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Abstract

We present a new kind of network perimeter monitoring
strategy, which focuses on recognizing the infection and
coordination dialog that occurs during a successful mal-
ware infection. BotHunter is an application designed to
track the two-way communication flows between inter-
nal assets and external entities, developing an evidence
trail of data exchanges that match a state-based infec-
tion sequence model. BotHunter consists of a correla-
tion engine that is driven by three malware-focused net-
work packet sensors, each charged with detecting spe-
cific stages of the malware infection process, includ-
ing inbound scanning, exploit usage, egg downloading,
outbound bot coordination dialog, and outbound attack
propagation. The BotHunter correlator then ties together
the dialog trail of inbound intrusion alarms with those
outbound communication patterns that are highly indica-
tive of successful local host infection. When a sequence
of evidence is found to match BotHunter’s infection di-
alog model, a consolidated report is produced to capture
all the relevant events and event sources that played a role
during the infection process. We refer to this analytical
strategy of matching the dialog flows between internal
assets and the broader Internet asdialog-based correla-
tion, and contrast this strategy to other intrusion detec-
tion and alert correlation methods. We present our exper-
imental results using BotHunter in both virtual and live
testing environments, and discuss our Internet release of
the BotHunter prototype. BotHunter is made available
both for operational use and to help stimulate research in
understanding the life cycle of malware infections.

1 Introduction
Over the last decade, malicious software ormalwarehas
risen to become a primary source of most of the scan-
ning [38], (distributed) denial-of-service (DOS) activi-
ties [28], and direct attacks [5], taking place across the
Internet. Among the various forms of malicious soft-
ware, botnetsin particular have recently distinguished

themselves to be among the premier threats to computing
assets [20]. Like the previous generations of computer
viruses and worms, a bot is aself-propagatingapplica-
tion that infects vulnerable hosts through direct exploita-
tion or Trojan insertion. However, all bots distinguish
themselves from the other malware forms by their abil-
ity to establish a command and control (C&C) channel
through which they can be updated and directed. Once
collectively under the control of aC&C server, bots form
what is referred to as abotnet. Botnets are effectively
a collection of slave computing and data assets to be
sold or traded for a variety of illicit activities, including
information and computing resource theft, SPAM pro-
duction, hosting phishing attacks, or for mounting dis-
tributed denial-of-service (DDoS) attacks [12, 34, 20].

Network-based intrusion detection systems (IDSs) and
intrusion prevention systems (IPSs) may come to mind as
the most appealing technology for detecting and mitigat-
ing botnet threats. Traditional IDSs, whether signature
based [30, 35] or anomaly based [46, 8], typically focus
on inbound packets flows for signs of malicious point-to-
point intrusion attempts. Network IDSs have the capacity
to detect initial incoming intrusion attempts, and the pro-
lific frequency with which they produce such alarms in
operational networks is well documented [36]. However,
distinguishing a successful local host infection from the
daily myriad of scans and intrusion attempts is as critical
and challenging a task as any facet of network defense.

Intrusion report correlation enables an analyst to ob-
tain higher-level interpretations of network sensor alert
streams, thereby alleviating noise-level issues with tradi-
tional network IDSs. Indeed, there is significant research
in the area of consolidating network security alarms into
coherent incident pictures. One major vein of research
in intrusion report correlation is that of alert fusion,i.e.,
clustering similar events under a single label [42]. The
primary goal of fusion is log reduction, and in most sys-
temssimilarity is based upon either attributing multiple
events to a single threat agent or providing a consoli-



dated view of a common set of events that target a single
victim. The bot infection problem satisfies neither cri-
terion. The bot infection process spans several diverse
transactions that occur in multiple directions and poten-
tially involves several active participants. A more appli-
cable area of alert correlation research is multistage at-
tack recognition, in which predefined scenario templates
capture multiple state transition sequences that may be
initiated by multiple threat agents [40, 29]. In Section 3
we discuss why predefined state transition models sim-
ply do not work well in bot infection monitoring. While
we argue that bot infections do regularly follow a series
of specific steps, we find it rare to accurately detect all
steps, and find it equally difficult to predict the order and
time-window in which these events are recorded.

Our Approach: We introduce an “evidence-trail” ap-
proach to recognizing successful bot infections through
the communication sequences that occur during the in-
fection process. We refer to this approach as the infec-
tion dialog correlationstrategy. In dialog correlation, bot
infections are modeled as a set of loosely ordered com-
munication flows that are exchanged between an inter-
nal host and one or more external entities. Specifically,
we model all bots as sharing a common set of under-
lying actions that occur during the infection life cycle:
target scanning, infection exploit, binary egg download
and execution, command and control channel establish-
ment, and outbound scanning. We neither assume that
all these eventsare requiredby all bots nor that every
eventwill be detectedby our sensor alert stream. Rather,
our dialog correlation system collects an evidence trail of
relevant infection events per internal host, looking for a
threshold combination of sequences that will satisfy our
requirements for bot declaration.

Our System: To demonstrate our methodology, we
introduce a passive network monitoring system called
BotHunter , which embodies our infection dialog cor-
relation strategy. The BotHunter correlator is driven
by Snort [35] with a customized malware-focused rule-
set, which we further augment with two additional bot-
specific anomaly-detection plug-ins for malware analy-
sis: SLADE and SCADE. SLADE implements a lossy
n-gram payload analysis of incoming traffic flows, tar-
geting byte-distribution divergences in selected proto-
cols that are indicative of common malware intrusions.
SCADE performs several parallel and complementary
malware-focused port scan analyses to both incoming
and outgoing network traffic. The BotHunter correlator
associates inbound scan and intrusion alarms with out-
bound communication patterns that are highly indicative
of successful local host infection. When a sufficient se-
quence of alerts is found to match BotHunter’s infec-
tion dialog model, a consolidated report is produced to
capture all the relevant events and event participants that

contributed to the infection dialog.
Contributions: Our primary contribution in this pa-

per is to introduce a new network perimeter monitor-
ing strategy, which focuses on detecting malware infec-
tions (specifically bots/botnets) through IDS-driven dia-
log correlation. We present an abstraction of the major
network packet dialog sequences that occur during a suc-
cessful bot infection, which we call ourbot infection di-
alog model.Based on this model we introduce three bot-
specific sensors, and our IDS-independent dialog corre-
lation engine. Ours is thefirst real-time analysis system
that can automatically derive a profile of the entire bot
detection process, including the identification of the vic-
tim, the infection agent, the source of the egg download,
and the command and control center.1 We also present
our analysis of BotHunter against more than 2,000 re-
cent bot infection experiences, which we compiled by
deploying BotHunter both within a high-interaction hon-
eynet and through a VMware experimentation platform
using recently captured bots. We validate our infection
sequence model by demonstrating how our correlation
engine successfully maps the network traces of a wide
variety of recent bot infections into our model.

The remainder of this paper is outlined as follows.
In Section 2 we discuss the sequences of communica-
tion exchanges that occur during a successful bot and
worm infection. Section 3 presents our bot infection di-
alog model, and defines the conditions that compose our
detection requirements. Section 4 presents the BotH-
unter architecture, and Section 5 presents our experi-
ments performed to assess BotHunter’s detection perfor-
mance. Section 6 discusses limitations and future work,
and Section 7 presents related work. Section 8 discusses
our Internet release of the BotHunter system, and in Sec-
tion 9 we summarize our results.

2 Understanding Bot Infection Sequences

Understanding the full complexity of the bot infection
life cycle is an important challenge for future network
perimeter defenses. From the vantage point of the net-
work egress position, distinguishing successful bot in-
fections from the continual stream of background ex-
ploit attempts requires an analysis of the two-way dia-
log flow that occurs between a network’s internal hosts
and the Internet. On a well-administered network, the
threat of a direct-connect exploit is limited by the extent
to which gateway filtering is enabled. However, contem-
porary malware families are highly versatile in their abil-
ity to attack susceptible hosts through email attachments,
infected P2P media, and drive-by-download infections.

1Our current system implements a classic bot infection dialog
model. One can define new models in an XML configuration file and
add new detection sensors. Our correlator is IDS-independent, flexible,
and extensible to process new models without modification.



Furthermore, with the ubiquity of mobile laptops and
virtual private networks (VPNs), direct infection of an
internal asset need not necessarily take place across an
administered perimeter router. Regardless of how mal-
ware enters a host, once established inside the network
perimeter the challenge remains to identify the infected
machine and remove it as quickly as possible.

For this present study, we focus on a rather narrow
aspect of bot behavior. Our objective is to understand
the sequence of network communications and data ex-
changes that occur between a victim host and other net-
work entities. To illustrate the stages of a bot infection,
we outline an infection trace from one example bot, a
variant of the Phatbot (aka Gaobot) family [4]. Figure 1
presents a summary of communication exchanges that
were observed during a local host Phatbot infection.

As with many common bots that propagate through
remote exploit injection, Phatbot first (step 1) probes an
address range in search of exploitable network services
or responses from Trojan backdoors that may be used to
enter and hijack the infected machine. If Phatbot receives
a connection reply to one of the targeted ports on a host,
it then launches an exploit or logs in to the host using a
backdoor. In our experimental case, a Windows work-
station replies to a 135-TCP (MS DCE/RPC) connection
request, establishing a connection that leads to an imme-
diate RPC buffer overflow (step 2). Once infected, the
victim host is directed by an upload shell script to open
a communication channel back to the attacker to down-
load the full Phatbot binary (step 3). The bot inserts it-
self into the system boot process, turns off security soft-
ware, probes the local network for additional NetBIOS
shares, and secures the host from other malware that may
be loaded on the machine. The infected victim next dis-
tinguishes itself as a bot by establishing a connection to a
botnetC&C server, which in the case of Phatbot is estab-
lished over an IRC channel (step 4). Finally, the newly
infected bot establishes a listen port to accept new binary
updates and begins scanning other external victims on
behalf of the botnet (step 5).

3 Modeling the Infection Dialog Process

While Figure 1 presents an example of a specific bot,
the events enumerated are highly representative of the
life cycle phases that we encounter across the various
bot families that we have analyzed. Our bot propagation
model is primarily driven by an assessment of outward-
bound communication flows that are indicative of behav-
ior associated with botnet coordination. Where possible,
we seek to associate such outbound communication pat-
terns with observed inbound intrusion activity. However,
this latter activity is not a requirement for bot declaration.
Neither are incoming scan and exploit alarms sufficient
to declare a successful malware infection, as we assume

that a constant stream of scan and exploit signals will be
observed from the egress monitor.

We model an infection sequence as a composition
of participants and a loosely ordered sequence of ex-
changes: Infection I =< A, V,C, V ′, E, D >, where A
= Attacker, V = Victim, E = Egg Download Location, C
= C&C Server, and V’ = the Victim’s next propagation
target. D represents an infection dialog sequence
composed of bidirectional flows that cross the egress
boundary. Our infection dialogD is composed of a set
of five potential dialog transactions (E1, E2, E3, E4,
E5), some subset of which may be observed during an
instance of a local host infection:

− E1: External to Internal Inbound Scan
− E2: External to Internal Inbound Exploit
− E3: Internal to External Binary Acquisition
− E4: Internal to ExternalC&C Communication
− E5: Internal to External Outbound Infection Scanning

Figure 2 illustrates our bot infection dialog model
used for assessing bidirectional flows across the network
boundary. Our dialog model is similar to the model pre-
sented by Rajab et al. in their analysis of 192 IRC bot
instances [33]. However, the two models differ in ways
that arise because of our specific perspective of egress
boundary monitoring. For example, we incorporate early
initial scanning, which is often a preceding observation
that occurs usually in the form of IP sweeps that tar-
get a relatively small set of selected vulnerable ports.
We also exclude DNSC&C lookups, which Rajab et
al. [33] include as a consistent precursor toC&C co-
ordination, because DNS lookups are often locally han-
dled or made through a designated DNS server via inter-
nal packet exchanges that should not be assumed visible
from the egress position. Further, we exclude local host
modifications and internal network propagation because
these are also events that are not assumed to be visible
from the egress point. Finally, we include internal-to-
external attack propagation, which Rajab et al. [33] ex-
clude. While our model is currently targeted for passive
network monitoring events, it will be straightforward to
include localhost-based or DNS-server-based IDSs that
can augment our dialog model.

Figure 2 is not intended to provide a strict ordering
of events, but rather to capture a typical infection dialog
(exceptions to which we discuss below). In the idealized
sequence of a direct-exploit bot infection dialog, the bot
infection begins with an external-to-internal communi-
cation flow that may encompass bot scanning (E1) or a
direct inbound exploit (E2). When an internal host has
been successfully compromised (we observe that many
compromise attempts regularly end with process dumps
or system freezes), the newly compromised host down-
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loads and instantiates a full malicious binary instance of
the bot (E3). Once the full binary instance of the bot is re-
trieved and executed, our model accommodates two po-
tential dialog paths, which Rajab et al. [33] refer to as the
bot Type I versus Type II split. Under Type II bots, the
infected host proceeds toC&C server coordination (E4)
before attempting self-propagation. Under a Type I bot,
the infected host immediately moves to outbound scan-
ning and attack propagation (E5), representing a classic
worm infection.

We assume that bot dialog sequence analysis must be
robust to the absence of some dialog events, must al-
low for multiple contributing candidates for each of the
various dialog phases, and must not require strict se-
quencing on the order in which outbound dialog is con-
ducted. Furthermore, in practice we have observed that
for Type II infections, time delays between the initial in-
fection events (E1 and E2) and subsequent outbound di-
alog events (E3, E4, and E5) can be significant—on the
order of several hours. Furthermore, our model must be
robust to failed E1 and E2 detections, possibly due to in-
sufficient IDS fidelity or due to malware infections that
occur through avenues other than direct remote exploit.

One approach to addressing the challenges of se-
quence order and event omission is to use a weighted
event threshold system that captures the minimum nec-
essary and sufficient sparse sequences of events under
which bot profile declarations can be triggered. For ex-
ample, one can define a weighting and threshold scheme
for the appearance of each event such that a minimum
set of event combinations is required before bot detec-
tion. In our case, we assert that bot infection declaration
requires a minimum of

Condition 1: Evidence of local host infection (E2),
AND evidence of outward bot coordination or attack
propagation (E3-E5); or

Condition 2: At least two distinct signs of outward
bot coordination or attack propagation (E3-E5).

In our description of the BotHunter correlation en-
gine in Section 4, we discuss a weighted event threshold
scheme that enforces the above minimum requirement
for bot declaration.

4 BotHunter: System Design

We now turn our attention to the design of a passive mon-
itoring system capable of recognizing the bidirectional
warning signs of local host infections, and correlating
this evidence against our dialog infection model. Our
system, referred to as BotHunter, is composed of a trio
of IDS components that monitor in- and out-bound traf-
fic flows, coupled with our dialog correlation engine that
produces consolidated pictures of successful bot infec-
tions. We envision BotHunter to be located at the bound-
ary of a network, providing it a vantage point to observe
the network communication flows that occur between the
network’s internal hosts and the Internet. Figure 3 illus-
trates the components within the BotHunter package.

Our IDS detection capabilities are composed on top
of the open source release of Snort [35]. We take full
advantage of Snort’s signature engine, incorporating an
extensive set of malware-specific signatures that we de-
veloped internally or compiled from the highly active
Snort community (e.g., [10] among other sources). The
signature engine enables us to produce dialog warnings
for inbound exploit usage, egg downloading, andC&C
patterns, as discussed in Section 4.1.3. In addition, we
have developed two custom plugins that complement the
Snort signature engine’s ability to produce certain dialog
warnings. Note that we refer to the various IDS alarms
asdialog warningsbecause we do not intend the individ-
ual alerts to be processed by administrators in search of
bot or worm activity. Rather, we use the alerts produced
by our sensors as input to drive a bot dialog correlation
analysis, the results of which are intended to capture and
report the actors and evidence trail of a complete bot in-
fection sequence.
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Figure 3: BotHunter System Architecture

Our two custom BotHunter plugins are called SCADE
and SLADE. SCADE, discussed in Section 4.1.1, pro-
vides inbound and outbound scan detection warnings
that are weighted for sensitivity toward malware-specific
scanning patterns. SLADE, discussed in Section 4.1.2,
conducts a byte-distribution payload anomaly detection
of inbound packets, providing a complementary non-
signature approach in inbound exploit detection.

Our BotHunter correlator is charged with maintaining
an assessment of all dialog exchanges, as seen through
our sensor dialog warnings, between all local hosts com-
municating with external entities across the Internet. The
BotHunter correlator manages the state of all dialog
warnings produced per local host in a data structure we
refer to as thenetwork dialog correlation matrix(Fig-
ure 4). Evidence of local host infection is evaluated and
expired from our correlator until a sufficient combination
of dialog warnings (E1–E5) crosses a weighted thresh-
old. When the bot infection threshold is crossed for a
given host, we produce a bot infection profile (illustrated
in Figure 7).

Finally, our correlator also incorporates a module that
allows users to report bot infection profiles to a remote
repository for global collection and evaluation of bot ac-
tivity. For this purpose, we utilize the Cyber-TA privacy-
enabled alert delivery infrastructure [32]. Our delivery
infrastructure first anonymizes all source-local addresses
reported within the bot infection profile, and then de-
livers the profile to our data repository through a TLS
over TOR [15] (onion routing protocol) network connec-
tion. These profiles will be made available to the research
community, ideally to help in the large-scale assessment
of bot dialog behavior, the sources and volume of vari-
ous bot infections, and for surveying whereC&C servers
and exploit sources are located.

4.1 A Multiple-Sensor Approach to Gathering In-
fection Evidence

4.1.1 SCADE: Statistical sCan Anomaly Detection
Engine

Recent measurement studies suggest that modern bots
are packaged with around 15 exploit vectors on average
[33] to improve opportunities for exploitation. Depend-
ing on how the attack source scans its target, we are likely
to encounter some failed connection attempts prior to a
successful infection.

To address this form aspect of malware interaction,
we have designed SCADE, a Snort preprocessor plug-
in with two modules, one for inbound scan detection (E1
dialog warnings) and another for detecting outbound at-
tack propagations (E5 dialog warnings) once our local
system is infected. SCADE E1 alarms provide a poten-
tial early bound on the start of an infection, should this
scan eventually lead to a successful infection.

Inbound Scan Detection:SCADE is similar in prin-
ciple to existing scan detection techniques like [35, 24].
However, SCADE has been specifically weighted toward
the detection of scans involving the ports often used by
malware. It is also less vulnerable to DoS attacks be-
cause its memory trackers do not maintain per-source-IP
state. Similar to the scan detection technique proposed
in [48], SCADE tracks only scans that are specifically
targeted to internal hosts, bounding its memory usage
to the number of inside hosts. SCADE also bases its
E1 scan detection on failed connection attempts, further
narrowing its processing. We define two types of ports:
HS (high-severity) ports representing highly vulnera-
ble and commonly exploited services (e.g., 80/HTTP,
135,1025/DCOM, 445/NetBIOS, 5000/UPNP, 3127/My-
Doom) andLS (low-severity) ports.2 Currently, we define

2Based on data obtained by analyzing vulnerability reports, mal-



26 TCP and 4 UDPHS ports and mark all others asLS

ports. We set different weights to a failed scan attempt
to different types of ports. An E1 dialog warning for a
local host is produced based on an anomaly score that is
calculated ass = w1Fhs + w2Fls, whereFhs andFls

indicate numbers of cumulative failed attempts at high-
severity and low-severity ports, respectively.

Outbound Scan Detection:SCADE’s outbound scan
detection coverage for E5 dialog warnings is based on a
voting scheme (AND, OR or MAJORITY) of three par-
allel anomaly detection models that track all external out-
bound connections per internal host:
• Outbound scan rate (s1): Detects local hosts that con-
duct high-rate scans across large sets of external ad-
dresses.
• Outbound connection failure rate (s2): Detects ab-
normally high connection fail rates, with sensitivity to
HS port usage. We calculate the anomaly scores2 =
(w1Fhs + w2Fls)/C, whereC is the total number of
scans from the host within a time window.
• Normalized entropy of scan target distribution (s3):
Calculates a Zipf (power-law) distribution of outbound
address connection patterns [3]. A uniformly distributed
scan target pattern provides an indication of a potential
outbound scan. We use an anomaly scoring technique
based on normalized entropy to identify such candidates:
s3 = H

ln(m) , where the entropy of scan target distribution

is H = −
∑m

i=1 pi ln(pi), m is the total number of scan
targets, andpi is the percentage of the scans at targeti.
Each anomaly module issues a subalert whensi ≥ ti,
where ti is a threshold. SCADE then uses a user-
configurable “voting scheme”,i.e., AND, OR, or MA-
JORITY, to combine the alerts from the three modules.
For example, the AND rule dictates that SCADE issues
an alert when all three modules issue an alert.

4.1.2 SLADE: Statistical PayLoad Anomaly
Detection Engine

SLADE is an anomaly-based engine for payload ex-
ploit detection. It examines the payload of every request
packet sent to monitored services and outputs an alert if
its lossy n-gram frequency deviates from an established
normal profile.

SLADE is similar to PAYL [46], which is a
payload-based 1-gram byte distribution anomaly detec-
tion scheme. PAYL examines the 1-gram byte distri-
bution of the packet payload,i.e., it extracts 256 fea-
tures each representing the occurrence frequency of one
of the 256 possible byte values in the payload. A nor-
mal profile for a service/port, e.g., HTTP, is constructed
by calculating the average and standard deviation of the
feature vector of the normal traffic to the port. PAYL

ware infection vectors and analysis reports of datasets collected at
Dshield.org and other honeynets.

calculates deviation distance of a test payload from the
normal profile using a simplified Mahalanobis distance,
d(x, y) =

∑255
i=0(|xi − yi|)/(σi + α), whereyi is the

mean,σi is the standard deviation, andα is a smooth-
ing factor. A payload is considered as anomalous if this
distance exceeds a predetermined threshold. PAYL is ef-
fective in detecting worm exploits with a reasonable false
positive rate as shown in [46, 47]. However, it could be
evaded by a polymorphic blending attack (PBA) [18]. As
discussed in [47, 18, 31], a generic n-gram version of
PAYL may help to improve accuracy and the hardness
of evasion. The n-grams extract n-byte sequence infor-
mation from the payload, which helps in constructing a
more precise model of the normal traffic compared to the
single-byte (i.e., 1-gram) frequency-based model. In this
case the feature space in use is not 256, but256n dimen-
sional. It is impractical to store and compute in a256n

dimension space for high-n-grams.
SLADE makes the n-gram scheme practical by using a

lossy structure while still maintaining approximately the
same accuracy as the original full n-gram version. We
use a fixed vector counter (with sizev) to store a lossy
n-gram distribution of the payload. When processing a
payload, we sequentially scan n-gram substringstr, ap-
ply some universal hash functionh(), and increment the
counter at the vector space indexed byh(str) mod v.
We then calculate the distribution of the hashed n-gram
indices within this (much) smaller vector spacev. We
defineF as the feature space of n-gram PAYL (with a to-
tal of 256n distinct features), andF’ as the feature space
of SLADE (with v features).

This hash function provides a mapping fromF to F’
that we utilize for space efficiency. We require onlyv
(e.g., v = 2, 000), whereas n-gram PAYL needs256n

(e.g., even for a small n=3,2563 = 224 ≈ 16M ). The
computational complexity in examining each payload is
still linear (O(L), whereL is the length of payload), and
the complexity in calculating distance isO(v) instead
of 256n. Thus, the runtime performance of SLADE is
comparable to 1-gram PAYL. Also note that although
both use hashing techniques, SLADE is different from
Anagram [45], which uses a Bloom filter to store all n-
gram substrings from normal payloads. The hash func-
tion in SLADE is for feature compression and reduction,
however the hash functions in Anagram are to reduce
the false positives of string lookup in Bloom filter. In
essence, Anagram is like a content matching scheme. It
builds a huge knowledge base of all known good n-gram
substrings using efficient storage and query optimiza-
tions provided by bloom filters, and examines a payload
to determine whether the number of its n-gram substrings
not in the knowledge base exceeds a threshold.

A natural concern of using such a lossy data structure
is the issue of accuracy: how many errors (false pos-



itives and false negatives) may be introduced because
of the lossy representation? To answer this question,
we perform the following simple analysis.3 Let us first
overview the reason why the original n-gram PAYL can
detect anomalies. We useγ to represent the number of
non-zero value features inF for a normal profile used
by PAYL. Similarly, γ′ is the number of non-zero value
features inF’ for a normal profile used by SLADE. For
a normal payload oflength = L, there is a total of
l = (L− n + 1) n-gram substrings. Among thesel sub-
strings,1 − βn percent substrings converge toγ distinct
features in the normal profile,i.e., these substrings share
similar distributions as the normal profile. The remaining
(small portion)βn percent of substrings are considered
as noise substrings that do not belong to theγ features
in the normal profile. For a malicious payload, if it can
be detected as an anomaly, it should have a much larger
portion of noise substringsβa (βa > βn).

We first analyze the false positives when using the
lossy structure representation to see how likely SLADE
will detect a normal (considered normal by n-gram
PAYL) payload as anomalous. For a normal payload, the
hashed indices of a1 − βn portion of substrings (that
converge toγ distinct features inF for the normal pro-
file of PAYL) should now converge in the new vector
space (intoγ′ distinct features inF’ for the normal pro-
file of SLADE). Because of the universal hash function,
hashed indices of theβn portion of noise substrings are
most likely uniformly distributed intoF’. As a result,
some of the original noise substrings may actually be
hashed to theγ′ distinct features in the normal profile
of SLADE (i.e., they may not be noise in the new fea-
ture space now). Thus, the deviation distance (i.e., the
anomaly score) can only decrease in SLADE. Hence, we
conclude that SLADE may not have a higher false posi-
tive rate than n-gram PAYL.

Now let us analyze the false negative rate,i.e., the like-
lihood that SLADE will treat a malicious payload (as
would be detected by n-gram PAYL) as normal. False
negatives happen when the hash collisions in the lossy
structure mistakenly map aβa portion of noise substrings
into theγ′ features (i.e., the normal profile) for SLADE.
By using the universal hash function, the probability for
a noise substring to fall intoγ′ out ofv space isγ

′

v . Thus,
the probability for all thelβa noise substrings to collide
into theγ′ portion is about(γ′

v )lβa . For example, if we
assumev = 2, 000, γ′ = 200, lβa = 100, then this prob-
ability is about(200/2000)100 = 1e− 100 ≈ 0. In prac-
tice, the probability of such collisions for partial noise
substrings is negligible. Thus, we believe that SLADE
does not incur a significant accuracy penalty compared to

3We consider our analysis not as an exact mathematical proof, but
an analytical description about the intuition behind SLADE.

full n-gram PAYL, while significantly reducing its stor-
age and computation complexity.

We measured the performance of SLADE in compar-
ison to 1-gram PAYL by using the same data set as in
[31]. The training and test data sets used were from
the first and following four days of HTTP requests from
the Georgia Tech campus network, respectively. The at-
tack data consists of 18 HTTP-based buffer overflow at-
tacks, including 11 regular (nonpolymorphic) exploits,
6 mimicry exploits generated by CLET, and 1 polymor-
phic blending attack used in [18] to evade 2-gram PAYL.
In our experiment, we setn = 4, v = 2, 048.4

Table 1 summarizes our experimental results. Here,
DFP is the desired false positive rate,i.e., the rejection
rate in the training set. RFP is the “real” false positive
rate in our test data set. The detection rate is measured
on the attack data set and is defined as the number of at-
tack packets classified as anomalous divided by the total
number of packets in the attack instances. We conclude
from the results that SLADE performs better with respect
to both DFP and RFP than the original PAYL (1-gram)
system. Furthermore, we discovered that the minimum
RFP for which PAYL is able to detect all attacks, includ-
ing the polymorphic blending attack, is 4.02%. This is
usually considered intolerably high for network intrusion
detection. On the other hand, the minimum RFP required
for SLADE to detect all attacks is 0.3601%. As shown
in [31], 2-gram PAYL does not detect the polymorphic
blending attack even if we are willing to tolerate an RFP
as high as 11.25%. This is not surprising given that the
polymorphic blending attack we used was specifically
tailored to evade 2-gram PAYL. We also find that SLADE
is comparable to (or even better than) a well-constructed
ensemble IDS that combines 11 one-class SVM classi-
fiers [31], and detects all the attacks, including the poly-
morphic blending attack, for an RFP at around 0.49%.
SLADE also has the added advantage of more efficient
resource utilization, which results in shorter training and
execution times when compared to the ensemble IDS.

4.1.3 Signature Engine: Bot-Specific Heuristics

Our final sensor contributor is the Snort signature engine.
This module plays a significant role in detecting several
of the classes of dialog warnings from our bot infection
dialog model. Snort is our second sensor source for di-
rect exploit detection (class E2), and our primary source
for binary downloading (E3) andC&C communications
(E4). We organize the rules selected for BotHunter into
four separate rule files, covering 1046 E2 rules, 71 E3
rules, 246 E4 rules, and a small collection of 20 E5 rules,
for total of 1383 heuristics. The rules are primarily de-

4One can also choose a randomv to better defeat evasion attacks
like PBA. Also one may use multiple different hash functions and vec-
tors for potential better accuracy and hardness of evasion.



Table 1: Performance of 1-gram PAYL and SLADE
DFP(%) 0.0 0.01 0.1 1.0 2.0 5.0 10.0

PAYL RFP(%) 0.00022 0.01451 0.15275 0.92694 1.86263 5.69681 11.05049
Detected Attacks 1 4 17 17 17 18 18
Detection Rate(%) 0.8 17.5 69.1 72.2 72.2 73.8 78.6

SLADE RFP(%) 0.0026 0.0189 0.2839 1.9987 3.3335 6.3064 11.0698
Detected Attacks 3 13 17 18 18 18 18
Detection Rate(%) 20.6 74.6 92.9 99.2 99.2 99.2 99.2

rived from the Bleeding-Edge [10] and SourceFire’s reg-
istered free rulesets.

All the rulesets were selected specifically for their rel-
evance to malware identification. Our rule selections are
continually tested and reviewed across operational net-
works and our live honeynet environment. It is typical
for our rule-based heuristics to produce less than 300
dialog warnings per 10-day period monitoring an oper-
ational border switch space port of approximately 130
operational hosts (SRI Computer Science Laboratory).

Our E2 ruleset focuses on the full spectrum of external
to internal exploit injection attacks, and has been tested
and augmented with rules derived from experimentation
in our medium and high interactive honeynet environ-
ment, where we can observe and validate live malware
infection attempts. Our E3 rules focus on (malware)
executable download events from external sites to in-
ternal networks, covering as many indications of (ma-
licious) binary executable downloads and download ac-
knowledgment events as are in the publicly available
Snort rulesets. Our E4 rules cover internally-initiated
bot command and control dialog, and acknowledgment
exchanges, with a significant emphasis on IRC and URL-
based bot coordination.5 Also covered are commonly
used Trojan backdoor communications, and popular bot
commands built by keyword searching across common
major bot families and their variants. A small set of E5
rules is also incorporated to detect well-known internal
to external backdoor sweeps, while SCADE provides the
more in-depth hunt for general outbound port scanning.

4.2 Dialog-Based IDS Correlation Engine

The BotHunter correlator tracks the sequences of IDS
dialog warnings that occur between each local host
and those external entities involved in these dialog ex-
changes. Dialog warnings are tracked over a temporal
window, where each contributes to an overall infection
sequence score that is maintained per local host. We in-
troduce a data structure called thenetwork dialog corre-
lation matrix, which is managed, pruned, and evaluated
by our correlation engine at each dialog warning inser-
tion point. Our correlator employs a weighted thresh-
old scoring function that aggregates the weighted scores

5E4 rules are essentially protocol, behavior and payload content sig-
nature, instead of a hard-coded knownC&C domain list.

of each dialog warning, declaring a local host infected
when a minimum combination of dialog transactions oc-
cur within our temporal pruning interval.

Figure 4 illustrates the structure of ournetwork dialog
correlation matrix. Each dynamically-allocated row cor-
responds to a summary of the ongoing dialog warnings
that are raised between an individual local host and other
external entities. The BotHunter correlator manages the
five classes of dialog warnings presented in Section 3 (E1
through E5), and each event cell corresponds to one or
more (possibly aggregated) sensor alerts that map into
one of these five dialog warning classes. This correlation
matrix dynamically grows when new activity involving a
local host is detected, and shrinks when the observation
window reaches an interval expiration.

In managing the dialog transaction history we employ
an interval-based pruning algorithm to remove old di-
alog from the matrix. In Figure 4, each dialog may
have one or two expiration intervals, corresponding to
a soft prune timer(the open-faced clocks) and ahard
prune timer(the filled clocks). The hard prune inter-
val represents a fixed temporal interval over which di-
alog warnings are allowed to aggregate, and the end of
which results in the calculation of our threshold score.
The soft prune interval represents a smaller temporal
window that allows users to configure tighter pruning
interval requirements for high-production dialog warn-
ings (inbound scan warnings are expired more quickly
by the soft prune interval), while the others are allowed
to accumulate through the hard prune interval. If a dia-
log warning expires solely because of a soft prune timer,
the dialog is summarily discarded for lack of sufficient
evidence (an example is row 1 in Figure 4 where only E1
has alarms). However, if a dialog expires because of a
hard prune timer, the dialog threshold score is evaluated,
leading either to a bot declaration or to the complete re-
moval of the dialog trace should the threshold score be
found insufficient.

To declare that a local host is infected, BotHunter
must compute a sufficient and minimum threshold of ev-
idence (as defined in Section 3) within its pruning inter-
val. BotHunter employs two potential criteria required
for bot declaration: 1) an incoming infection warning
(E2) followed by outbound local host coordination or ex-
ploit propagation warnings (E3-E5), or 2) a minimum of



Int. Host Timer E1 E2 E3 E4 E5 
192.168.12.1  Aa…Ab     

192.168.10.45   Ac…Ad  Ae…Af  
192.168.10.66   Ag    
192.168.12.46     Ah…Ai Aj…Ak 

:       
192.168.11.123  Al Am…An Ao   
 

Figure 4: BotHunter Network Dialog Correlation Matrix

at least two forms of outbound bot dialog warnings (E3-
E5). To translate these requirements into a scoring al-
gorithm we employ a regression model to estimate di-
alog warning weights and a threshold value, and then
test our values against a corpus of malware infection
traces. We define an expectation table of predictor vari-
ables that match our conditions and apply a regression
model where the estimated regression coefficients are the
desired weights shown in Table 2. For completeness,
the computed expectation table is provided in the project
website [1].

Coefficients Standard Error
E1 0.09375 0.100518632
E2 rulebase 0.28125 0.075984943
E2 slade 0.09375 0.075984943
E3 0.34375 0.075984943
E4 0.34375 0.075984943
E5 0.34375 0.075984943

Table 2: Initial Weighting

These coefficients provide an approximate weighting
system to match the initial expectation table6. We apply
these values to our expectation table data to establish a
threshold between bot and no-bot declaration. Figure 5
illustrates our results, where bot patterns are at X-axis
value 1, and non-bot patterns are at X-axis 0. Bot scores
are plotted vertically on the Y-axis. We observe that all
but one non-bot patterns score below 0.6, and all but 2
bot patterns score above 0.65. Next, we examine our
scoring model against a corpus of BotHunter IDS warn-
ing sets produced from successful bot and worm infec-
tions captured in the SRI honeynet between March and
April 2007. Figure 6 plots the actual bot scores produced
from these real bot infection traces. All observations pro-
duce BotHunter scores of 0.65 or greater.

When a dialog sequence is found to cross the thresh-
old for bot declaration, BotHunter produces abot pro-
file. The bot profile represents a full analysis of roles

6In our model, we define E1 scans and the E2 anomaly score (pro-
duced by Slade) as increasers to infection confidence, such that our
model lowers their weight influence.

of the dialog participants, summarizes the dialog alarms
based on which dialog classes (E1-E5) the alarms map,
and computes the infection time interval. Figure 7 (right)
provides an example of a bot profile produced by the
BotHunter correlation engine. The bot profile begins
with an overall dialog anomaly score, followed by the IP
address of the infected target (the victim machine), infec-
tor list, and possibleC&C server. Then it outputs the di-
alog observation time and reporting time. The raw alerts
specific to this dialog are listed in an organized (E1-E5)
way and provide some detailed information.

5 Evaluating Detection Performance

To evaluate BotHunter’s performance, we conducted sev-
eral controlled experiments as well as real world deploy-
ment evaluations. We begin this section with a discus-
sion of our detection performance while exposing BotH-
unter to infections from a wide variety of bot fami-
lies usingin situ virtual network experiments. We then
discuss a larger set of true positive and false negative
results while deploying BotHunter to a live VMWare-
based high-interaction honeynet. This recent experi-
ment exposed BotHunter to 2,019 instances of Windows
XP and Windows 2000 direct-exploit malware infections
from the Internet. We follow these controlled experi-
ments with a brief discussion of an example detection
experience using BotHunter during a live operational de-
ployment.

Next, we discuss our broader testing experiences in
two network environments. Here, our focus is on un-
derstanding BotHunter’s daily false positive (FP) perfor-
mance, at least in the context of two significantly dif-
ferent operational environments. A false positive in this
context refers to the generation of abot profile in re-
sponse to a non-infection traffic flow, not to the number
of IDS dialog warnings produced by the BotHunter sen-
sors. As stated previously, network administrators are
not expected to analyze individual IDS alarms. Indeed,
we anticipate external entities to regularly probe and at-
tack our networks, producing a regular flow of dialog
warnings. Rather, we assert (and validate) that the dialog
combinations necessary to cause a bot detection should



Figure 5: Scoring Plot from Expectation Table

be rarely encountered in normal operations.

5.1 Experiments in anIn situ Virtual Network

Our evaluation setup uses a virtual network environment
of three VMware guest systems. The first is a Linux
machine with IRC server installed, which is used as the
C&C server, and the other two are Windows 2000 in-
stances. We infect one of the Windows instances and
wait for it to connect to ourC&C server. Upon connec-
tion establishment, we instruct the bot to start scanning
and infecting neighboring hosts. We then await the in-
fection and IRCC&C channel join by the second Win-
dows instance. By monitoring the network activity of
the second victim, we capture the full infection dialog.
This methodology provides a useful means to measure
the false negative performance of BotHunter.

We collected 10 different bot variants from three of the
most well-known IRC-based bot families [20]: Agobot/
Gaobot/Phatbot, SDBot/RBot/UrBot/UrXBot, and the
mIRC-based GTbot. We then ran BotHunter in this vir-
tual network and limited its correlation focus on the vic-
tim machine (essentially we assume the HOMENET is
the victim’s IP). BotHunter successfully detected all bot
infections (and produced bot profiles for all).

We summarize our measurement results for this vir-
tual network infection experiment in Table 3. We use
Yes or No to indicate whether a certain dialog warning
is reported in the final profile. The two numbers within
brackets are the number of generated dialog warnings in
the whole virtual network and the number involving our
victim, respectively. For example, for Phatbot-rls, 2,834
dialog warnings are generated by E2[rb] ([rb] means
Snort rule base, [sl] means SLADE), but only 46 are rel-
evant to our bot infection victim. Observe that although
many warnings are generated by the sensors, only one
bot profile is generated for this infection. This shows that
BotHunter can significantly reduce the amount of infor-
mation a security administrator needs to analyze. In our
experiments almost all sensors worked as we expected.
We do not see E1 events for RBot because the RBot fam-

Figure 6: Scoring Plot: 2019 Real Bot Infections

ily does not provide any commands to trigger a vertical
scan for all infection vectors (such as the “scan.startall”
command provided by the Agobot/Phatbot family). The
bot master must indicate a specific infection vector and
port for each scan. We set our initial infection vector to
DCOM, and since this was successful the attacking host
did not attempt further exploits.

Note that two profiles are reported in the gt-with-dcom
case. In the first profile, only E2[rb],E2[sl] and E4 are
observed. In profile 2, E4 and E5 are observed (which
is the case where we miss the initial infection periods).
Because this infection scenario is very slow and lasts
longer than our 4-minute correlation time window. Fur-
thermore, note that we do not have any detected E3 di-
alog warnings reported for this infection sequence. Re-
gardless, BotHunter successfully generates an infection
profile. This demonstrates the utility of BotHunter’s
evidence-trail-based dialog correlation model. We also
reran this experiment with a 10-minute correlation time
window, upon which BotHunter also reported a single
infection profile.

5.2 SRI Honeynet Experiments

Our experimental honeynet framework has three integral
components. The first componentDrone manageris a
software management component that is responsible for
keeping track of drone availability and forwarding pack-
ets to various VMware instances. The address of one of
the interfaces of this Intel Xeon 3 GHz dual core system
is set to be the static route for the unused /17 network.
The other interface is used for communicating with the
high-interaction honeynet. Packet forwarding is accom-
plished using network address translation. One impor-
tant requirements for this system is to keep track of in-
fected drone systems and to recycle uninfected systems.
Upon detecting a probable infection (outbound connec-
tions), we mark the drone as “tainted” to avoid reas-
signing that host to another source. Tainted drones are
saved for manual analysis or automatically reverted back
to previous clean snapshots after a fixed timeout. One



Table 3: Dialog Summary of Virtual Network Infections
E1 E2[rb] E2[sl] E3 E4 E5

agobot3-priv4 Yes(2/2) Yes(9/8) Yes(6/6) Yes(5) Yes(38/8) Yes(4/1)
phat-alpha5 Yes(14/4) Yes(5,785/5,721) Yes(6/2) Yes(3/3) Yes(28/26) Yes(4/2)
phatbot-rls Yes(11/3) Yes(2,834/46) Yes(6/2) Yes(8/8) Yes(69/20) Yes(6/2)
rbot0.6.6 No(0) Yes(2/1) Yes(2/1) Yes(2/2) Yes(65/24) Yes(2/1)
rxbot7.5 No(0) Yes(2/2) Yes(2/2) Yes(2/2) Yes(70/27) Yes(2/1)
rx-asn-2-re-workedv2 No(0) Yes(4/3) Yes(3/2) Yes(2/2) Yes(59/18) Yes(2/1)
Rxbot-ak-0.7-Modded.by.Uncanny No(0) Yes(3/2) Yes(3/2) Yes(2/2) Yes(73/26) Yes(2/1)
sxtbot6.5 No(0) Yes(3/2) Yes(3/2) Yes(2/2) Yes(65/24) Yes(2/1)
Urx-Special-Ed-UltrA-2005 No(0) Yes(3/2) Yes(3/2) Yes(2/2) Yes(68/22) Yes(2/1)
gt-with-dcom-profile1 No(1/0) Yes(5/3) Yes(6/2) No(0) Yes(221/1) No(4/0)
gt-with-dcom-profile2 No(1/0) No(5/0) No(6/0) No(0) Yes(221/44) Yes(4/2)
gt-with-dcom-10min-profile No(1/0) Yes(5/3) Yes(6/3) No(0) Yes(221/51) Yes(4/2)

of the interesting observations during our study was that
most infection attempts did not succeed even on com-
pletely unpatched Windows 2000 and Windows XP sys-
tems. As a result, a surprisingly small number of VM
instances was sufficient to monitor the sources contact-
ing the entire /17 network. The second component is the
high-interaction-honeynetsystem, which is hosted in a
high-performance Intel Xeon 3 GHz dual core, dual CPU
system with 8 GB of memory. For the experiments listed
in this paper, we typically ran the system with 9 Win-
XP instances, 14 Windows 2000 instances (with two dif-
ferent service pack levels), and 3 Linux FC3 instances.
The system was moderately utilized in this load. The fi-
nal component is theDNS/DHCP server, which dynami-
cally assigns IP addresses to VMware instances and also
answers DNS queries from these hosts.

Over a 3-week period between March and April 2007,
we analyzed a total of 2,019 successful WinXP and
Win2K remote-exploit bot or worm infections. Each
malware infection instance succeeded in causing the hon-
eypot to initiate outbound communications related to the
infection. Through our analysis of these traces using
BotHunter sensor logs, we were able to very reliably ob-
serve the malware communications associated with the
remote-to-local network service infection and the mal-
ware binary acquisition (egg download). In many in-
stances we also observed the infected honeypot proceed
to establish C&C communications and attempt to prop-
agate to other victims in our honeynet. Through some
of this experiment, our DNS service operated unreliably
and some C&C coordination events were not observed
due to DNS lookup failures.

Figure 7 illustrates a sample infection that was de-
tected using the SRI honeynet, and the corresponding
BotHunter profile. W32/IRCBot-TO is a very recent (re-
leased January 19, 2007) network worm/bot that propa-
gates through open network shares and affects both Win-
dows 2000 and Windows XP systems [37]. The worm
uses the IPC share to connect to theSRVSVCpipe and
leverages the MS06-40 exploit [27], which is a buffer

overflow that enables attackers to craft RPC requests that
can execute arbitrary code. This mechanism is used to
force the victim to fetch and execute a binary named ne-
tadp.exe from the system folder. The infected system
then connects to the z3net IRC network and joins two
channels upon which it is instructed to initiate scans of
203.0.0.0/8 network on several ports. Other bot families
successfully detected by BotHunter included variants of
W32/Korgo, W32/Virut.A and W32/Padobot.

Overall, BotHunter detected a total of 1,920 of these
2,019 successful bot infections. This represents a95.1%
true positive rate. All malware instances observed dur-
ing this period transmitted their exploits through ports
TCP-445 or TCP-139. This is very common behavior, as
the malware we observe tends to exploit the first vulner-
able port that replies to a targeted scans, and ports TCP-
445 and TCP-139 are usually among the first ports tested.
The infection set analyzed exhibited limited diversity in
the infection transmission methods, and overall we ob-
served roughly 40 unique patterns in the dialog warnings
produced.

This experiment produced 99 bot infections thatdid
not produce bot profiles,i.e.,a 4.9% false negative rate.
To explain these occurrences we manually examined
each bot infection trace that eluded BotHunter, using tcp-
dump and ethereal. The reasons for these failed bot de-
tections can be classified into three primary categories:
infection failures, honeynet setup or policy failures, or
data corruption failures.
• Infection failures:We observed infections in which

the exploit apparently led to instability and eventual fail-
ure in the infected host. More commonly, we observed
cases in which the infected victim attempt to “phone
home,” but the SYN request received no reply.
• Honeynet setup and policy failures:We observed

that our NAT mechanism did not correctly translate
application-level address requests (e.g., ftp PORT com-
mands). This prevented several FTP egg download con-
nection requests from proceeding, which would have
otherwise led to egg download detections. In addition,



some traces were incomplete due to errors in our honey-
pot recycling logic which interfered with our observation
of the infection logic.
• Data corruption failures:Data corruption was the

dominant reason (86% of the failed traces) in preventing
our BotHunter sensors from producing dialog warnings.
We are still investigating the cause behind these corrup-
tions, but suspect that these likely happened during log
rotations by the Drone manager.

Discussion:In addition to the above false negative ex-
periences, we also recognize that others reasons could
prevent BotHunter from detecting infections. A natural
extension of ourinfection failuresis for a bot to pur-
posely lay dormant once it has infected a host to avoid
association of the infection transmission with an out-
bound egg download or coordination event. This strategy
could be used successfully to circumvent BotHunter de-
ployed with our default fixed pruning interval. While we
found some infected victims failed to phone home, we
could also envision the egg download source eventually
responding to these requests after the BotHunter prun-
ing interval, causing a similar missed association. Sen-
sor coverage is of course another fundamental concern
for any detection mechanism. Finally, while these re-
sults are highly encouraging, the honeynet environment
provided a low-diversity in bot infections, in which at-
tention was centered on direct exploits of TCP-445 and
TCP-139. We did not provide a diversity of honeypots
with various OSs, vulnerable services, or Trojan back-
doors enabled, to fully examine the behavioral complex-
ities of bots or worms.

5.3 An Example Detection in a Live Deployment

In addition to our laboratory and honeynet experiences,
we have also fielded BotHunter to networks within the
Georgia Tech campus network and within an SRI lab-
oratory network. In the next sections we will discuss
these deployments and our efforts to evaluate the false
positive performance of BotHunter. First, we will briefly
describe one example host infection that was detected us-
ing BotHunter within our Georgia Tech campus network
experiments.

In early February 2007, BotHunter detected a bot in-
fection that produced E1, E4 and E5 dialog warnings.
Upon inspection of the bot profile, we observed that the
bot-infected machine was scanned, joined an IRC chan-
nel, and began scanning other machines during the BotH-
unter time window. One unusual element in this experi-
ence was the omission of the actual infection transmis-
sion event (E2), which is observed with high-frequency
in our live honeynet testing environment. We assert that
the bot profile represents an actual infection because dur-
ing our examination of this infection report, we discov-
ered that the target of the E4 (C&C Server) dialog warn-

ing was an address that was blacklisted both by the Shad-
owServer and the botnet mailing list as a known C&C
server during the time of our bot profile.

5.4 Experiments in a University Campus Network

In this experiment, we evaluate the detection and false
positive performance of BotHunter in a production cam-
pus network (at the College of Computing [CoC] at
Georgia Tech). The time period of this evaluation was
between October 2006 and February 2007.

The monitored link exhibits typical diurnal behavior
and a sustained peak traffic of over 100 Mbps during the
day. While we were concerned that such traffic rates
might overload typical NIDS rulesets and real-time de-
tection systems, our experience shows that it is possible
to run BotHunter live under such high traffic rates us-
ing commodity PCs. Our BotHunter instance runs on
a Linux server with an Intel Xeon 3.6 GHz CPU and 6
GB of memory. The system runs with average CPU and
memory utilization of 28% and 3%, respectively.

To evaluate the representativeness of this traffic, we
randomly sampled packets for analysis (about 40 min-
utes). The packets in our sample, which were almost
evenly distributed between TCP and UDP, demonstrated
wide diversity in protocols, including popular protocols
such as HTTP, SMTP, POP, FTP, SSH, DNS, and SNMP,
and collaborative applications such as IM (e.g., ICQ,
AIM), P2P (e.g., Gnutella, Edonkey, bittorrent), and
IRC, which share similarities with infection dialog (e.g.,
two-way communication). We believe the high volume
of background traffic, involving large numbers of hosts
and a diverse application mix, offers an appealing en-
vironment to confirm our detection performance, and to
examine the false positive question.

First, we evaluated the detection performance of
BotHunter in the presence of significant background traf-
fic. We injected bot traffic captured in the virtual network
(from the experiments described in Section 5.1) into the
captured Georgia Tech network traffic. Our motivation
was to simulate real network infections for which we
have the ground truth information. In these experiments,
BotHunter correctly detected all 10 injected infections
(by the 10 bots described in Section 5.1).

Next, we conducted a longer-term (4 months) eval-
uation of false alarm production. Table 4 summarizes
the number of dialog warnings generated by BotHunter
for each event type from October 2006 to January 2007.
BotHunter sensors generated about 2,563,402 (more than
20,000 per day) raw dialog warnings from all the five
event categories. For example, many E3 dialog warn-
ings report on Windows executable downloads, which
by themselves do not shed light on the presence of ex-
ploitable vulnerabilities. However, our experiments do
demonstrate that the alignment of the bot detection con-



Table 4: Raw Alerts of BotHunter in 4 Month Operation in CoC Network
Event E1 E2[rb] E2[sl] E3 E4 E5
Alert# 550,373 950,112 316,467 1,013 697,374 48,063

ditions outline in Section 3 rarely align within a stream
of dialog warnings from normal traffic patterns. In fact,
only 98 profiles were generated in 4 months, less than
one per day on average.

In further analyzing these 98 profiles, we had the fol-
lowing findings. First, there are no false positives re-
lated to any normal usage of collaborative applications
such as P2P, IM, or IRC. Almost two-thirds (60) of the
bot profiles involved access to an MS-Exchange SMB
server (33) and SMTP server (27). In the former case,
the bot profiles described a NETBIOS SMB-DS IPC$
unicode share access followed by a windows executable
downloading event. Bleeding Edge Snort’s IRC rules are
sensitive to some IRC commands (e.g., USER) that fre-
quently appear in the SMTP header. These issues could
easily be mitigated by additional whitelisting of certain
alerts on these servers. The remaining profiles contained
mainly two event types and with low overall confidence
scores. Additional analysis of these incidents was com-
plicated by the lack of full packet traces in our high-
speed network. We can conservatively assume that they
are false positives and thus our experiments here provide
a reasonable estimate of the upper bound on the number
of false alarms (less than one) in a busy campus network.

5.5 Experiments in an Institutional Laboratory

We deployed BotHunter live on a small well-
administered production network (a lightly used /17 net-
work that we can say with high confidence is infection
free). Here, we describe our results from running BotH-
unter in this environment. Our motivation for conducting
this experiment was to obtain experience with false posi-
tive production in an operational environment, where we
could also track all network traces and fully evaluate the
conditions that may cause the production of any unex-
pected bot profiles.

BotHunter conducted a 10-day data stream monitor-
ing test from the span port position of an egress border
switch. The network consists of roughly 130 active IP
addresses, an 85% Linux-based host population, and an
active user base of approximately 54 people. During this
period, 182 million packets were analyzed, consisting
of 152 million TCP packets (83.5%), 15.8 million UDP
packets (8.7%), and 14.1 million ICMP packets (7.7%).
Our BotHunter sensors produced 5,501 dialog warnings,
composed of 1,378 E1 scan events, 20 E2 exploit sig-
nature events, 193 E3 egg-download signature events,
7 E4 C&C signature events and 3,904 E5 scan events.
From these dialog warnings, the BotHunter correlator

produced just one bot profile. Our subsequent analysis of
the packets that caused the bot profile found that this was
a false alarm. Upon packet inspection, it was found that
the session for which the bot declaration occurred con-
sisted of a 1.6 GB multifile FTP transfer, during which a
binary image was transferred with content that matched
one of our buffer overflow detection patterns. The buffer
overflow false alarm was coupled with a second MS Win-
dows binary download, which caused BotHunter to cross
our detection threshold and declare a bot infection.

6 Limitations and Future Work

Several important practical considerations present chal-
lenges in extending and adapting BotHunter for arbitrary
networks in the future.

Adapting to Emerging Threats and Adversaries:
Network defense is a perennial arms race7 and we an-
ticipate that the threat landscape could evolve in several
ways to evade BotHunter. First, bots could use encrypted
communication channels forC&C. Second, they could
adopt more stealthy scanning techniques. However, the
fact remains that hundreds of thousands of systems re-
main unprotected, attacks still happen in the clear, and
adversaries have not been forced to innovate. Open-
source systems such as BotHunter would raise the bar for
successful infections. Moreover, BotHunter could be ex-
tended with anomaly-based “entropy detectors” for iden-
tification of encrypted channels. We have preliminary re-
sults that are promising and defer deeper investigation to
future work. We are also developing new anomaly-based
C&C detection schemes (for E4).

It is also conceivable that if BotHunter is widely de-
ployed, adversaries would devise clever means to evade
the system,e.g., by using attacks on BotHunter’s dia-
log history timers. One countermeasure is to incorporate
an additional random delay to the hard prune interval,
thereby introducing uncertainty into how long BotHunter
maintains local dialog histories.

Incorporating Additional State Logic: The current
set of states in the bot infection model was based on the
behavior of contemporary bots. As bots evolve, it is con-
ceivable that this set of states would have to be extended
or otherwise modified to reflect the current threat land-
scape. This could be accomplished with simple config-
uration changes to the BotHunter correlator. We expect
such changes to be fairly infrequent as they reflect fun-

7In this race, we consider BotHunter to be a substantial technologi-
cal escalation for the white hats.



6 <-> <infector-ip> TCP 2971 - <honey-ip> 445 [SYN, SYN,ACK]
13 -> SMB Negotiate Protocol Request
14 <- SMB Negotiate Protocol Response
17 -> SMB Session Setup AndX Request, NTLMSSP_AUTH, User: \
18 <- SMB Session Setup AndX Response
19 -> SMB Tree Connect AndX Request, Path: \\<honey-ip>\IPC\$
20 <- SMB Tree Connect AndX Response
21 -> SMB NT Create AndX Request, Path: \browser
22 <- SMB NT Create AndX Response, FID: 0x4000
23 -> DCERPC Bind: call_id: 0 UUID: SRVSVC
24 <- SMB Write AndX Response, FID: 0x4000, 72 bytes
25 -> SMB Read AndX Request, FID: 0x4000, 4292 bytes at offset 0
26 <- DCERPC Bind_ack
27 -> SRVSVC NetrpPathCanonicalize request
28 <- SMB Write AndX Response, FID: 0x4000, 1152 bytes
29 -> SMB Read AndX Request, FID: 0x4000, 4292 bytes at offset 0

Initiating Egg download
30 <-> <honey-ip> TCP 1028 - <infector-ip> 8295 [SYN, SYNACK]
34-170 114572 byte egg download ...

Connecting to IRC server on port 8080
174 <-> <honey-ip> TCP 1030 - 66.25.XXX.XXX 8080 [SYN, SYNACK]
176 <- NICK [2K|USA|P|00|eOpOgkIc]\r\nUSER 2K-USA
177 -> :server016.z3nnet.net NOTICE AUTH

: *** Looking up your hostname...\r\n’’ ...
179 -> ... PING :B203CFB7
180 <- PONG :B203CFB7
182 -> Welcome to the z3net IRC network ...

Joining channels and setting mode to hidden
183 -> MODE [2K|USA|P|00|eOpOgkIc] +x\r\nJOIN ##RWN irt3hrwn\r\n

Start scanning 203.0.0.0/8
185 -> ....scan.stop -s; .scan.start NETAPI 40 -b -s;

.scan.start NETAPI 203.x.x.x 20 -s;

.scan.start NETAPI 20 -a -s;.scan.start SYM 40 -b -s;

.scan.start MSSQL 40 -b -s\r\n...
191 -> 203.7.223.231 TCP 1072 > 139 [SYN]
192 -> 203.199.174.117 TCP 1073 > 139 [SYN] scan,scan...

Score: 1.95 (>= 0.80) Infected Target: <honey-ip>
Infector List: <infector-ip> C & C List: 66.25.XXX.XXX
Observed Start: 01/18/2007 23:46:54.56 PST
Gen. Time: 01/18/2007 23:47:13.18 PST

INBOUND SCAN <unobserved>

EXPLOIT event=1:2971 tcp E2[rb] NETBIOS SMB-DS IPC\$
unicode share access 445<-2971 (23:46:54.56 PST)
---------------------------------------
event=1:99913 tcp E2[rb] SHELLCODE x86 0x90
unicode NOOP 445<-2971 (23:46:54.90 PST)

EXPLOIT (slade)
event=552:5555002 (15) tcp E2[sl] Slade detected suspicious
payload exploit with anomaly score 1843.680342.

EGG DOWNLOAD
event=1:5001683 tcp E3[rb] Windows executable
sent potential malware egg 1028<-8295 (01:45:56.69 EST)

C&C TRAFFIC
event=1:2002023 tcp E4[rb] BLEEDING-EDGE TROJAN
IRC USER command 1030->8080 (23:47:01.23 PST)
---------------------------------------
event=1:2002024 tcp E4[rb] BLEEDING-EDGE TROJAN
IRC NICK command 1030->8080 (23:47:01.23 PST)
---------------------------------------
event=1:2002025 tcp E4[rb] BLEEDING-EDGE TROJAN
IRC JOIN command 1030->8080 (23:47:03.79 PST)

OUTBOUND SCAN
event=1:2001579 tcp E5[rb] BLEEDING-EDGE Behavioral Unusual Port
139 traffic, Potential Scan or Infection 1089->139 (01:46:06 EST)

event=555:5555005 tcp E5[sc] scade detected scanning of 21 IPs
(fail ratio=0:0/21): 0->0 (01:46:06 EST)

Figure 7: Honeynet Interaction Summary (left) and corresponding BotHunter Profile (right) for W32/IRCBot-TO

damental paradigm shifts in bot behavior.

7 Related Work

Recently, there has been a significant thrust in research
on botnets. To date, the primary focus of much of this
research has been on gaining a basic understanding of
the nature and full potential of the botnet threat. Rajab et
al. provided an in-depth study in understanding the dy-
namics of botnet behavior in the large, employing “lon-
gitudinal tracking” of IRC botnets through IRC and DNS
tracking techniques [33]. Researchers have also studied
the dynamics of botnetC&C protocols [19, 50], includ-
ing global dynamics such as diurnal behavior [14]. Other
studies have investigated the internals of bot instances to
examine the structural similarities, defense mechanisms,
and command and control capabilities of the major bot
families [7] and developed techniques to automatically
harvest malware samples directly from the Internet [6].
There is also some very recent work on the detection of
botnets. Rishi [21] is an IRC botnet detection system
that uses n-gram analysis to identify botnet nickname
patterns. Binkley and Singh [9] proposed an anomaly
based system that combines IRC statistics and TCP work
weight for detecting IRC-based botnets. Livadas et al.
[26] proposed a machine learning based approach for
botnet detection. Karasaridis et al. [25] presented an
algorithm for detecting IRC botnet controllers from net-
flow records. These efforts are complementary in that
they could provide additional BotHunter evidence-trails
for infection events.

A significant amount of related work has investigated
alert correlation techniques for network intrusion detec-
tion. An approach to capturing complex and multistep
attacks is to explicitly specify the stages, relationships,
and ordering among the various constituents of an at-
tack. GriDS [39] aggregates network activity into ac-
tivity graphs that can be used for analyzing causal struc-
tures and identifying policy violations. CARDS is a dis-
tributed system for detecting and mitigating coordinated
attacks [49]. Abad et al. [2] proposed to correlate data
among different sources/logs (e.g., syslog, firewall, net-
flow) to improve intrusion detection system accuracy. El-
lis et al. and Jiang et al. describe two behavioral-based
systems for detecting network worms [17, 23]. In con-
trast to the above systems, our work focuses on the prob-
lem of bot detection and uses infection dialog correlation
as a means to define the probable set of events that indi-
cate a bot infection.

Sommer et al. [36] describe contextual Bro signa-
tures as a means for producing expressive signatures
and weeding out false positives. These signatures cap-
ture two dialogs and are capable of precisely defin-
ing multistep attacks. Our work differs from this in
our requirement to simultaneously monitor several flows
across many participants (e.g., infection source, bot vic-
tim, C&C, propagation targets) and our evidence-trail-
based approach to loosely specify bot infections.

JIGSAW is a system that uses notions of concepts
and capabilities for modeling complex attacks [40]
and [29] provides a formal framework for alert correla-



tion. CAML is a language framework for defining and
detecting multistep attack scenarios [11]. Unlike BotH-
unter, all these systems are based on causal relationships
i.e., pre-conditions and post-conditions of attacks. An
obvious limitation is that these dependencies, need to be
manually specified a priori for all attacks, and yet such
dependencies are often unknown.

Alert correlation modules such as CRIM [13] provide
the ability to cluster and correlate similar alerts. The sys-
tem has the capability to extract higher-level correlation
rules automatically for the purpose of intention recog-
nition. In [42], Valdes and Skinner propose a two-step
probabilistic alert correlation based on attack threads and
alert fusion. We consider this line of work to be comple-
mentary,i.e., these fusion techniques could be integrated
into the BotHunter framework as a preprocessing step in
a multisensor environment.

USTAT [22] and NetSTAT [44] are two IDSs based on
state transition analysis techniques. They specify com-
puter attacks as sequences of actions that cause transi-
tions in the security state of a system. In [43], multistep
attack correlation is performed on attack scenarios spec-
ified (a priori) using STATL [16], which is a language
for expressing attacks as states and transitions. Our work
differs from these systems in that we do not have a strict
requirement of temporal sequence, and can tolerate miss-
ing events during the infection flow.

8 BotHunter Internet Distribution

We are making BotHunter available as a free Internet dis-
tribution for use in testing and facilitating research with
the hope that this initiative would stimulate community
development of extensions.

A key component of the BotHunter distribution is the
Java-based correlator that by default reads alert streams
from Snort. We have tested our system with Snort 2.6.*
and it can be downloaded fromwww.cyber-ta.org/botHunter/. A
noteworthy feature of the distribution is integrated sup-
port for “large-scale privacy-preserving data sharing”.
Users can enable an option to deliver secure anonymous
bot profiles to the Cyber-TA security repository [32], the
collection of which we will make available to providers
and researchers. The repository is currently operational
and in beta release of its first report delivery software.

Our envisioned access model is similar to that of
DShield.org [41] with the following important differ-
ences. First, our repository is blind to who is submit-
ting the bot report and the system will deliver alerts via
TLS over TOR, preventing an association of bot reports
to a site via passive sniffing. Second, our anonymiza-
tion strategy obfuscates all local IP addresses and time
intervals in the profile database but preservesC&C, egg
download, and attacker addresses that do not match user
defined address proximity mask. Users can enable fur-

ther field anonymizations as they require. We intend to
use contributed bot profiles to learn specific alert signa-
ture patterns for specific bots, to track attackers, and to
identify C&C sites.

9 Conclusion
We have presented the design and implementation of
BotHunter, a perimeter monitoring system for real-time
detection of Internet malware infections. The corner-
stone of the BotHunter system is a three-sensor dialog
correlation engine that performs alert consolidation and
evidence trail gathering for investigation of putative in-
fections. We evaluate the system’s detection capabili-
ties in an in situ virtual network and a live honeynet
demonstrating that the system is capable of accurately
flagging both well-studied and emergent bots. We also
validate low false positive rates by running the system
live in two operational production networks. Our ex-
perience demonstrates that the system is highly scalable
and reliable (very low false positive rates) even with not-
so-reliable (weak) raw detectors. BotHunter is also the
first example of a widely distributed bot infection pro-
file analysis tool. We hope that our Internet release will
enable the community to extend and maintain this capa-
bility while inspiring new research directions.
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