RAS passwords in MS Windows 9x versions
disconneck secs> Disconnect bot for t seconds (default is 30 minutes)
reconnect Disconnect and then reconnect

server< new server addp> Temporarily changes the bot’s IRC server

quit Quit the channel, kill threads and close bot

uninstall Uninstalls the bot

redirect<in port> <host> <out port> Redirect traffic from host to output port

raw <command> Echo command to server

download<url> <filename> Copy contents of url to filename

list <pathyfilter> Listc:\ * .x

spy Redirects all traffic from the IRC server to the DCC cHat
stopspy Stops the spy

redirectspy Redirects all traffic from the port redirect to the DCC dhat
stopredirectspy Stops redirect spy

loadclones<server> <port> <numclones-|Load numclones clones on server

killclones Kills all the clones

rawclones<command> Execute raw command on all clones

Table 1.4. Partial listing of the GT Bot command language. These contimane passed to
bots via the PRIVMSG, NOTICE or TOPIC IRC commands.

Command Description

Iver Returns the version of the botnet

linfo Returns local host information e.g., OS, uptime, etc|
Iscan<ip.*><port> Scan specified address prefix on specified port
Iportscan<IP> < sport> <eport> |Scan specified address across specified ports
Istopscan Stops all scans

Ipacket<|P><number> Start denial of service attack (ping.exe) of IP

bnc Execute commands specific to the bounce proxy system
Iclone.* Directs all IRC clone behavior (attacks, etc.)
lupdate<url> Update version of bot code from a specified Web pgge
I- Executes command on local host

quired. The botnet command languages outlined in this@ecin be used in the
development of such systems and we project this will be affdishort term focus

area. However, we anticipate that future botnet developm#innclude the use of

encrypted communication, eventually a movement away fie@ and adopt peer-
to-peer style communication (some versions of Phatbotlegady reported to have
rudimentary P2P capability). While this will certainly meaklefending against bot-
nets more difficult, botnet traffic may still be able to be itifsed via statistical finger

printing methods.

1.3.3 Host Control Mechanisms

Host control refers to the mechanisms used by the bot to mbxga victim host
once it has been compromised. The general intent of hostataatto fortify the
local system against other malicious attacks, to disablievams software, and to
harvest sensitive information.

e Agobot: The set of host control capabilities provided in Agobot igeaompre-
hensive. These includei)(commands to secure the systerg.,close NetBIOS
shares, RPC-DCOM, etcii} a broad set of commands to harvest sensitive in-
formation ¢i:) pct r| commands to list the processes running on the host and
kill specific processest) i nst commands to add or delete autostart entries. A
summary of Agobot host control commands is provided in Tale

Table 1.5. Agobot host control commands.

Command Description

harvest.cdkeys Return a list of CD keys

harvest.emails Return a list of emails
harvest.emailshttp |Return a list of emails via HTTP
harvest.aol Return a list of AOL specific information

harvest.registry Return registry information for specific registry pgth
harvest.windowskey&eturn Windows registry information

petrl.list Return list of all processes

petrl.kill Kill specified process set from service file
pctrl.listsve Return list of all services that are running
pctrl.killsve Delete/stop a specified service
pctrl.killpid Kill specified process

inst.asadd Add an autostart entry

inst.asdel Delete an autostart entry

inst.svcadd Adds a service to SCM

inst.svcdel Delete a service from SCM

e SDBot: The host control capabilities provided in the base distidvuof SDBot
are somewhat limited. They include some basic remote eiecctmmands and
some capability to gather local information. The lack oftramntrol capabilities
in the basic distribution is likely due to SDBot’s benigndant as described above.
However, these capabilities can be easily enhanced thrawghary patches and
a large number of these are readily available. A summary @@MDost control
commands is provided in Table 1.6.

Table 1.6. SDBot host control commands.

Command Description

download<url> <dest> <action> Downloaded specified file and execute if action is 1

killthread <thread#> Kill specified thread

update<url> <id> If bot ID is different than current, download “sdbot exedléd and update
sysinfo List host system information (CPU/RAM/OS and uptime)
execute<Vvisibility > <file>> parametergRun a specified program (visibility is 0/1)

cdkey/getcdkey Return keys of popular gamesy.,Halflife, Soldier of Fortune etc.

e SpyBot: The host control capabilities included in SpyBot are reddyi rich, and
similar in most respects to what is provided by Agobot. Theskide commands
for local file manipulation, key logging, process/systennipalation and remote
command execution. A summary of the SpyBot host control cands is pro-
vided in Table 1.7.

e GT Bot: The set of host control commands provided in GT Bot is the most
limited of all of the families we evaluated. The base captdsl include only
gathering local system information and the ability to rundeiete local files.

Table1.7. SpyBot host control commands.

Command Description

delete<filename> Delete a specified file
execute<filename> Execute a specified file
rename<origfilename> <newfile>|Rename a specified file
makedir<dirname> Create a specified directory
startkeylogger Starts the on-line keylogger
stopkeylogger Stops the keylogger

sendkeys<keys> Simulates key presses

keyboardlights Flashes remote keyboard lights 50x
passwords Lists the RAS passwords in Windows 9x systems
listprocesses Return a list of all running processes
killprocess< processnante Kills the specified process

threads Returns a list of all running threads
killthread < number> Kills a specified thread

disconneck number> Disconnect the bot for number seconds
reboot Reboot the system

cd-rom<0/1> Open/close cd-rom. cd-rom 1 = open, cd-rom 0 = close
opencmd Starts cmd.exe (hidden)

cmd <commang> Sends a command to cmd.exe

get <filename> Triggers DCC send on bot
update<url> Updates local copy of the bot code

However, like SDBot, there are many versions of GT Bot thatude diverse
capabilities for malicious host control.

Implications: The capabilities and diversity of the host control mechasisn
botnets are frightening and have serious implicationst firey underscore the need
to patch and protect systems from known vulnerabilitieso8d, they informs soft-
ware development and the need for stronger protection kavigslacross applica-
tions in operating systems. Third, the capabilities of getig sensitive information
such as Paypal passwords and software keys provide cleaomioincentives for
people to operate botnets and for sponsorship by organiized.c

1.3.4 Propagation M echanisms

Propagation refers to the mechanisms used by bots to searokw host systems.
Traditional propagation mechanisms consist of simplezuttal scans on a single
port across a specified address range, or vertical scansgle ¥ address across a
specified range of ports. However, as botnet capability eapait is likely that they
will adopt more sophisticated propagation methods suchasetproposed in [34].

e Agobot: The scanning mechanisms included in Agobot are relativeiple and
do not extend very far beyond horizontal and vertical saagnhgobot scanning
is based on the notion of network ranges (network prefixex)dahe configured
on individual bots. When so directed, a bot can scan acraasgeror randomly
select IP addresses within a range. However, the currenhs@acommand set
provides no means for efficient distribution of a target addrspace among a
collection of bots. Table 1.8 provides a summary of the sitmpncommands in
Agobot.

Table 1.8. Agobot propagation and scanning commands.

Command Description

scan.addnetrangelP range> < priority> [Adds a network range to a bot
scan.delnetrangelP range> Deletes a network range from a bot
scan.listnetranges Returns all network ranges registered with a bot
scan.clearnetranges Clears all network ranges registered with a bot
scan.resetnetranges Resets the network ranges to the localhost
scan.enablezmodule namg- Enables a scanner modwdey., DCOM
scan.disablezmodule namg- Disables a scanner module

scan.startall Directs all bots to start scanning their network rarjges
scan.stopall Directs all bots to stop scanning

scan.start Directs all enabled bots start scanning
scan.stop Directs all bots to stop scanning

scan.stats Returns results of scans

SDBot: As discussed in Section 1.3.1, by virtue of its benign int8mBot does
not have scanning or propagation capability in its baseidigton. However,
many variants of SDBot include scanning and propagatiomluitity. Among
these, the scanning control interface is often quite simd@Agobot providing
horizontal and vertical search capabilities. There am ialstance where slightly
more complex scanning methods are available. For exanty@enterface for a
NetBIOS scanner for SDBot accepts starting and ending IlPeadds as param-
eters and then randomly selects addresses between theseatkers.

SpyBot: The command interface for Spybot scanning is quite simplesisting
of horizontal and vertical capability. A typical examplegisen below:

Command: scan <start IP address> <port> <delay>
<spreaders> <logfilename>
Example: scan 127.0.0.1 17300 1 netbios portscan.txt

Scanning begins at the start address and opens MORTSCANSOCKETSTO_USE
sockets. The default value for this parameter is set to 28ni8ng then proceeds
sequentially. The only spreader supported by the versi@pgBot that we eval-
uated is via NetBIOS.

GTBot: As shown in Table 1.4, GT Bot only includes support for simipdei-
zontal and vertical scanning.

Implications: There are several implications for bot propagation mecmasi

First, at present, botnets use relatively simple scanmohrtiques. This means that
it may be possible to develop statistical finger printingmoels to identify scans from
botnets in distributed monitors. Second, scanning metirddam requirements for
building and configuring network defenses based on firewaaltsintrusion detection
systems that consider scanning frequency. Finally, satode examination reveals
detail of scanning mechanisms that can enable developrhaatorate botnet prop-
agation models for analytic and simulation-based evalnatiVe project that future
versions of bot codebases will focus on propagation as anairienprovement, in-
cluding both flash mechanisms and more stealthy mechanisms.

1.3.5 Exploitsand Attack Mechanisms

Exploits refer to the specific methods for attacking knowineuwabilities on target
systems. Exploits are usually attempted in conjunctioh edanning for target hosts.
In this section we discuss the specific exploit modules hetlin each bot, and other
capabilities for launching remote attacks against targstesns.

Agobot: The most elaborate set of exploit modules among the familias
we analyzed is included with Agobot. In contrast with theestbot families,
Agobot’s evolution has included an ever broadening set pfaéts instead of
individual versions with their own exploits. This increas&gobot’s potential
for compromising targeted hosts. The exploits in the versibAgobot that we
evaluated include:

1. Bagle scanner: scans for back doors left by Bagle var@mnfsort 2745.

2. Dcom scanners (1/2): scans for the well known DCE-RPCebuafferflow.

3. MyDoom scanner: scans for back doors left by variants ef MyDoom

worm on port 3127.

4. Dameware scanner: scans for vulnerable versions of theeldare network
administration tool.

. NetBIOS scanner: brute force password scanning for oBI®S shares.

. Radmin scanner: scans for the Radmin buffer overflow.

. MS-SQL scanner: brute force password scanning for opanse@yers.

. Generic DD0S module: enables seven types of denial seatiack against
a targeted host. A list of the commands used to control thiégeks is given
in Table 1.9.

0 ~NO O

Table 1.9. Agobot DDos attack commands.

Command Description
ddos.udpflooettarget> <port><0=rand> <time>(secs)<delay>(ms)|Starts a UDP flood
ddos.synflooe host> <time> <delay> <port> Starts a SYN flood
ddos.httpflood<url> <number> <referrer> <delay> <recursive> |Starts an HTTP flood
ddos.phatsyrchost> <time> <delay> <port> Starts a PHAT SYN flood
ddos.phaticmp<host> <time> <delay> Starts PHAT ICMP flood
ddos.phatwonk<host> <time> <delay> Starts PHATwonk flood
ddos.targa3target> <time>(secs) Start a targa3 flood
ddos.stop stops all floods

SDBot: As discussed in Section 1.3.1, by virtue of its benign int8mBot does
not have any exploits packaged in its standard distribufitrere are, however,
numerous variants that include specific exploits. SDBotsdaelude modules
for sending both UDP and ICMP packets. While not overtly wialis, these can
certainly be used for simple flooding attacks. Commands tdrobthese capa-
bilities are listed in Table 1.10. As might be expected, ¢here also numerous
variants of SDBot that include different kinds of DDoS akaeodules.

Spybot: The exploits included in the version of Spybot that we evi@danly
included attacks on NetBIOS open shares. However, as witBogDhere are
many variants that include a wide range of exploits. Spy8bDoS interface is

Table 1.10. SDBot commands which could be used for DDoS attacks.

Command Description
udp <host> <# pkts> <pkt sz> <delay> <port>[Send a specified number of UDP packets
ping <host> <# pkts> <pkt sz> <timeout> Send a specified number of ICMP echo packets

also closely related to SDBot and includes the capabilitetaunching simple
UDP, ICMP and TCP SYN floods.

e GTBot: As mentioned earlier, the exploit set for the GT Bot code tateval-
uated was developed to include RPC-DCOM exploits. Like SDim Spybot,
there are many variants of GT Bot that include other well kn@xploits. Our
version of GT Bot only included capability to launch simp&MP floods. How-
ever, there are many variants of GT Bot that have other DDp3hilities such
as UDP and TCP SYN floods.

Implications: The set of exploits packaged with botnets suggest basidreequ
ments for host-based anti-virus systems and network iieindetection and preven-
tion signature sets. It seems clear that in the future, mot®will include the ability
to launch multiple exploits as in Agobot since this incresatbee opportunity for suc-
cess. The DDoS tools included in bots, while fairly straighward, highlight the
potential danger of large botnets. They also inform pokté#s for DDoS protection
strategies such as [22].

1.3.6 Malware Delivery Mechanisms

Packers and shell encoders have long been used in legitgofiteare distribution
to compress and obfuscate code. The same techniques havadumgged in botnet
malware for the same reasons. GT/SD/Spy Bots all delivér éxeloit and encoded
malware packaged in a single script. However, Agobot haptedia new strategy for
malware delivery based on separating exploits and delifégyidea is to first exploit
a vulnerability €.g.,via buffer overflow) and open a shell on the remote host. The
encoded malware binary is then uploaded using either HTTHT Br This separation
enables an encoder to be used across exploits thereby Bhiegrthe codebase and
potentially diversifying the resulting bit streams.

In Figure 1.2 we provide an example of the shell-encoder usethobot for
malware delivery. An important function of a shell-encoieto remove null bytes
(that terminate c-strings) from x86 instruction sequendsscan be seen in the Fig-
ure, the code begins with an XOR key value of 0x98 then chexg&ss if this results
in a string without null characters. If the check fails, mgily tries successive values
for the XOR key until it finds a value that works. This valuehigm copied over to
the shell code at position ENCODEBFFSETXORKEY.

Implications: The malware delivery mechanisms used by botnets have impli-
cations for network intrusion detection and preventiomatgres. In particular,
NIDS/NIPS benefit from knowledge of commonly used shell coded ability to
perform simple decoding. If the separation of exploit antivdey becomes more
widely adopted in bot code (as we anticipate it will), it segts that NIDS could
benefit greatly by incorporating rules that can detect f@ligp connection attempts.

char encoder[]=
"\XEB\X02\XEB\X05\XE8\XFI\XFF\XFF\XFF\X5B\x31\xC9\x 66\xBIWXFF\XFF"
"\x80\x73\XOE\XFF\x43\xE2\xF9";

int xorkey=0x98;

/I Create local copies of the shellcode and encoder

char *szShellCopy=(char *)malloc(iSCSize);

memset(szShellCopy, 0, iSCSize); memcpy(szShellCopy, sz OrigShell, iSCSize);
char *szEncoderCopy=(char *)malloc(iEncoderSize);

memset(szEncoderCopy, 0, iEncoderSize);

memcpy(szEncoderCopy, encoder, iEncoderSize);

if(pfnSC)
pfnSC(szShellCopy, iSCSize);

char *szShellBackup=(char *)malloc(iSCSize);
memset(szShellBackup, 0, iSCSize);
memcpy(szShellBackup, szShellCopy, iSCSize);

/I Set the content size in the encoder copy

char *szShellLength=(char *)&ISCSize;
szEncoderCopy[ENCODER_OFFSET_SIZE]=(char)szShellLen gth[O];
szEncoderCopy[ENCODER_OFFSET_SIZE+1]=(char)szShellL ength[1];

/I XOR the shellcode while it contains 0x5C, 0x00, OxOA or 0x0 D
while(contains(szShellCopy, iSCSize, "X5C’) ||

contains(szShellCopy, iSCSize, '\x00’) || \

contains(szShellCopy, iSCSize, "x0A") ||

contains(szShellCopy, iSCSize, '\x0D’))

{
memcpy(szShellCopy, szShellBackup, iSCSize); xorkey++;

for(int i=0;i<iSCSize;i++) szShellCopy[i]=szShellCopy [iI"xorkey;
szEncoderCopy[ENCODER_OFFSET_XORKEY]=xorkey;

free(szShellBackup);

Fig. 1.2. Agobot shell-encoding routine for malware delivery.

1.3.7 Obfuscation Mechanisms

Obfuscation refers to mechanisms that are used to hide tiafisdef what is be-
ing transmitted through the network and what arrives forcakien on end hosts.
While none of the bots we evaluated included TCP obfuscatiuth as those de-
scribed in [20], the aforementioned encoders provide aafiirsn in a limited way.
However, if the same key is used in each encoded deliveny,digmatures could be
generated quickly that would recognize a particular biusege Polymorphismhas
been suggested as a means for evading signatures basecatidic bjtesequences by
generating random encodings.

The only bot that currently supports any kind of polymorphis Agobot. There
are currently four different polymorphic encoding stragésgthat are supported:
POLY_TYPE_XOR, POLY_.TYPE_.SWAP (swap consecutive bytes), POI¥PE_ ROR
(rotate right), POLYTYPE_ROL (rotate left). While this code appears to function as
advertised, thorough analysis of its capabilities is leftftiture work.

Implications:While polymorphic botnet delivery appears to be a realitig hot
yet widely available across bot families. As such, a conegad focus on polymor-
phism by the network security community may not be warraatetiis time. How-
ever, while the polymorphic routine packaged with Agobatither simplistic, it is
conceivable that future botnets will have significantlygoi for polymorphism. As
a result, anti-virus systems and NIDS will need to evenyuddivelop mechanisms to
account for this capability.

1.3.8 Deception Mechanisms

Deception refers to the mechanisms used to evade detect@mnaobot is installed
on a target host. These mechanisms are also referredootkits Of the four bots
we analyzed, only Agobot had elaborate deception mechanighese includes)
tests for debuggers such as OllyDebug, Softlce and procd@fmpest for VMWare,
(i74) killing anti-virus processes, andi altering DNS entries of anti-virus software
companies to point to localhost.

Implications:The elaborate deception strategy of Agobot some ways rempies
a merging of botnets with other forms of malware such as mognd has several
implications. First, honeynet monitors need to be awareafvare that specifically
targets virtual machine environments. Second, it sugdestseed for better tools
for dynamic analysis of this malware since simply executimgm in VMware or
debuggers will provide false information. Finally, as the@sechanisms improve, it is
likely to become increasingly difficult to know that a systbas been compromised,
thereby complicating the task for host-based anti-virukrantkit detection systems.

1.4 Conclusions

Continued improvements and diversification of malware aaking the task of se-
curing networks against attacks and intrusions increasitifficult. The objective
of our work is to expand the knowledge base for security mesetarough system-
atic evaluation of malicious codebases. We advocate arpappthat includes both
static analysis of source code and dynamic profiling of etedaas. In this paper we
take a first step in this process by presenting an evaluatifmuoinstances of botnet
source code. We selected botnet code as our initial focusaditerelatively recent
emergence as one of the most lethal classes of Internetshrea

Overall, our source code evaluation highlights the sof@sbn and diverse ca-
pabilities of botnets. The details of our findings includsatétions of the primary
functional components of botnets organized into severgoaies. Some of the most
important of findings within these categories include theedie mechanisms for
sensitive information gathering on compromised hostseffeztive mechanisms for
remaining invisible once installed on a local host, and #latively simple com-
mand and control systems that are currently used. WhileRi@zhased command
and control systems remain an area that the network secaritynunity can poten-
tially exploit for defensive purposes, it is likely that geesystems will evolve toward

something like a peer-to-peer infrastructure in the netaréu(if they are not already
doing so).

The results in this paper represent a first step in a muchrigmpeess of de-
composing and documenting malware of all types. Ultimatetyanticipate that the
resulting database will enabfgoactivenetwork security. Our immediate next steps
will be to begin the process of dynamic profiling of botnet@xables using tools
like IDA Pro [4] and by running the executables in our own lediory environment.
Beyond that, we plan to use the lessons learned from thiy stutegin an IRC
monitoring effort at our university border router with thbjective of developing
new methods for identifying botnet communications. We gl to expand our
on-going honeynet measurement efforts to include botneitoring.

Acknowledgements

This work is supported in part by ARO grant DAAD19-02-1-030#d NSF grant
CNS-0347252. The second author was supported in part by eebae H.Landweber
NCR Graduate Fellowship. The views and conclusions coathiirerein are those of
the authors and should not be interpreted as necessaniBseting the official poli-
cies or endorsements, either expressed or implied, of teeadpvernment agencies
or the U.S. Government.

References

A

. F-Secure Corporation’s Data Security Summary for 2064:/fiwww.f-secure.com/2004,
2004.

. California Man Charged in Botnet Attacks. Reuters, Naven2005.

. Honeynet Scan of the Month 3&tp://www.honeynet.org/scans/scan32/, 2005.

. IDA Pro. http:/iwww.datarescue.com, 2005.

Regmon http:/mww.sysinternals.com, 2005.

SoftICE Driver Suite http://iwww.compuware.com/products/driverstudio/softice.htm, 2005.

. Sophos virus analyses. http://www.sophos.com/vifaknalyses, 2005.

C. Associates. GTBothitp://mww3.ca.com/securityadvisor/pest/pest.aspx?id=453073312, 1998.

. M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Wat3dre Internet Motion Sen-
sor: A Distributed Blackhole Monitoring System. Rroceedings of the Network and
Distributed Security Symposiy@an Diego, CA, January 2005.

10. P. Barford. The Wisconsin Advanced Internet Laboratbtip://wail.cs.wisc.edu, 2005.

11. J. Canavan. The evolution of irc bots.Rroceedings of Virus Bulletin Conference 2005
October 2005.

12. E. Cooke, F. Jahanian, and D. McPherson. The zombie uputthderstanding, detect-
ing and disrupting botnets. IRroceedings of Usenix Workshop on Stepts to Reducing
Unwanted Traffic on the Internet (SRUTI '0®)ambridge, MA, July 2005.

13. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mine, bnMaux, and X. Rival. The
Astree Static Analyzemttp://www.astree.ens.fr, 2005.

14. Coverity. Coverity Preventitp:/iww.coverity.com, 2005.

15. DETER. A laboratory for security research. http://wisinedu/deter, 2005.

16. D. Dietrich. Distributed Denial of Service (DDoS) Atkattools.

http://staff.washington.edu/dittrich/misc/ddos/, 200

©CONDUTAWN

17
18

19.
20.

21.
22.

23.
24.

25.
26.
27.
28.

29.

30.

31
32.
33.
34.
35.

36.
37.

38.

39.

40.

. J. Evers. Dutch Police Nab Suspected Bot Herders. CNE/&Nem, October 2005.

. German Honeynet Project. Tracking Botnets://www.honeynet.org/papers/bots, 2005.

A. Gostev. Malware Evolution: January - March, 2005p#ttvww.viruslist.com, 2005.
M. Handley, C. Kreibich, and V. Paxson. Network Intrus@etection: Evasion, Traf-
fic Normalization, and End-to-End Protocol Semantics.Ptaceedings of the USENIX
Security SymposiurwWashington, DC, August 2001.

The Honeynet Projedittp://project.honeynet.org, 2003.

S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-e:SBurviving Organized DDos
Attacks That Mimic Flash Crowds . IRroceedings of the USENIX Symposium on Net-
work Systems Design and ImplementatiBaston, MA, May 2005.

D. Kawamoto. Bots Slim Down to get Tough. CNET News.comyé&mber 2005.

A. Kumar, V. Paxson, and N. Weaver. Exploiting undedystructure for detailed re-
construction of an internet scale event. Rroceedings of ACM Internet Measurement
ConferenceNovember 2002.

McAfee. W32-Spybot.wormhttp//vil.nai.com/villcontent/v_100282.htm, 2003.

Metasploit. http://www.metasploit.com, 2005.

D. Moore, V. Paxson, S. Savage, C. Shannon, S. StandodiN. Weaver. Inside the
slammer worm. IrProceedings of IEEE Security and Privaduly 2003.

D. Moore and C. Shannon. The Spread of the Witty Wornkitp : // —
www.caida.org/analysis/security /witty/, 2004.

D. Moore, C. Shannon, and K. Claffy. Code red: A case studthe spread and victims
of an internet worm. IfProceedings of ACM Internet Measurement WorksiNgwvember
2002.

R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and ler&at. Characteristics of
internet background radiation. Rroceedings of ACM Internet Measurement Conference
Taormina, Italy, October 2004.

B. Saha and A. Gairola. Botnet: An Overivew. CERT-In WHwaper, CIWP-2005-05,
June 2005.

Sophos. Troj/Agobot-Anttp//www.sophos.comivirusinfo/analyses/trojagobota.html, 2002.
Sophos. Troj/SDBotittp/iwww.sophos.comivirusinfo/analyses/trojsdbot.html, 2002.

S. Staniford, V. Paxson, and N. Weaver. How to Own thetetgn Your Spare Time. In
Proceedings of the 11th USENIX Security Symposi082.

I. Thomson. Hackers Fight to Create Worlds Largest Bothétp://www.vnunet.com,
August 2005.

J. Ullrich. Dshield. http://www.dshield.org, 2005.

D. Verton. Organized Crime Invades Cyberspace. hitwwW.computerworld.com, Au-
gust 2004.

M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. SeoeG. Voelker, and S. Sav-
age. Scalability, fidelity and containment in the potemkitual honeyfarm. IrProceed-
ings of ACM Symposium on Operating Systems Principles (@8Bhton, England,
October 2005.

V. Yegneswaran, P. Barford, and D. Plonka. On the desidgruae of Internet sinks for
network abuse monitoring. IRroceedings of Recent Advances on Intrusion Detection
Sophia, France, September 2004.

V. Yegneswaran, P. Barford, and J. Ullrich. Internetlisions: Global characteristics and
prevalence. IfProceedings of ACM SIGMETRICSan Diego, CA, June 2003.

