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Abstract—Network-based anomaly detection is a well-mined
area of research, with many projects that have produced algo-
rithms to detect suspicious and anomalous activities at strategic
points in a network. In this paper, we examine how to integrate an
anomaly detection development framework into existing software-
defined network (SDN) infrastructures to support sophisticated
anomaly detection services across the entire network data plane,
not just at network egress boundaries. We present Athena as a
new SDN-based software solution that exports a well-structured
development interface and provides general purpose functions for
rapidly synthesizing a wide range of anomaly detection services
and network monitoring functions with minimal programming ef-
fort. Athena is a fully distributed application hosting architecture,
enabling a unique degree of scalability from prior SDN security
monitoring and analysis projects. We discuss example use-case
scenarios with Athena’s development libraries, and evaluate
system performance with respect to usability, scalability, and
overhead in real world environments.

I. INTRODUCTION

Tracking and responding to network traffic anomalies is
an ubiquitous and significant challenge faced by all network
operators [1]. Sudden and massive deviations in the volume
and mix of data flowing through the network infrastructure,
due to congestion, outages, network probes, and flooding
attacks, are so frequent that few networks would fail to benefit
from integrated network anomaly detection services. Even
anomalies that arise from benignly-motivated incidents, such
as flash crowds, may threaten the ability an enterprise to
maintain reliable network operations.

Software-Defined Networking (SDN) offers the potential
to explore new efficient strategies for instrumenting networks,
integrating software detection services, and responding to
anomalies that would otherwise impede network operations.
For example, by leveraging the centralized control plane to
track new flow requests and extracting data plane statistics,
one can analyze live network data flows without requiring the
insertion of third-party devices (e.g., a network monitoring
middlebox). Indeed, a survey of recent research proposals
illustrates the increasing exploration of SDN strategies to
integrate network misuse and anomaly detection services [2],

(31, [41, [S], [6], [71, [8], [9], [10].

However, while these proposals offer a diverse exploration
of SDN-based monitoring strategies, several significant tech-
nical challenges remain. First, most SDN-based threat moni-
toring proposals that implement monitoring services as SDN
applications, do not consider the issue of network-wide large-
scale data extraction and management across a distributed data
plane, with many switches and controller instances. Second,

prior research has primarily focused on applications designed
for specific suspicious or anomalous activity. Prior SDN moni-
toring projects have employed focused subsets of features from
SDNs for tracking specific phenomena rather than defining a
feature framework for building SDN-enabled network anomaly
detection services. Third, there is limited research on network
features and anomaly detection algorithms for activities that
cross the control and data plane boundaries.

We present a scalable framework, called Athena, for con-
structing network monitoring services in large-SDN deploy-
ments, and providing flexible third-party development of new
detection models. Athena exports an API that provides a well-
structured development environment for implementing a wide
range network anomaly detection applications across a large
physically distributed SDN control and data plane. Athena’s
API offers developers an abstraction from a complex data
extraction service, reducing the programming effort required to
implement and deploy new anomaly detection services. In con-
trast to existing work, Athena includes a wide range of network
features and detection algorithms for use in simplifying the
design and deployment of general-purpose network data plane
anomaly detection applications in large-scale SDN networks.
In fact, other than its requirement for OpenFlow support, the
framework avoids the need for specialized hardware, thereby
dramatically minimizing the need to modify an SDN stack
when introducing new anomaly detection services.

To address the issue of scalability across large distributed
SDN deployments, Athena’s network feature collection and
data management framework employs a distributed database, a
computing cluster, and a distributed controller. It collects and
generates network features above the SDN controller instances
in a distributed manner, and publishes the network features
to a distributed database. To accelerate runtime detection
model generation, Athena incorporates a machine learning
(ML) library from which anomaly detection algorithms may
be implemented and then deployed as jobs across Athena’s
computing cluster. Athena exports high-level APIs that allow
operators to design and deploy anomaly detection applications
with a minimum of programming effort. This approach both re-
duces the total computation time necessary to perform anomaly
detection, while increasing the scalability of data management
services on which these algorithms are run.

The key contributions presented in our paper include the
following:

e Introduction of Athena as a new anomaly detection
application development framework that leverages SDN func-
tionality to explicitly support ML-based network anomaly



detection. Athena integrates without modification into existing
SDN infrastructures.

e Presentation of a set of SDN-wide features that enable
Athena to host a wide range of anomaly detection services,
including the detection of anomalies directly within the SDN
control and data planes. Specifically, we considered eight
major operational functions performed by SDN networks,
and from each function extract relevant feature sets to drive
anomaly detection services.

e Presentation of eight core APIs, over 70 utility APIs, and
11 popular machine learning algorithms that facilitate the rapid
development of new anomaly detection services. Collectively,
these facilitate both batch and live mode anomaly detection,
while shielding Athena developers from the complexities of
distributed feature extraction, data management, and threat
response generation.

e Presentation of a fully-distributed architecture enabling
highly scalable network anomaly detection. We evaluate the
system on a large-scale dataset from a datacenter-like physical
network environment, and assess performance degradation by
evaluating the overhead when it is integrated into one of the
most visible open-source network operating systems (ONOS).

e Demonstration of the generality of our framework by
replicating detection algorithms from prior publications of
SDN security services (that had previously required the in-
tegration of specialized hardware) and development of a spe-
cialized SDN stack anomaly detector capable of detecting a
novel anomaly that we refer to as the Network Application
Effectiveness (NAE) problem.

We have released the Athena prototype implementation as
an open-source project to support the SDN community and
stimulate other academic research efforts!.

II. FIVE CONSIDERATIONS IN DESIGNING SCALABLE
SDN ANOMALY DETECTION SERVICES

The design and integration of network anomaly detection
services in traditional networks have been well studied [12].
We understand how to integrate hardware elements to extract
network traffic features at strategic network points, how to
apply a wide range of analytics to these features, and how to
correlate relevant reports to effect a network’s security posture.
However, SDNs offer a departure from these strategies by pro-
viding new methods for dynamic instantiation of monitoring
services with a global view of the network topology that is
continuously updated.

The design goals for the Athena anomaly detection frame-
work for SDNs include the following: 1) provide for an exten-
sive feature extraction infrastructure without hardware device
integration, 2) abstract data acquisition and simply anomaly
detection service implementation, and 3) simplify large-scale
deployment of monitoring services without modification to the
SDN infrastructure itself. This section discusses several key
choices and considerations toward addressing these goals.

The source code is publicly available at SDNSecurity.org [11].
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Fig. 1. An illustration of network anomaly detector (NAD) in a) traditional
networks and b) SDNs.

1) Centralized Management Perspective: We illustrate the
two management design paradigms, legacy versus SDN, in
Figure 1. While SDN‘s support centralized network-wide
monitoring, developers are burdened with the requirement to
implement a centralized controller that monitors and manages
the network with a global network view. Furthermore, each
device may export a wide menagerie of network features
(e.g., logs, statistics, and alerts) forcing the developer to
perform post-processing to normalize network features using
approaches like VAST [13].

2) Network Feature Quality and Accessibility: The se-
lection and accessibility of legitimate network features for
real-time monitoring is an essential task when designing any
network monitoring framework, particularly frameworks that
are intended to facilitate off-the-shelf sharing of anomaly
detection algorithms. Athena directly addresses these needs for
feature quality and accessibility, by providing (¢) normalized
network-feature access and libraries from which a wide range
of ML-based detection algorithms may be designed and de-
ployed across large-scale distributed SDNs, and (¢¢) dynamic
threat mitigation APIs that can be launched in response to
perceived threats to the SDN. We will leverage example use
cases to address well-known anomaly detection problems, and
demonstrate the utility of the Athena framework by applying
it to detect a novel SDN-specific anomaly (Section V).

3) Monitoring Networks with Highly Dynamic Topologies:
Enterprise networks continue to become more complex, more
virtual, and dynamic to meet an increasingly diverse set of
operational requirements. Traditional security and network
devices are often integrated at physically strategic points in
the network, and it is the burden of the operator to manage
and adjust their integration and configuration as the network
topology changes. Since Athena is built into the SDN control
layer, applications built over this framework can automatically
extend monitoring and anomaly detection capabilities to dy-
namic network topologies.

4) Flexible Scale-up and Scale-out of the Anomaly Detec-
tion Framework: Large network environments imply increased
event volumes, larger sets of distributed switches within the
data plane, and complex network operating requirements that
increase the complexity of both the control plane and the
hosted network applications. A key challenge for Athena is
to introduce a network monitoring framework that will enable
anomaly detection applications to scale in speed, to offer
distributed computation, and to provide data management APIs



that enable high volume event processing. To date, several
network monitoring projects have pursued scalability among
their design requirements, such as [14], [15], [16], [17], [18],
[71, [3], [2], [19], [20], [5]. However, most of these efforts
(with the exception of [17]) focus on uncontrolled environ-
ments and none of them provide explicit support for anomaly
detection algorithms. In contrast, Athena is designed as a
fully-distributed event collection and processing framework
with scalable feature collection and management to support
anomaly detection.

5) Coding Efficiency for Anomaly Detection Algorithm
Development: While SDN controller APIs [21], [22], [23],
[24], [14] enable a wide range of network applications that
have been implemented and shared, these APIs are largely
insufficient to support network anomaly detection applications.
This absence of a generalized network monitor development
framework for SDNs contributes to slower progress in the
design and deployment of SDN security applications. To over-
come this issue, Athena exports high-level APIs that support
the extraction of critical features, management of data streams,
and detection of anomalous network behaviors.

III. ATHENA DESIGN

Athena is a fully-distributed network anomaly detection
framework, in which an Athena instance is hosted above each
distributed SDN controller, such as with ONOS instances
deployed across a wide area network. For example, Figure 2
illustrates three Athena instances that are distributed across
three SDN controllers. Each Athena instance monitors the
network behavior that is associated with its hosted network
controllers and the data plane hosted by the controllers.

As shown in Figure 2, conceptually, Athena incorporates
the Feature Generator, which collects SDN control messages
issued by the local control and data plane, generates network
features, and publishes features to a distributed database (a
DB cluster) for feature management. The Attack Detector
detects potential network problems using the developer-defined
detection algorithm. The Attack Reactor has responsibility for
mitigating detected threats by issuing mitigation actions to the
data plane. Operators need not modify their existing SDN stack
to host Athena, as its inputs are SDN control messages, along
with small code stubs within the controller. We discuss the
details of Athena’s architecture in Section III-A.

Above the framework, Athena provides the set of compo-
nents that compose its user-friendly development environment.
Athena exports a high-level API called as the Athena NB
API, which allows developers to create anomaly detection
applications in a manner that is agnostic to the underlying SDN
implementation. Athena offers an abstraction to the controller
and data plane implementations and versions, enabling rapid
prototyping and minimizing deployment costs.

Athena provides 8 core and 70 utility APIs, described in
Table II. Developers implement anomaly detection tasks as
Athena apps (shown in Figure 2), using the Athena Northbound
API (NB API). These applications generate anomaly detection
models, perform real-time detection, and implement live threat
responses.
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Fig. 2.  Athena’s conceptual architecture; An illustration of the Athena
anomaly detection framework hosted over a wide-area SDN with distributed
controllers. Each controller hosts an instance of Athena that instantiates the
anomaly detection task per instance. These components can also integrate with
the third-party DB cluster and computing cluster. Athena applications perform
diverse anomaly detection tasks, and operators control the Athena applications
via a graphical user interface.

A. Athena System Design

Figure 3 illustrates the three major elements of the Athena
framework: the southbound element, the distributed DB and
computing clusters, and the northbound element. The south-
bound element monitors the network behaviors including
the control plane, extracts features from the SDN control
messages, implements live detection algorithms, and invokes
mitigation reaction. The northbound element exports high-
level APIs to enable analysis applications to perform anomaly
detection tasks, including network monitoring. The third major
element is composed of a distributed database cluster that pro-
vides network-wide feature access, and a computing cluster for
running distributed parallel instances of Athena applications.

1) The Athena Southbound (SB) Element: The Southbound
element’s main purpose is to isolate control messages, ex-
tract features to drive the analysis algorithms, and mitigate
detected problems. However, these tasks must be performed
across several parallel controller instances and many physically
distributed switches. Athena achieves this scale by employing
SB instances that operate separately on each controller. Further,
it uses distributed 3rd party applications to provide parallel
data processing environments. Each instance is responsible for
monitoring its associated controller and those switches that the
controller directly manages, then provides detection algorithms
and reaction strategies. The Athena SB element consists of four
major sub-components:

1A) SB Interface: The main role of the SB Interface is
to monitor (selected) SDN control messages issued by both
the data plane and the control plane, and to deliver network
management commands issued by the Attack Reactor (e.g.,
issuing flow rules) through the Athena Proxy. The proxy is
a small code snippet instantiated at each controller instance.
Athena leverages proxy-stubs that work like general network
applications to avoid consistency issues that might arise from
issuing control messages to the data plane without involving
the controller. When the Athena Proxy issues flow rules to
the data plane, the controller automatically updates its internal
status according to the issued flow rules.



Category

TABLE 1.

|| Description

l

AN ENUMERATION OF Athena FEATURE TYPES.

Examples

Protocol-centric

Features derived from SDN control messages directly.

Volume (Packet counts, byte counts)

Combination

Combined features derived from Protocol-centric by pre-defined formula.

Flow utilization (Packets / Duration)

Stateful

Stateful features according to the network states.

Pair flow ratio (Pair flows / Total flows)
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Fig. 3. An overview of the Athena system architectural components. The
Athena framework is composed of the extensible southbound element, the
unified northbound element, and the Athena application instantiation layer.

1B) Feature Generator: The Feature Generator examines
incoming control messages to derive Athena features, which
we enumerate in Table I, and the internal status of control plane
to extract important behavioral features from the control plane
(e.g., tracking flow origins). The Feature Generator maintains
hash tables to track the status of the previous features for gen-
erating Variation and network status for maintaining message
State. The Feature Generator includes a garbage collector to
periodically remove outdated entries. It also attaches additional
meta information (e.g., timestamp). We discuss the details of
Athena features in Section I1I-A3.

1C) Attack Detector: The Attack Detector uses detection
algorithms to find potential network threats. The detector
generates detection models according to requests from the
Detector Manager in the Athena NB, and analyzes generated
features from the Feature Generator. It is designed to operate
live or in batch mode. When it receives a request related
to one or more tasks, it translates the request to functions
and performs jobs with a single and a distributed manner
according to the type of job. For example, while in learning
mode, the Attack Detector distributes jobs to the computing
cluster to provide a scalable analysis environment. For a small
dataset, it handles the request on a single instance to reduce
communication overhead.

1D) Attack Reactor: The Attack Reactor enforces mitiga-
tion strategies to the data plane. When it receives mitigation
strategies from the Detector Manager, it translates requests to
network management messages to be sent to the data plane
through the Athena Proxy.

2) The Athena Northbound (NB) Element: The Athena
Northbound element exports Northbound APIs, which allow
application developers to utilize Athena’s functionalities for
an anomaly detection, providing scalability as well as SDN

implementation transparency. We describe below the five major
sub-components of the NB element.

2A) Feature Management Manager: The Feature Man-
ager provides a unified mechanism that applications use to
retrieve and receive network features according to user-defined
constraints. It receives feature requests from each applica-
tion and translates them into queries that it issues to the
Athena distributed database. It transfers requested data from
the distributed database to the computing cluster managed by
the Detector Manager, reducing data transmission overhead
while transferring large-scale datasets. It maintains an event
delivery table, which maintains a set of application constraints,
that is triggered when incoming network features match the
constraints. When processing real-time incoming features from
the Athena SB, it forwards the features to both the Athena
applications and the Detector Manager.

2B) Detector Manager: The Detector Manager provides a
wide-range of well-known ML algorithms to generate detection
models including a simple threshold-based detection algorithm.
It also validates large-scale network features. It works with the
Feature Manager to dynamically validate incoming network
features and provides unified APIs that allow operators to
perform detection tasks with transparency to details of the
algorithms. For example, when running a K-Means algorithm
in the clustering category with the Decision Tree algorithm
in the classification category, the operator will use the same
APIs in Table II. An operator does not have to consider the
characteristics of each ML type, since the Detector Manager
automatically configures ML parameters according to requests
of ML types by operators (e.g., labeling features).

2C) Reaction Manager: The Reaction Manager provides
mitigation strategies that allow the Athena applications and
operators to enforce mitigation actions by issuing flow rules
to the data plane. The applications enforce pre-defined course-
of-actions to handle network problems, independently from
the underlying network controller, by issuing requests to the
SB Attack Reactor, which are automatically translated to flow
rules.

2D) Resource Manager: The Resource Manager exports
functions to manage resources related to feature collection. It
dynamically adjusts the number of monitored network entities
and generated network features, according to requests from
Athena applications. This allows Athena applications to control
monitoring fidelity based on dynamic network conditions.

2E) UI Manager: The Ul Manager services an interface,
that displays Athena application‘s results and provides an
interaction mechanism.

3) Athena Off-The-Shelf Strategies: As an anomaly
detection framework, Athena provides a set of off-the-shelf
strategies including network features, detection algorithms,
and reactions.
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Fig. 4. The format of a single Athena feature: The gray box represents index
fields, the white box is for feature fields.

3A) Athena Features: In total, Athena exposes over 100
network monitoring features to the NB API. The full list of
network features is available at SDNSecurity.org [11]. The
types of features are enumerated in Table I. Protocol-centric
features are directly derived from OpenFlow control messages,
such as packet count from flow statistics. Combination features
refer to combined features derived from pre-defined formulas,
such as the features in [10], and include more meaningful
information regarding SDN-specific features. For example,
Flow Utilization represents how much traffic a flow delivers
to its associated output port. The Stateful field represents the
features including states of indicator operations. For example,
Pair Flow Ratio represents how many flows manifest active
two-way connection between a sender and a receiver.

Athena‘s feature format is illustrated in Figure 4. The
feature format consists of the index fields and the feature
fields. The index fields include the Index, which contains
information about feature‘s origins (e.g., Switch ID, port
ID) including indicators (e.g., OpenFlow match fields), and
Meta Data that represents additional information such as a
timestamp and semantics of the control plane associated with
the feature (e.g., Flow origins). The feature fields are appended
after the index fields to represent an actual behavior of the
network.

3B) Athena Detection Algorithms: Athena provides a
set of detection algorithms that allow its applications to find
potential network threats and problems. The algorithms include
five categories, which are described in Table IV. Currently,
Athena supports 11 machine learning algorithms hosted on a
computing cluster to perform scalable analyses.

3C) Athena Reactions: Athena Reactions manage the
data plane according to changes of the network status. After
detecting a network threat, the applications hosted by Athena
may choose to invoke a mitigation strategy. Athena currently
supports two types of mitigation actions: B1ock, which blocks
certain hosts; and Quarantine, which isolates suspicious
hosts to user-defined destinations.

IV. THE ATHENA DEVELOPMENT ENVIRONMENT

The Athena development environment (DE) exports a set of
high-level APIs that allow operators to design and implement
a scalable network anomaly detector in a manner that abstracts
both the SDN version dependencies and infrastructure-specific
configuration details. Here we discuss Athena’s northbound
APIs and outline the steps involved in implementing various
anomaly detection services.

A. Athena Northbound API

The Northbound (NB) API is configuration-based. Devel-
opers use it by configuring parameters to execute anomaly
detection tasks. For example, one can generate a detec-
tion model by defining a set of 1) detection parameters,

such as “TCP_PORT==80 && time==1 day”; 2) de-
tection features, such as “sampling (20%), default
normalization”; and 3) a preferred detection algorithm,
such as “K-means, k==5".

Athena currently supports eight core functions described
in Table II, and several pre-defined parameters, described
in Table III. RequestFeatures is a monitoring API that
retrieves desired Athena features using the query interface. For
example, a developer may create a query that requests “flow
utilization per network application”,
“unstable ports during a l-day temporal
window” and “top 10 congested links”. Athena
currently supports the query operators described in Table IV.
The ManageMonitor API uses queries to turn monitoring
on/off for specific network features.

As a detection-related API, we provide the
GenerateDetectionModel for creating detection
models, and ValidateFeatures for large-scale
feature validation. The APIs commonly receive a

query to retrieve a desired feature set, and apply the
Preprocessor, which transforms the features before use.
GenerateDetectionModel defines a detection algorithm
with its parameters (e.g., K of the K-Means algorithm),
and generates a detection model. The model is used by
ValidateFeatures to validate target features, and it
produces results that summarize the validation task. Athena
generates a detection model during the learning phase when
a machine-learning (ML) algorithm is employed, and exports
a pre-defined model without a learning phase when using
other algorithms (e.g., threshold-based detection). Table IV
describes the supported functions of the Preprocessor and
ML algorithms.

Athena provides APIs that allow an application to
handle network features in an online manner. First,
AddEventHandler enables analysis applications to receive
Athena features dynamically. Applications register an event
handler with a user-defined query. The manager then dynami-
cally evaluates whether an incoming feature satisfies the query,
and if so it forwards the feature to the applications. For exam-
ple, an application may pass the query “IP_DST==server
address && Port==80". The event handler is also used
for live validation by AddOnlineValidator. This allows
an operator to define an operational mode for specific anomaly
detection tasks (e.g., A stand-alone mode, and a distributed
mode). ShowResults represents the results as a visualized
graph, providing operators with direct insight to Athena’s
results. The Reactor enforces mitigation strategies to the
data plane according to requests of the application with
queries, such as “IP_SRC in {suspicious hosts}”
and invokes response functions described in Table IV.

B. Athena Application

Figure 5 illustrates the steps involved in designing and
implementing an anomaly detector. Developers select off-the-
shelf strategies (e.g., network features, detection algorithms,
and reactions) to perform anomaly detection tasks. Based on
these selections, they use supported NB APIs to construct a
consolidated anomaly detector, including the selected network
feature generation, model creation with fine-grained filtered



Function |

TABLE II

Description

THE Athena CORE NORTHBOUND API.

RequestFeatures(q)

Request a set of Athena features with user-defined constraints including feature re-organization.

ManageMonitor(g, o)

Turn on/off a network monitoring including a feature generation.

GenerateDetectionModel(q, f, a)

Generate an anomaly detection model according to an user-defined algorithm and features.

ValidateFeatures(g, f, m)

Validate a set of Athena features with a generated detection model.

AddEventHandler(q)

Register an event handler to retrieve features from Athena according to user-defined constraints.

AddOnlineValidator(f, m, e)

Register an online validator to examine an incoming feature in an online manner.

Reactor(q, r)

Enforce an action to the data plane.

ShowResults(r”)

Display the results from Athena with a graphical interface.

TABLE IIL PARAMETERS OF THE Athena NORTHBOUND API. .
Parameter || Description Athena Application ay
Query (q) Unified query to retrieve Athena features with Select _,  Select _,  Select - Y

constraints. features algorithms reactions
Preprocessor (f) Preprocessing statement to re-design features. Athena GUVCLI Interface |
Algorithm (a) Description of an algorithm including parameters p ‘ 1. Configure 2. Results & 3. Reconfigure <
of the algorithm. Athena Framework s 575 PR )
Model (m) Generated detection model. Monitor 3O  Detector . .
Results (1) Results of a validation or a feature request. p Foature pool > iﬁ ) « —
Event handler (¢) || Event handler to receive online Athena events. _— _— Consolidated executor fGMoans R es/ioid
Reactions (r) Reactions for handling suspicious hosts. (R AE T, A
Operations (0) Flags for a network monitoring per features. Reaction pool cacer
TABLE IV. AN ENUMERATION OF SUPPORTED FUNCTIONS PER Quarantine  Block - -
PARAMETER. \ DB Cluster Computing Cluster
Query (q) Operators Network Events Control Information React/on
Arithmetic > >=, ==, 15, <=5 < SDN Controller || SDN Controller | | SDN controller |
Relationship and, or
Options Sorting, Aggregation, Limiting
Preprocessor (f)  Description
Weighting Emphasize certain features
Sampling Select a subset from entire features
Normalization Standardize the range of independent variables Fig. 5. Implementing a general purpose anomaly detector across a distributed
Marking Mark a set of entry labeled as malicious entry SDN stack with Athena.
Algorithm (a) Supported algorithms
Boosting Gradient Boosted Tree
Classification geciision FTree, Lg%,i;/t[ic Regression, Naive Bayes, limitations, we only show the pseudocode for the DDoS
andom Forest, .
Clustering Gaussian Mixture, K-Means Detector (Scenamo #l)'
Regression Lasso, Linear, Ridge TABLE V. A LIST OF POSSIBLE FLOW-RELATED FEATURES TO DETECT
Slmpl? Thresl_wol_d DDOS ATTACK. THE (*) STAR NOTATION INDICATES THE PREFIX OR
Reactions () Description POSTFIX OF THE Athena FEATURES.

Block
Quarantine

Block target hosts
Isolate hosts in honeynets

Characteristic || Possible features

Operations (o)

Description

True
False

Turn on network monitoring
Turn off network monitoring

network features, feature validation with a large-scale dataset,
run-time threat detection logic, a dynamic threat mitigation
policy, and results from GUI/CLI generation.

Athena automatically performs the anomaly detection task,
including task integration with the external DB cluster and
computing cluster. It reports (intermediate) results to the ap-
plication while performing anomaly detection. The application
updates internal status and configures new Athena hosted
anomaly tasks based on the results. Furthermore, Athena pro-
vides a GUI/CLI interface that allows the operator to receive
alerts and manage the Athena application in a centralized
manner.

V. ATHENA USE CASES

To illustrate the utility of the Athena framework, we present
multiple sample anomaly detection applications. Due to space

PAIR_FLOW, PAIR_FLOW_RATIO
PACKET_COUNT, BYTE_COUNT,
BYTE_PER_PACKET,
PACKET_PER_DURATION,
BYTE_PER_DURATION
DURATION_SEC, DURATION_N_SEC

Unidirectional traffic
Traffic volume pattern

Duration of flow

A. Scenario 1: A Large-scale DDoS Attack Detector

One strength of the Athena framework is its ability to create
scalable network anomaly detection services across large and
physically distributed network environments. To demonstrate
this scalability, we implement a large-network DDoS attack
detection application using Athena’s northbound APIs. Since
Athena automatically collects all of the network features across
the SDN data plane by default, an operator may deploy Athena
on the network to automatically gather the features necessary
to drive our detector. Here, we discuss DDoS model creation,
feature validation, and summarize our test results.

Creating the DDoS Detection Model: Detection model
creation begins with a definition of the desired network fea-
tures for use during the training phase. The developer sets



Application 1 A pseudo-code illustration of an Athena-based
DDoS attack detection application.

/+ Define the features to be trained =/
g_train = GenerateQuery (constraints of features);

/» Define data pre-processing */
f = GeneratePreprocessor (Normalization,
Weight for certain features,
Marking malicious entries,
L)

/+ Register the features used in the algorithm =%/
f.addAll (candidate features);

/+ Define an algorithm with parameters =/
a = GenerateAlgorithm (a detection algorithm);

/* Generate a detection model */
m = GenerateDetectionModel (g_train, £, a);

/+ Define the features to be tested x/
g_test = GenerateQuery (constraints of features);

/+ Test the features x/
r’ = ValidateFeatures(q_test, f, m);

/* Show results with CLI interface */
ShowResults (r’);

TABLE VI A COMPARISON OF THE TEST ENVIRONMENT.
Category [10] Athena
Switch 3 OF switches 18 OF switches
(6 physical, 12 OVS)
Link 3 links 48 links
Controller 1 instance 3 instances
Feature 6-tuples 10-tuples
Algorithm SOM K-Means

the data preprocessing parameters to normalize the features
that capture the characteristics of a DDoS attack described in
Table V. These features are set by the £.addAll () utility
APIL. Here, we configure Weight for emphasizing certain
network features, and Marking for annotating malicious
entries 2.

Algorithm represents a detection model, and it is con-
figured with a machine learning algorithm and its parameters
(e.g., we may choose K-Means with k = 5, and 20 iterations).
Developers then invoke GenerateDetectionModel to
create the detection model, and Athena distributes the ML
detection tasks to compute worker nodes. After job completion,
the application receives the detection model. These steps are
outlined in the pseudocode.

DDoS Feature Validation: The developer next de-
fines the desired network features to receive results from
an analysis of the testing phase. The developer de-
fines Query and Preprocessor in the same way, and
calls ValidateFeatures with the pre-defined Query,
Preprocessor, and the Model. Upon completion of the
testing phase, Athena generates a testing summary, as illus-
trated in Figure 6.

DDoS Testing Environments and Results We established
a testing environment to reflect an enterprise-scale network
topology as illustrated in Figure 7, and compare our envi-

2These labels are used by the supervised and unsupervised learning algo-
rithms.

Summary
: 37,370,466 entires
: 9,375,848 entries (25,559 unique flows)
1 27,994,618 entries (166,213 unique flows)

True Positive
False Positive
True Negative
False Negative

1 27,780,926 entries
1 419,095 entries

: 8,956,753 entries
1 213,692 entries

Detection Rate : 0.9923666756231502
False Alarm Rate: 0.0446994234548171

Cluster (K-Means)
Cluster Information : K(8), Iterations(20), Runs(5), Seed(Random),
InitializedMode(k-means!||), Epsilon(le-4)

Cluster #@: Benign (156,328 entries), Malicious (21,342,482 entries)
Cluster #1: Benign (2,548,345 entries), Malicious (29,500 entries)

Fig. 6. Output of the DDoS detector application. The details of cluster
information are excluded after cluster #2.

18 OpenFlow Switches (6 Physical, 12 OVS)
48 Links

Fig. 7.
application.

Enterprise-scale topology for evaluating the DDoS Detection

ronment with previous work for an SDN-based DDoS detec-
tion [10], as described in Table VI. Our topology consists of
48 links and 18 switches (6 physical switches, and 12 OVS
switches) managed by three distributed network controllers,
including Athena instances. We deployed a K-Means-based al-
gorithm with 10 tuples, and simulated the testing environment
using a Mininet environment. The attack scenario is similar to
traffic patterns in [10]. The detection rate is 99.23%, and false
alarm rate is 4.46%. We will discuss these results further in
Section VII-B.

B. Scenario 2: Link Flooding Attacks (LFA) Mitigation

LFA represents a serious and common network attack, in
which the adversary saturates a target network area with few
resources [25]. A noteworthy aspect of the Athena frame-
work is that, unlike some other tools, it produces moni-
toring applications that are deployable without modification
to the underlying network infrastructure. For example, we
compare the implementation of LFA mitigation using Athena
with Spiffy [26], which utilizes the transmission rate control
mechanism within the TCP protocol to detect and mitigate
LFA. Spiffy adjusts how much traffic should be delivered
through a conditional assessment of the current network status.
It assumes that malicious flows do not respond to a temporary
change of a network status, which differs from the normal
profile of legitimate flows. As a solution, temporary bandwidth
expansion (i.e., expanding bandwidth temporarily to detect
malicious flows by leveraging characteristics of TCP) and
runtime flow migration (i.e., re-assigning flows to expand
bandwidth for a suspicious link) are proposed.



TABLE VIIL COMPARISON OF LINK FLOODING ATTACK DETECTION

AND MITIGATION STRATEGIES USING SDNS.

Category Spiffy [26] Athena
Link congestion SNMP Built-in
Rate change OpenSketch [4] OF switch
Traffic engineering Edge router All switches
Insider threat Out of scope Covered

LFA Mitigation Service using Athena: We have im-
plemented a comparable Link Flooding Attacks mitigation
service as an Athena application. In Table VII, we present a
comparison of the Spiffy implementation of the LFA mitigation
service using the same solution implemented with the Athena
framework. Here, the demanding functions involved in LFA
detection and mitigation include solving link congestion de-
tection, recognizing per-flow rate changes, and implementing
flow alterations.

LFA Event Handler Registration: The LFA detector
receives link usage to measure link utilization and per-flow
changes to distinguish attackers. Since Athena provides various
volume-based features including per-flow changes, we define
these candidate features, including a threshold. For example,
the candidate features are volume-based features such as
port_rx_bytes_var, which represents changes at each
port, and flow_byte_count_var, which represents the
change in byte counts. Likewise, we choose volume-based
features (e.g., port_rx_bytes). Finally, we simply call the
AddEventHandler API with a pre-defined event handler to
perform the detection and mitigation of incoming events.

LFA Detection Logic: Developers may implement the
custom detection logic in the Event_Handler. The detection
logic includes lightweight threshold-based flooding detection,
which measures volume per port, and may use a TBE-based
detector that tracks per flow changes. Lastly, the mitigation
logic simply blocks suspicious hosts based on the detection
results by invoking Reactor.

Using Athena, we can implement the proposed Spiffy
LFA detection and mitigation mechanism with our SDN test
environment in under 25 lines of Java code, excluding the
custom detection logic.

Comparing Athena-based LFA mitigation with Spiffy:
Table VII shows the comparison of LFA detection and miti-
gation using Spiffy and Athena. Spiffy uses an SNMP-based
link utilization measurement to detect congested links. How-
ever, operators need to configure SNMP-based measurement
functions, and the network’s switches must also support this
function. Spiffy leverages OpenSketch-enabled switches [4] to
detect rate changes from an edge. Although OpenSketch could
reduce overhead to measure rate changes, operators must de-
ploy OpenSketch-enabled switches into their existing network
infrastructure. This increases the deployment cost of the Spiffy
solution, as it requires features that are non-standard in many
SDN environments. Implementing the same anomaly detection
algorithm using Athena removes the need for vendor-specific
network devices and SNMP-enhanced monitoring capabilities.
In contrast to the Spiffy environment, Athena’s application can
operate directly on the SDN without data plane alterations.

Application Rules Priority No rule
T — All) s1 ->s2 ->s3 ->s4 -> Server farm 10 conflicts!
s5 > 56 > S7 > Serv :

FTP) any -> DPI -> DST - - L)

(Shortest path)
—= Web, FTP
@ server farm

—

Security

""""" Legend i
—_——— —
! Load balancer Security

Security device

Fig. 8. An illustration of the Network Application Effectiveness problem.

C. Scenario 3: Network Application Effectiveness (NAE)

Network applications are critical elements of a network’s
SDN stack, as they embody the logic that defines the flow
policies for the entire network. Thus, validating application
behavior is important, particularly before their adoption into
critical or sensitive network environments. Unfortunately, it
is difficult to verify application behavior, as modern SDN
environments may allow multiple applications to run on a con-
troller in parallel. These applications can also cause conflicts in
the form of flow rule contradictions. Several SDN researchers
have tried to solve this problem through control mechanisms
to resolve network application conflicts [27], [28], [29], [30].
However, they did not explore misuse anomalies that can
violate network policies defined at deployment. We refer to
this as the Network Application Effectiveness (NAE) problem,
as illustrated in Figure 8.

Let us assume that an operator installs a load-balancing
(LB) application, which defines flow rules intended to evenly
distribute a target traffic load across a given set of network
services. Consider a security application that attempts to
direct FTP-related traffic through an inline security device
that analyzes the FTP traffic for signs of malicious command
patterns. In this scenario, the LB app and the security app
may conflict in their decisions regarding packet forwarding. To
handle conflicts, operators set a higher priority for the security
app, thus allowing it to over-rule the LB app when their rules
conflict. While the problem is well known and addressed by
prior work [27], [28], [29], [30], these projects do not consider
how to detect the wide range of unwanted network anomalies
that may arise as flow rules are evaluated and discarded by the
control layer.

The above scenario leads to interesting potential flow
pattern anomalies that can arise as the control plane begins
to resolve conflicts in the rules produced by the competing
applications. For example, if the primary purpose of the
network in Figure 8 is to serve FTP users, the network may
suffer significant overhead by the unbalanced load produced
by the security policy. When the network is dominated by
FTP flows, this traffic will begin to saturate S6 due to the
security app. Although S3 is available to deliver traffic to
the destination, it cannot receive traffic due to the security
app’s shortest path policy which dictates that all traffic from
S6 goes to S7. To evaluate this, we set up an experimental
environment, with the edge switches S1 and S5, where each
host downloads files or accesses pages from the FTP and web
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Fig. 9. The coarse-grained analysis result alerted by the Athena Ul manager,
when applications obey the user-defined SLA.

servers respectively.

NAE Monitor Implementation: Detecting the NAE prob-
lem is straightforward with Athena since it provides a strong
query mechanism to retrieve network features with advanced
data preprocessing capabilities (e.g., sorting, aggregation, and
ranking). We register an event handler to retrieve flow-related
network features per application by AddEventHandler, and
analyze whether a given feature obeys a user-defined SLA (ser-
vice level agreement)® by the Check_SLA () *. If an incoming
event obeys the SLA, the ResultsGenerator utility APl is
invoked to generate the Results to notify operators. Finally,
it reports anomalous behavior to the operator’s GUI interface
via the ShowResults API, as illustrated in Figure 9.

NAE Analysis Results: Figure 9 shows our application
results. Since we set up a query with “Match DPID== (6
or 3)”, the results only represent relevant features aggre-
gated by app ID, switch ID, and timestamp. It shows a global
view of packet count information per switch. The sawtooth
pattern in this graph is caused by the expiration of flow rules,
since LB app issues flow rules with soft timeout 3. After the
security app is activated from 03:58, the security app takes
over most traffic flows, re-routing their packets into the path
of the security device. Therefore, the LB App loses forwarding
control due to its low priority. Although the LB app is active,
the network begins to suffer unexpected saturation in some
links and low volume in others. We implemented the NAE
problem detector on Athena within 30 lines of Java code.

VI. IMPLEMENTATION

We have developed a prototype implementation of the
Athena framework that integrates within ONOS [14], which
is an emerging SDN distributed controller for large-scale net-
works, focusing on service provider use-cases. Athena also em-
ploys MongoDB [31] for its distributed database, Spark [32],
[33] for its scalable computing cluster, and JfreeChart [34]
for the graphical interface. The prototype operates on ONOS
version 1.6, using OpenFlow 1.0 and 1.3, MongoDB version

3In this scenario, the SLA is that traffic should be distributed evenly per
each switch.

4This function is a custom algorithm to detect asymmetric traffic patterns.

5The soft timeout is used for deleting flow rules, when there are no incoming
packets within a certain time.

3.2, Spark version 1.6, and JfreeChart version 1.0.13. We
have implemented the prototype of Athena with approximately
15,000 lines of Java code.

Athena is implemented as an ONOS subsystem, which
provides services to an application layer. We modify the imple-
mentation of OpenFlowController to get OpenFlow con-
trol messages directly, and OpenFlowDeviceProvider to
issue statistics request messages to the SDN data plane. We
mark an XID value for statistics request messages to calculate
variation features exactly, as ONOS issues request messages
to the data plane as part of its management functions. To
extract application information per flows, Athena leverages
the FlowRule subsystem, which manages flow entries within
the controller. The Athena application operates as a separate
process and communicates with the Athena framework via
interprocess communication to reduce dependencies.

VII. EVALUATION

We now evaluate Athena with respect to its usability,
network scalability, and overhead. To explore its usability, we
consider the design of Athena’s anomaly detection applications
against comparable applications developed without Athena.
For the scalability assessment, we evaluate performance of
the large-scale DDoS anomaly detection algorithm introduced
in Section V-A. Finally, we measure the overhead of Athena
feature extraction using the Cbench benchmark. To evaluate
our work, we created an experimental environment with five
high performance servers (four Intel hexa-core Xeon E5-1650,
one Intel octa-core Xeon E5-2650) with 64GB RAM, two Intel
I5 quad-core 15-4690 and 16GB RAM memory, seven physical
switches ©.

A. Evaluating Usability of Athena

TABLE VIII. THE LINES OF JAVA CODES FOR A DDOS DETECTOR PER
ALGORITHM (EXCLUDING IMPORTS).
DDoS detector Athena | Spark | Hama [35]
(Algorithm)
K-Means 45 825 817
Logistic Regression 42 851 829

In evaluating the usability of Athena, we implemented a
DDoS detection application within different environments, and
then provide a rough approximation of the implementation
complexity by quantifying the source lines of code (SLoC)
required to implement the application. While imperfect, SLoC
is often used as a metric of usability (e.g., [36], [37]). We
believe that SLoC (application compactness), given the lack
of a large developer-base for feedback, provides a useful early
usability measure, similar in spirit to how it was applied to
answer this same question in related prior work.

Each resulting application embodies the functionality of
the DDoS attack detector in Section V. As summarized in
Table VIII, the application based on Athena uses 5% of the
lines of code that comparable functionalities require when
implemented on Spark [32] and Hama [35].

Two Pica8 P3290, two PICA8 P3297, two PICA8 AS4610, and one
ARISTA 7050T-36.
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Fig. 10. A performance assessment of the DDoS application while performing
anomaly detection tasks per the number of computing nodes.

B. Measuring Scalability of Athena

Figure 10 presents the performance results for the DDoS
detection application in Section V-A. We use an experimental
environment with ten instances on the three Xeon servers. The
instances consist of six compute nodes and a master node on
the two hexa-core Xeon servers, and three DB nodes on the
octa-core Xeon server. Here, we measure the total testing time
according to the number of compute instances. The dataset
includes 37,370,466 entries for a 50GB dataset. As the number
of computing instances increases, we observe a linear decrease
in the total processing time and the total test time with six
nodes is approximately 27.6% of the test time with a single-
compute node instance. We compare the application hosted
by Athena with an application on Spark, and results show
Athena introduces a small overhead (under 10%) over the
Spark application.

C. Overhead of Athena’s Feature Extraction

We measure the overhead of Athena’s feature extraction
while handling external events and compare this overhead to
the ONOS baseline (e.g., Cbench benchmark, and CPU usage).
We set up an experimental environment with the hexa-core
Xeon server to test Cbench benchmark and two hexa-core
Xeon servers with seven physical switches to measure CPU
usage while gathering events from the switches.

TABLE IX. CBENCH BENCHMARK FLOW INSTALL THROUGHPUT WITH
AND WITHOUT ATHENA (RESPONSE/S) OVER 50 ROUNDS OF TESTING.
H MIN [ MAX [ AVG
Without 773,618 883,376 831,366
With 107,245 610,724 389,584
With (no DB) 631,647 686,227 658,514
Overhead 86.13% 30.86% 53.13%
(no DB) (18.35%) (22.31%) (20.79%)

1) Cbench benchmark with/without Athena: The ONOS
testing group evaluates the scalability of ONOS to measure
how many burst events could be handled. For example, they
evaluate burst Packet IN event handling throughput with a
single instance, which is called the Cbench benchmark. To do
this, we evaluate Athena using Cbench’s throughput mode with

100
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Fig. 11. Average CPU usage while handling flow events with/without Athena.

the ONOS’s recommended settings [38] and summarize results
in Table IX. On average Athena has 53.13% lower throughput
and in the worst-case has 86.13% performance degradation.
However, without DB operations, Athena induces only 20%
performance degradation.

2) CPU usage with/without Athena: The overhead of
Athena is dependent on how much information is in the SDN
stack, including the control and data plane, as it passively
monitors and analyzes them both. To compute the monitoring
overhead of handling network events from SDN stacks, we
conducted experiments to measure the CPU load when using
ONOS with and without Athena. To do this, we established a
testing environment with a controller on the hexa-core Xeon
server, which is connected to the six physical switches, and
12 OVS instances on the two hexa-core Xeon and the two i5
servers respectively with dummy flows to generate monitoring
events. Figure 11 illustrates the testing results. Since Athena
stores events to the data plane while maintaining internal
status to generate stateful features, the flow handling overhead
increases according to the total number of flow entries in the
switches. We find that ONOS with Athena saturates at about
140K flows per second, while the CPU utilization is about
31% for the basic ONOS instance.

3) Discussion: We found that the performance overhead
of our system primarily originates from MongoDB related
operations. To boost Athena‘s performance, we will consider
replacing MongoDB with a high-performance database like
Cassandra [43].

VIII. RELATED WORK

We now discuss how prior projects have sought to address
the challenges described in Section II, including various limita-
tions in their coverage. Table X provides a comparison between
Athena and existing work related to network anomaly detection
and monitoring in SDN environments.

Anomaly detection strategies: The inherent centralized
control-layer design of SDNs enables operators an efficient po-
tential network-wide choke-point from which to gather a wide
range of network features. In fact, several prior anomaly detec-
tion projects [26], [6], [9], [5], [39] have successfully leveraged
volume-based network features available through monitoring
the OpenFlow protocol to detect network anomalies, such as
DDoS attacks and switch anomalies. Mehdi et.al. [8] explored
the feasibility of adopting traditional anomaly detection tech-
niques with OpenFlow‘s monitoring capabilities, and Braga



TABLE X.

COMPARISON OF Athena WITH RELATED WORK FROM NETWORK ANOMALY DETECTION AND NETWORK MONITORING WITH DIVERSE

PERSPECTIVES. (V: VOLUME-BASED, S: STATEFUL, SP: SAMPLING, D: DPI, SS: SDN-SPECIFIC)

Network Anomaly detection

H Purpose ‘ Architecture NB Interface SB Interface Feature ‘ Network Features
Management [ V. S [ SP] D [ S§
Athena Framework for anomaly detection Distributed Ad-hoc API OpenFlow v v v v
[37] Framework for security apps Single Script OpenFlow v v v v
[81, [10] General anomaly detection Single - OpenFlow v v
[6] Malicious switch detection Single - OpenFlow v
[16] NFV optimization Distributed - OpenFlow
[51, [9] General anomaly detection Single - OpenFlow, sFlow v v v
[26] LFA detection Single - OpenFlow, SNMP v
[39] Framework for anomaly detection Single - OpenFlow v
Network Monitoring
Purpose Architecture NB Interface SB Interface Custom Switch Resource Data Query
‘ ‘ ‘ ‘ ‘ Optimization Persistency
Athena Framework for anomaly detection Distributed Ad-hoc API OpenFlow v v
[40] Framework for network monitoring Single RESTful API OpenFlow v v
[17] Distributed network analysis Distributed NetConf Netflow, SNMP, IPSLA v v
[18] Distributed network monitoring Distributed - OpenFlow v v
[4] Scalable flow counter monitoring Single Ad-hoc API OpenSketch v v
[3] Scalable flow counter monitoring Single Ad-hoc API OpenFlow v v
[2] Resource allocation for measurement Distributed Ad-hoc API - v v
[71, [19] Efficient flow counter monitoring Single - OpenFlow v
[20] Low latency flow counter monitoring Single - sFlow v
[41] Network monitoring with NFV Single Policy Language OpenFlow
[42] Framework for network monitoring Single Policy Language Various sources

et.al. [10] leveraged OpenFlow statistics to demonstrate low-
cost detection of DDoS flooding attacks. FRESCO [37] ex-
ports a script-based development environment that facilitates
the creation of security applications that monitor well-known
network features (e.g., TCP session). However, these efforts
do not consider how to fully utilize network features derived
from an SDN environment to monitor it for behavioral and
operational stability.

From the perspective of detection strategies, most related
efforts [26], [6], [9], [5], [39], [8], [10] focus on fixed detection
algorithms against specific attacks, not general purpose algo-
rithms. While FRESCO [37] and ATLANTIC [39] provide a
set of libraries that aim to facilitate attack detection (e.g., port
scanning), only the former provides well-structured mitigation
actions and it does not support multi-instance controller envi-
ronments.

Scalable SDN monitoring: Several prior projects have ex-
plored various ways to reduce the overhead of gathering
volume-based network features [20], [19], [7], [3], [2], [4],
[18]. In fact, there have been prior efforts to incorporate a
distributed architecture that allows operators to scalably gather
network features, such as [17], [2], [18]. However, those
projects have not proposed detection strategies for tracking ma-
licious network behaviors. Furthermore, most of these project
have assumed the adoption of additional customized switches
to perform their scalable network monitoring [17], [18], [4],

(31, [2].

Bohatei [16] proposed a scalable DDoS detection and
mitigation solution, leveraging an optimization technique that
distributes jobs to NFV machines to increase data process-
ing throughput. Bohatei leverages additional NFV devices
to perform network functions, and does not directly im-
plement the anomaly detection algorithms. There have also
been sampling-based SDN monitoring approaches to reduce
collection overhead when collecting statistics from OpenFlow
environments [9], [5]. These techniques rely on the adoption
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of sFlow sampling. Spiffy [26] has demonstrated strategies for
Link Flooding Attacks mitigation [25], relying on the SDN’s
centralized management to insert flow mitigation. A limitation
of Spiffy is that it requires a customized switch to measure the
network behavior. Finally, there are several additional projects
that have explored the feasibility of anomaly detection in
SDNs: [37], [10], [8], [6], [39]. Unlike Athena, none of these
projects address our scalability requirements.

Improving SDN usability: Several prior projects have intro-
duced northbound APIs that allow operators to conduct various
forms of network monitoring [42], [41], [2], [3], [4]. Pay-
less [40] provides a semantical monitoring capability that helps
operators monitor networks by calling well-structured RESTful
APIs that reflect a high-level set of monitoring requirements.
DNA [17] introduces a scalable network monitoring function
to examine telemetry data sources. Although these previous
projects enhance usability by exporting well-structured APIs
to operators, they do not provide a detection algorithm to find
network anomalies.

IX. CONCLUSION

We explore several challenges in designing scalable
anomaly detection services in large-scale SDN environments.
We evaluate an initial prototype implementation of our so-
lution, Athena, over the open-source ONOS distributed SDN
controller. We discuss how Athena enables security researchers
and developers to make anomaly detection applications with
a minimum of programming effort through its API abstrac-
tion layer. We also discuss generalized use of off-the-shelf
strategies for driving network anomaly detection algorithm
development and introduce a new SDN-specific anomaly.

Athena employs a distributed database and a clustered
computing platform, which can deploy these detection al-
gorithms across a large-scale distributed control plane. The
Athena framework is designed to operate on existing SDN in-
frastructures, enabling operators to deploy it in a cost efficient



manner. Our evaluations demonstrate that Athena can support
well-known network anomaly detection services in an efficient
manner, by scaling to a large-scale dataset from a large-scale
datacenter-like physical network environment. Athena has been
publicly released as an open-source project to the academic and
SDN research community.
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