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Abstract. We introduce Eureka, a framework for enabling static analy-
sis on Internet malware binaries. Eureka incorporates a novel binary un-
packing strategy based on statistical bigram analysis and coarse-grained
execution tracing. The Eureka framework uniquely distinguishes itself
from prior work by providing effective evaluation metrics and techniques
to assess the quality of the produced unpacked code. Eureka provides
several Windows API resolution techniques that identify system calls in
the unpacked code by overcoming various existing control flow obfusca-
tions. Eureka’s unpacking and API resolution capabilities facilitate the
structural analysis of the underlying malware logic by means of micro-
ontology generation that labels groupings of identified API calls based
on their functionality. They enable a visual means for understanding
malware code through the automated construction of annotated control
flow and call graphs. Our evaluation on multiple datasets reveals that
Eureka can simplify analysis on a large fraction of contemporary Internet
malware by successfully unpacking and deobfuscating API references.

1 Introduction

Consider the challenges that arise in assessing the threat posed from a new
malware binary strain that appears on the Internet or is discovered in a highly
sensitive computing environment. Now multiply this challenge by the hundreds
of new strains and repurposed malware variants that appear on the Internet
yearly [16,21], and the need to develop automated tools to extract and analyze all
facets of malware binary logic becomes clear. Unfortunately, malware developers
are also well aware of the efforts to reverse engineer their binaries, and employ
a wide range of binary obfuscation techniques to deter analysis and reverse
engineering.

Nevertheless, whether drawn by the deep need or the challenges, substantial
efforts have been made in recent years to develop automated malware binary
analysis systems. In particular, two primary approaches have dominated these
efforts. Dynamic analyses refer to techniques to profile the actions of the malware
binary at runtime [9,4]. Static analyses refer to techniques to decompile and an-
alyze the logical structure, flow, and data content stored within the binary itself.
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While both analysis techniques yield important (and sometimes complementary)
insight into the capabilities and purpose of a malware binary, these techniques
also have their unique advantages and disadvantages.

To date, dynamic analysis based approaches have arguably offered a better
track record and mind share among those working on malware binary analysis.
Part of that success is attributable to the challenges of overcoming the formi-
dable obfuscation techniques [24,26], or packers [22] that are widely utilized by
contemporary malware authors. These obfuscation techniques, including func-
tion and API call obfuscation, and control flow obfuscations along with a gamut
of other protections proposed by the research community [8,19], have been shown
to deter static analyses. While defeating these obfuscations is a prerequisite step
to conducting meaningful static analyses, they can largely be overcome by those
conducting dynamic analyses. However, traditional dynamic analysis provide
only a partial “effects oriented” profile of the full potential of a given malware
binary. Multipath exploring dynamic analysis [18] has the potential to improve
traditional dynamic analysis by executing code paths for unsatisfied trigger con-
ditions, but does not guarantee completeness.

Static program analysis can provide complementary insights to dynamic analy-
ses in those occasions where binary obfuscations can be sufficiently overcome. Sta-
tic program analysis offers the potential for a more comprehensive assessment and
correlation of code and data of the program. For example, by analyzing the se-
quence of invoked system calls and APIs, performing control flow analysis, and
tracking data segment references, it is possible to infer logical code bombs, tempo-
ral triggers, and other malicious system interactions, and from these form higher
level semantics about malicious behavior. Features such as the presence of net-
work communication logic, registry and OS manipulations, object creations (e.g.,
files, processes, inter-process communication) can be detected, whether these ca-
pabilities are exercised at runtime or not. Static analysis, when presented with a
deobfuscated binary can complement and even inform dynamic program analyses
with a more comprehensive picture of the program logic.

1.1 The Eureka Framework

In this paper, we introduce a malware binary deobfuscation framework referred
to as Eureka, designed to maximally facilitate static code analysis. Figure 1
presents an overview of the modules and logical work flow that compose the Eu-
reka framework. The Eureka workflow begins with the subject-packed malware
binary, which is executed in a VM managed by Eureka. After interrogating local
environment for evidence of tracing or debugging, the malware process enters a
phase of unpacking and the eventual spawning of its core malware payload logic
while a parallel Eureka kernel driver tracks the execution of the malware binary,
periodically evaluating the process for signs that it has unpacked its image. In
Section 3, we present Eureka’s course-grained execution tracking algorithm and
introduce novel binary n-gram statistical trigger for evaluating when the un-
packed process image has reached a stable state. Once the execution tracker
triggers a process image dump, Eureka employs the IDA-Pro disassembler [1] to
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Fig. 1. The Eureka Malware Binary Deobfuscation Framework

Table 1. Design space of unpackers. Evasions: (1) multiple packing, (2) partial code
revealing multi-layered packing, (3) vm detection, (4) emulator detection

System Monitoring Monitoring Trigger Child Process Output Execution Potential
Environment Granularity Types Monitoring Layers Speed Evasions

PolyUnpack Inside VM Instruction Model-based No 1 Slow 1,2,3
Renovo Emulator Instruction Heuristic Yes many Slow 2,4
OmniUnpack Inside VM Page Heuristic No many Fast 2,3
Eureka Inside VM System Call Heuristic, Statistical Yes 1,many Fast 2,3

disassemble the image, and then proceeds to conduct API resolution and prepare
the code image for static analysis. In Section 4, we discuss Eureka’s API map
recovery module, which provides several automated deobfuscation procedures to
recover hidden API invocations that are commonly used to thwart static analy-
sis. Once API resolution is completed, the code image is processed by Eureka’s
analyzability metrics generation module which compares several attributes to
decide if static analysis of the unpacked image yields useful results. Following
the presentation of the Eureka framework, we further present a corpus evaluation
(Section 6) to illustrate the usage and effectiveness of Eureka.

2 Related Work

The problem of obfuscated malware has confounded analysts for decades [26].
The first obfuscation techniques exhibited by malware in the wild include viral
metamorphism [26] and polymorphism [24]. Several obfuscation approaches have
since been presented in the literature [7] including, opaque predicates [8] and
recently opaque constants [19]. Packers and executable protectors [22] are often
used to automatically add several layers of protection to malware executables.
Recent packers and protectors also incorporate API obfuscations that make it
hard for analyzers to identify system calls or calls to Windows APIs.

Automated unpacking. There have been several recent attempts at build-
ing automated and generic tools for unpacking malware, most notably PolyUn-
pack [23], Renovo [13], and OmniUnpack [17]. Table 1 summarizes the design
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space of automated unpackers that illustrates their strengths, differences, and
common weakness. PolyUnpack, which was the first automated unpacking tech-
nique, builds a static model of the program and uses fine-grained execution
tracking to detect when an instruction an instruction outside of the model is
executed. PolyUnpack uses the Windows debugging API to single-step through
the process execution. Like PolyUnpack, Renovo uses a fine-grained execution
monitoring approach to track unpacking progress and considers the execution of
newly written code as an indicator of unpack completion. Renovo is implemented
using the QEMU emulator, which resides outside the execution environment of
the malware and supports multiple layers of unpacking. OmniUnpack is most
similar to Eureka in that it uses a coarse-grained execution tracking approach.
However, their granularities are orthogonal: OmniUnpack tracks execution at the
page level while Eureka tracks execution at the system call level. OmniUnpack
uses page-level protection mechanisms available in hardware to identify when
code is executed from a page that was newly modified.

Static and dynamic malware analysis. Previous work in malware analysis
that uses static analysis has primarily focused on malware detection approaches.
Known malicious patterns are identified in [10]. The approach of using semantic
behavior to thwart some specific code obfuscations was presented in [11]. Rootkit
behavior detection was presented in [15], and [14] uses a static analysis approach
to identify spyware behavior in Browser Helper Objects. Traditional program
analysis techniques [20] have been investigated for binary programs in general
and malware in particular. Dataflow techniques such as Value Set Analysis [3]
aim at recovering the set of possible values that each data object can hold at
each program point. CWSandbox [9] and TTAnalyze [4] are dynamic analysis
systems that execute programs in a restricted environment and observe sequence
of system interactions (using system calls). Pararoma [30] uses system-wide taint
propagation to analyze information flow, which it uses for detecting malware.
Bitscope [6] incorporates symbolic execution-based static analysis to analyze
malicious behavior.

Statistical analysis. Fileprint analysis [25] studies statistical binary content
analysis as a means to identify malicious content embedded in files, finding that
n-gram analysis is a useful means to detect anomalous file segments. A further
finding is that normal system files and malware can be well classified using 1-
gram and 2-gram analysis. While our methodology is similar, the problem differs
in that we use bi-grams to model unpacked code and it is independent of the
code being malicious. N-gram analysis has also been used in other contexts,
including anomalous packet detection in network intrusion detection systems
such as PAYL [29] and Anagram [28].

3 Informed and Coarse-Grained Execution Tracking

In general, all of the current methods for binary unpacking start with some sort
of dynamic analysis. Unpacking systems begin their processing by executing the
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malware binary, allowing it to self-decrypt its malicious payload logic and to
then fork control to this newly revealed program logic. One primary method by
which unpacking systems distinguish themselves is in the approach each takes
to monitor the progression of the packed binaries’ self-decryption process. When
the unpacker determines that the process has sufficiently revealed the malicious
payload logic, it will then dump the malicious process image for use in static
analysis.

Much of the variability in unpacking strategies comes from the granularity
of monitoring that is used to track the self-decryption progress of the packed
binary. Some techniques rely on tracking the progress of the packed process on
a per-individual instruction basis. We refer to this instruction-level monitoring
as fine-grained monitoring. Other strategies use more coarse-grained monitor-
ing, such as OmniUnpack, which checkpoints the self-decryption progress of the
malicious binary via intercepting interrupts from the page-level protection mech-
anisms. Eureka, like OmniUnpack, tracks the execution progress of the packed
binary image via coarse-grained check pointing. However, rather than using page
interrupts, Eureka tracks the malicious process via the system call interface. Eu-
reka’s coarse-grained execution tracker operates as a kernel driver that dumps
the malicious process image for disassembly when it believes that the malicious
payload logic has been sufficiently revealed. In the following, we present two
different methods for deciding when to dump the malicious process image, i.e.,
a heuristic-based method which works for most contemporary malware and a
statistical n-gram anlaysis method which is more robust.

3.1 Heuristics-Based Unpacking

Eureka’s principal method of unpacking is to follow the execution of the malware
program by tracking its progress at the system call level. Among the advantages
of this approach, the progression of the self-decrypting process image can be
tracked with very little overhead. Each system call indicates that a particu-
lar interesting event is occurring in the executing malware. Eureka employs a
Windows-driver-based unpacker that hooks the Windows SSDT (System Service
Dispatch Table). The driver executes a callback routine when a system call is
invoked from a user-level program. We use a filtering approach based on the
process ID (PID) of the process invoking the system call. A user-level program
initiates the execution of the malware and informs the Eureka driver of the
malware’s PID.

The heuristics-based unpacking approach of Eureka exploits a simple strategy in
which it uses the event of program exit as triggering the snapshot of the malware’s
virtual memory address space. That is, the system call NtTerminateProcess is
used to trigger the dumping of the malware process image, under the assumption
that the use of this API implies that the unpacked malicious payload has been suc-
cessfully decrypted, spawned, and is now ending. Another noticeable behavior we
found in a large number of malware programs was that the malware spawns its
own executable as another process. We believe this is a widely used technique that
detaches from debuggers or system call tracers that trace only the initial malware
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process. Thus, Eureka also employs a simple heuristic that dumps the malware dur-
ing the execution of the NtCreateProcess system call, we found that a large frac-
tion of current malware programs were successfully unpacked.

A problem with the above heuristic is that not all malware programs exit and
keep an executing version resident in memory. There are several weaknesses in
this simple heuristics-based approach. Although the above two heuristics may
work for a large fraction of malware today, it may not be the same for fu-
ture malware. With the knowledge of these heuristics, packers may incorporate
the features of including process creation as part of the unpacking process. This
would mean that unpacking may not have completed when the NtCreateProcess
system call is intercepted. Also, malware authors can simply avoid exiting the
malware process, avoiding the use of the NtTerminateProcess system call. Nev-
ertheless, these very basic and very efficient heuristics demonstrate that very sim-
ple and straightforward mechanisms can be effective in unpacking a significant
fraction of today’s malware (as much as 80% of malware analyzed in our corpus
experiments, Section 6). Where these heuristics fail, our statistical-based n-gram
strategy provides a more than sufficient complement to unpack the remaining
malware.

3.2 Statistics-Based Unpacking

As an alternative to its system-call heuristics, Eureka also tracks the statisti-
cal distribution of executable memory regions. In developing such an approach,
we are motivated by the simple premise that unpacked executables have fun-
damentally different statistical properties that could be exploited to determine
when a malware program has fully unpacked itself. A Windows PE (portable
executable) is composed of several different types of regions. These include file
headers and data directories, code sections (typically labeled as .text), and data
sections (typically labeled as .data). Intuitively, as the malware unpacks itself,
we expect that the code-to-data ratio would increase. So we expect that tracking
the volume of code and data in the executable would provide us with a measure
of the progress of unpacking. However several potential complications could arise
that must be considered:

– Code and data are often interleaved, especially in malicious executables.
– Data directory regions such as import tables that have statistically similar

properties to data sections (i.e., ASCII data) are embedded within code
sections.

– Properties of data sections holding packed code might vary greatly based on
packers and differ significantly from data sections in benign executables.

To address these issues, we develop an approach that models statistical prop-
erties of unpacked code. Our approach is based on two observations. First, code
has certain intrinsic properties that tend to be invariant across executables (e.g.,
certain opcodes, registers, and instruction sequences are more prevalent than
others). These statistical properties may be used to measure relative changes in
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the volume of unpacked code. Second, we expect that the volume of unpacked
code would be strictly increasing as a packed malware executes and unravels
itself. Surprisingly, we find that both our assertions hold for the vast majority
of malware and across most packers.

Mining statistical patterns in x86 code: As a means to study typical and
frequently occurring patterns in x86 code, we began by looking at a small col-
lection of benign PE executables. A natural way to search for such patterns is
to use a simple n-gram analysis. Specifically, we were interested in using n-gram
analysis to build models of sections of these executables that contained x86 in-
structions. Our first approach was to simply extract entire sections from the PE
header that was labeled as code. However, we found that large portions of these
sections also contained long sequences of ASCII data from non x86 instructions,
e.g., data directories or DLL names, which biased our analysis. To alleviate this
bias, we used the IDA Pro disassembler, to extract regions from these executables
that were marked as functions by looking for arguments to the MakeFunction
calls in the IDC file. We then performed bigram analysis on this data. We chose
bigrams because x86 opcodes tend to be either 1-byte or 2-bytes. By looking at
frequently occurring bigrams we are looking at the most common opcode pairs
or 2-byte opcodes. Once we developed a list of the most common bigrams for the
benign executable, we used objdump output to evaluate whether bigrams occur
in opcodes or operands (addresses, registers). Intuitively, one expects the former
to be more reliable than the latter. We provide a summary in Table 2. Based
on this analysis, we selected FF 15 (pushl) and FF 75 (call) as two candidate
bigrams that are prevalent in x86 code. We also looked for spaced bigrams (byte
pairs separated by 1 or more bytes). We found that the call instruction with one
byte opcode (e8) has a relative offset. The last byte of this offset invariably ends
up being 00 or FF depending on whether has a positive or negative offset. Thus
high frequencies of e8 00 and e8 ff are also indicative of x86 code.

To evaluate the feasibility of this approach, we examined bigram distribu-
tions on a corpus of 1291 malware instances. We first unpacked each of these
instances using our heuristic-based unpacker and then evaluated the quality of
unpacking by evaluating the code-to-data ratio in an IDA Pro disassembly. We
found that the heuristic-based unpacker did not produce a useful unpacking in
201 instances (small amount of code and low code-to-data ratio in the IDA dis-
assembly). Out of the remaining 1090 binaries, we labeled 125 binaries as being
originally unpacked (significant amount of code and high code-to-data ratio in
both packed and unpacked disassemblies) and 965 as being successfully unpacked
(significant amount of code and high code-to-data ratio only in the disassembly
of the unpacked executable). Using counts of aforementioned bigrams, we were
able to produce output consistent with that of IDA disassembly evaluation. We
correctly identified all 201 instances of still-packed binaries, all 125 instances
of originally unpacked binaries, and 922 (out of 965) instances of the success-
fully unpacked binaries. In summary, this simple bigram counting approach had
over a 95% success rate in distinguishing between packed and unpacked malware
instances.
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Table 2. Occurrence summary of bigrams

Bigrams calc explorer ipconfig lpr mshearts notepad ping shutdown taskman
(117 KB) (1010 KB) (59 KB) (11 KB) (131 KB) (72 KB) (21 KB) (23 KB) (19 KB)

FF 15 (call) 246 3045 184 24 192 415 58 132 126
FF 75 (push) 235 2494 272 33 274 254 41 63 85

E8 - - - 0xff (call) 1583 2201 181 19 369 180 87 49 41
E8 - - - 0x00 (call) 746 1091 152 62 641 108 57 66 50

STOP – Statistical Test for Online unPacking. Inspired by the results
from offline bigram counting experiments, Eureka incorporates STOP, an online
algorithm for determining the terminating (or dumping) condition. We pose the
problem as a simple hypothesis testing argument that checks for increase in
mean value of bigram counts. Our null hypothesis is that the mean value of
x86 instruction bigrams has not increased. We would like to conclude that the
mean value has increased when we see a consistent and significant shift in the
bigram counts. Let us assume that we have the prior mean (μ0) for the candidate
x86 instruction bigrams, and that we have a sample of N recent bigram counts.
We assume that this sample is normally distributed with mean value (μ1) and
standard deviation (σ1). We compute z0 = μ1−μ0

σ1
. If z0 > 1.645 then we reject

the null hypothesis (with a confidence level of 0.95 for a normal distribution). We
have integrated the STOP algorithm into our Eureka execution tracking module.
STOP parameters include the ability to choose to compute the mean value of
particular bigrams at each system call, every n system calls for a given value of
n, or only when certain anomalous system calls are invoked.

4 API Resolution Techniques

User-level malware programs require the invocation of system calls to interact
with the OS in order to perform malicious actions. Therefore, analyzing and
extracting malicious behaviors from these programs require the identification
of invoked system calls. Besides the predefined mechanism of system calls that
require trapping to kernel, application programs may interact with the operating
systems via higher level shared helper modules. For example, in Windows, the
Win32 API is a collection of services provided by helper DLLs that reside in user
space, while the native APIs are services provided by the kernel. In such a design,
the user-level API allows a higher-level understanding of behavior because most
of the semantic information is lost at the native level. Therefore, an in-depth
binary static analysis requires the identification of all Windows API calls, and
call sequences, made within the program.

Obfuscations that impede analysis by hiding API calls have become prevalent
in malware. Analyzers such as IDA Pro [1] or OllyDbg [2] support the standard
loading and linking method of binaries with DLLs, which modern packers bypass
Rather, they employ a variety of nonstandard techniques to link or connect call
sites with the intended API function residing in a DLL. We refer to the task
of deobfuscating or identifying Windows API function targets from the image
of a previously packed malware binary, no matter how they are referenced, as
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Fig. 2. Example of the standard linking mechanism of PE executables in Windows

obfuscated API resolution. In this section, we first provide a background on
how normal API resolution occurs in Windows, and then contrast this with
how Eureka handles problems of obfuscated API resolution. These analyses are
performed on IDA Pro’s disassembly of the unpacked binary, as produced by
Eureka’s automated unpacker.

4.1 Background: Standard API Resolution

Understanding the challenges of obfuscated API resolution first requires an un-
derstanding of how packers typically avoid the standard methods of linking API
functions that reside in user-level DLLs. The Windows process loader and linker
are responsible for linking DLLs with a PE (Portable Executable) binary. Fig-
ure 2 illustrates the high-level view of the mechanism. Each executable contains
an import table directory, which consists of entries corresponding to each DLL it
imports. The entries point to tables containing names or ordinals for functions
that need to be imported from a specific DLL. When the binary is loaded, the
required DLLs are mapped into the memory address space of the application,
and the export table in the DLL is used to determine the virtual addresses of the
functions that need to be linked. A table called the Import Address Table (IAT)
is filled in by the loader and linker with the virtual addresses of each imported
function. This table is referred to by indirect control flow instructions in the
program to call the functions in the linked DLL.

4.2 Resolving Obfuscated APIs without the Import Tables and IAT

Packers avoid using the standard linking mechanism by removing entries from
the import directory of the packed binaries. For the program to function as be-
fore after unpacking, the logic of loading the DLLs and linking the program with
the API functions is incorporated into the program itself. Among other meth-
ods, this may include explicit invocations to GetProcAddress and LoadLibrary
API calls.1 The LoadLibrary API provides a method of mapping a DLL into a
process’s address space during execution, and the GetProcAddress API returns
the virtual address of an API function in a loaded DLL.
1 In most cases, at least these two API functions are kept in the import table, or their

addresses are hard-coded in the program.
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Let us assume that the IAT defined in a malware executable’s header is in-
complete, corrupt, or not used at all. Let us further assume that the unpacking
routine may include entries in the IAT that are planted to mislead naive analysis
attempts. Moreover, the malware executable has the power to recreate a similar
table in any memory location of its choosing or use methods that may not require
table-like data structures. The objective of Eureka’s API resolution module is
to resolve APIs in such cases to facilitate the static analysis of the executable.
In the following, we outline the strategies used by the Eureka API resolution
module to accomplish these deobfuscations, presented in the increasing order of
complexity.

Handling DLL obfuscations. DLLs loaded at standard virtual ad-
dresses. By default, DLLs are loaded at the virtual address specified as the
image base address in the DLL’s PE header. The standard Windows Win32
DLLs specified bases do not clash with each other. Therefore, unless intervened,
the loader and linker can load all these DLLs at the specified base virtual ad-
dresses. By assuming this is the case, a table of probable virtual addresses of each
exported API function from these DLLs can be built. This simple method has
been found to work for many unpacked binary malware images. For example, for
Windows XP service pack 2, the KERNEL32.DLL has a default image base address
of 0x7C800000. The RVA (relative virtual address) of the API GetProcessId is
0x60C75, making its default virtual address 0x7C860C75.

In such cases, Eureka’s analysis proceeds as follows to reconstruct API as-
sociations. For each Win32 DLL Di, let Bi be the default base address. Also,
let there be ki exported API functions, where each function Fi, j has the RVA
(relative virtual address) Ri,j . Eureka builds a database of virtual addresses
Vi,j = Bi + Ri,j and their corresponding API functions. Whenever Eureka finds
a call site c with resolved target address A(c), it searches all Vij to identify the
API function target. We find that this method works as long as the DLLs are
loaded in the default base address.

DLLs loaded at arbitrary virtual addresses. To make identification of an
API harder, there may be cases where a DLL is loaded into a nonstandard base
address by system calls to explicitly map them into a different address space.
As a result, the address found during analysis of the unpacked binary may not
be found in the computed virtual address set. In this case, we can utilize some
of the dynamic information captured by running malware (in many cases, this
information can be harvested during Eureka’s unpacking phase). The idea is to
use runtime information of native system calls that are used to map DLL and
modules into the virtual address space of an application. Since our unpacker
traces native system calls, we can look for specific calls to NtOpenSection and
NtMapViewOfSection. The former system call identifies the DLL name and the
latter provides the base address where it is loaded. Eureka correlates these two
calls using the handle returned by the first system call.

API resolution for statically identifiable targets. One way to identify
an invocation of an API function without relying on the import directory of
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the unpacked image is by testing targets of call sites to see whether they point
to specific API functions. We assume that a call site may use an indirect call
or a jump instruction. Such instructions may involve a pointer directly or may
use a register that is loaded with an address in an earlier instruction. To iden-
tify targets in a generic manner, Eureka uses static analysis on the unpacked
disassembly.

Eureka starts by performing control flow analysis on the program. The use of
IDA Pro disassembly simplifies analysis by marking subroutine boundaries and
inter-procedural control flows. Furthermore, control flow instructions that have
statically identified targets that reside within the program are also resolved. In
addition, IDA Pro identifies any valid API calls through the import directory and
the IAT. Eureka’s analysis task then is to resolve unknown static or statically
resolvable target addresses in control flow instructions. These are potential calls
to API functions residing in DLLs. Our algorithm proceeds as follows. First,
Eureka identifies functions in the disassembly (marked as subroutines using the
SUB markers). For each function, the control flow graph is built by identifying
basic-blocks as nodes and static intra-procedural control flow instructions that
connect them as edges. Eureka then models inter-procedural control flow by
observing CALL or JMP instructions to subroutines that IDA already identifies. It
selects any remaining such instructions with an unrecognized target as potential
API call sites. For these instructions, Eureka uses static analysis to identify the
absolute memory address to which they will transfer control.

We now use a simple notation to express the x86 instructions that Eureka
analyzes. Let the set of all instructions be I. For any instruction i ∈ I, we use
the notation S(i) as the source operand if one exists, and T (i) as the target
operand. The operands may be immediate values, memory pointer indirection
or a register. Suppose the set of potential API call instructions is C ⊆ I. Our
goal is to find the target address of a potential API call instruction c, which we
express by A(c). For instructions with immediate addresses, A(c) can be found
directly from the instruction. For indirect control transfers using a pointer, such
as CALL [X], Eureka considers the static value stored at address X as a target.
Since Eureka uses the disassembly generated by IDA, the static value at address
X is included as data definition with the name dword X.

For register-based control transfers, Eureka needs to identify the value loaded
in the register at the point of initiating the transfer. Some previous instruction
can load the register with a value read from memory. A generic way to identify
the target is to extract a sequence of instructions that initially loads a value
from a specific memory address to a register and subsequently is loaded to the
register that is used in the control-transfer instruction. Eureka resorts to dataflow
analysis for solving these cases. Using standard dataflow analysis at the intra-
procedural level, Eureka identifies def-use instruction pairs. A def-use pair (d, u)
is a pair of instructions where the latter instruction u uses an operand that is
defined in d, and there is a control flow path between these instructions with
no other definitions of that operand in between. For example, a MOV ESI, EAX
followed by CALL ESI instruction with no other redefinitions of ESI forms a



492 M. Sharif et al.

Fig. 3. Illustration of Static Analysis Approaches used to Identify API Targets

def-use pair for the register ESI. To find the value that is loaded in the register
at the call site, starting from a potential call site instruction, Eureka identifies a
chain of def-use pairs that end at this instruction involving only operands that
are registers. Therefore, the first pair in the chain contains a def that loads to
a register a value from memory or an immediate value, which is subsequently
propagated to the call site. Figure 3(a) illustrates these cases. The next phase is
to determine whether the address A(c) for a call site c is indeed an API function,
and if so Eureka resolves its API name.

API resolution for dynamically computed addresses. In some cases, the
resolved target address A(c) can be uninitialized. This may happen if the snap-
shot is taken at a point during the execution when the resolution of the API
address has not taken place in the malware code. It may also be the case that the
address is supposed to be returned from a system call such as GetProcAddress,
and thus is not contained in the unpacked memory image. In such cases, Eureka
attempts to analyze the malware code and extract the portion of code that is
supposed to update this address by identifying instructions that write to the
memory location that contained A(c). For each of these instructions, Eureka
constructs def-use chains and identifies where they are initiated. If in the control
flow path there is a call to the GetProcAddress, Eureka identifies the arguments
pushed onto the stack before calling the service. Since it is one of the arguments,
Eureka can directly identify the name of the API whose address is returned and
stored in the pointer. Figure 3(b) illustrates a sample code template and how
our analysis propagates results of GetProcAddress to call sites.

5 Evaluation Metrics

We consider the problems of measuring and improving analyzability after API
resolution. Although a manual inspection can determine the quality of the out-
put and its suitability for applying static analysis, in a large corpus of thousands
of malware programs, automated methods for performing this step are essential.
Technically, without the knowledge of the original malware code, it is impossible
to precisely conclude how successfully the obfuscations applied to a code have
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been removed. Nevertheless, several heuristics can aid malware analysts and
other post-unpacking static analysis tools in deciding which unpacked binaries
can be analyzed successfully, and which require further attempts at deobfusca-
tion. Poor analyzability metrics could further help detect when previously suc-
cessful malware deobfuscation strategies are no longer successful, possibly due to
new countermeasures employed by malware developers to thwart the unpacking
logic. Here we present heuristics that we have incorporated in Eureka to express
the quality of the disassembled process image, and its potential analyzability in
subsequent static analyses.

Code-to-data ratio. An observable difference between packed code and un-
packed code is the amount of identifiable code and data found in the binary.
Although differentiating between code and data on x86 variable length instruc-
tions is a known hard problem, in practice the state-of-the-art disassemblers and
analyzers such as IDA Pro are quite capable of identifying code by recursively
passing through code and by taking into account specific valid code sequences.
However, these methods tend to err on the side of detecting data as code, rather
than the other way around. Therefore, if code is identified via IDA Pro, it can
be taken with confidence that it is actual code. The amount of code that is
identified in and provided from an unpacker can be used as a reasonable indi-
cation of how completely the binary was unpacked. Since there is no ground
truth on the amount of code in the original malware binary prior to its packing,
we have no absolute measures from which we can compare the quality of the
unpacked results. However, empirically, we find that the ratio of code to data
found in the unpacked binary is a useful analyzability metric. Usually, any se-
quence of bytes that is not identified as code is treated as data by IDA Pro.
In the disassembled code, these data are represented using the data definition
assembler mnemonics — db, dw or dd. We use the ratio of identified code and
data by IDA Pro as an indication of unpacking quality. The challenge with this
measurement is in identifying the threshold above which we can conclude that
packing was successful. We used an empirical approach to determine a suitable
threshold for this purpose. When experimenting with packed and unpacked bi-
naries of benign programs, we observed that the amount of identified code is
very low for almost all different packer-generated packed binaries. There were
slight variations depending on the unpacking code inserted by the packer. Still,
we found the ratio to be well below 3% in all cases. Although the ratio of code
vs. data increased significantly after unpacking, it was not equal to the original
benign program prior to packing, because the unpacked code still contained the
packed data in the memory image, which appeared as data definitions in the
disassembly. We found that most of the successfully unpacked disassemblies had
code-to-data ratios well above 50%. Eureka uses the 50% threshold as the value
of valid unpacking.

API resolution success. When attempting to conduct a meaningful static
analysis on an unpacked binary, one of the most important requirements is the
proper identification of control flow, whether it relates to Windows APIs or to
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the malware’s internal functions. Incomplete control flow can adversely affect
all aspects of static analyses. One of the main culprits of control flow analysis
is the existence of indirect control flow instructions whose targets are not stati-
cally identifiable and can be derived only by dynamic means. In Section 4, our
presented API resolution method tries to identify the targets of call sites that
were not identified by IDA Pro. If the target is not resolvable, it may be a call
to an API function that was successfully obfuscated beyond the reversal tech-
niques used by Eureka, or it may be a dynamically computed call to an internal
function. In both cases, we lose information about the control flow behavior
from that point in the program. By taking success and failure scenarios into
account, we can compute the ratio of resolved APIs and treat it as an indication
of quality of subsequent static analysis. Our API resolution quality is expressed
as a percentage of total number of API calls that have been resolved from the
set of all potential API call sites, which are indirect or register-based calls with
unresolved target. A higher value of p indicates that the resulting deobfuscated
Eureka binary will be suitable for supporting static analyses that support more
in-depth behavioral characterization.

6 Experimental Results

We now evaluate the effectiveness of Eureka using three different datasets. First,
we measure how Eureka and other unpackers handle various common packers
using a dataset of packed benign executables. Next, we evaluate how Eureka
performs on two recent malware collections: a corpus of 479 malicious executables
obtained from spam traps and a corpus of 435 malicious executables obtained
from our honeynet.

6.1 Benign Dataset Evaluation: Goat Test

We evaluate Eureka using a dataset of packed benign executables. Specifically,
we used several common packers to pack an instance of the popular Microsoft

Table 3. Evaluation of Eureka, PolyUnpack and Renovo:
√

= unpacked; ⊗ = partially
unpacked; × = unpack failed

Packer PolyUnpack Renovo Eureka Eureka API
Unpacking Unpacking Unpacking Resolution

Armadillo × ⊗ √
64%

Aspack 2.12 ⊗ √ √
99%

Asprotect 1.35 ⊗ √ × –
ExeCryptor

√ ⊗ √
2%

ExeStealth 2 × √ √
97%

FSG 2.0
√ √ √

0%
MEW 1.1

√ √ √
97%

MoleBoxPro × √ √
98%

Morphine 1.2
√ ⊗ √

0%
Obsidium × × √

99%
PeCompact 2 × √ √

99%
Themida × ⊗ ⊗ –
UPX 3.02

√ √ √
99%

WinUPack 3.99 ⊗ √ √
99%

Yoda 3.53 ⊗ ⊗ √
97%
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Windows executable, notepad.exe. An advantage of testing with a dataset of
custom-packed benign executables is that we have ground truth for what the
malware is packed with and we know exactly what is expected after unpacking.
This makes it easier to evaluate the quality of unpacking results. We compare the
unpacking capability of Eureka to that of PolyUnpack (using a limited distribu-
tion version obtained from the author) and Renovo (by submitting to BitBlaze
malware analysis service [5]). We were unable to acquire OmniUnpack for our
test results.

These results are summarized in Table 3. In cases where an output was found,
we used Eureka’s code-to-data ratio heuristic to determine whether it was success-
fully unpacked and manually also verified the results of the heuristic. For Renovo,
we compare with the last layer that was produced in the case of multiple unpacked
layers. The results show that Eureka performs well compared to other unpacking
solutions. Eureka was successful in all cases except Asprotect, which interfered
with Eureka’s driver, and Themida, where the output was an altered unpacking
with API calls emulated. In Figure 4, we illustrate how the bigram counts change
as Eureka executes for three of the packers. We find that in most cases the bigram
counts change synchronously and very sharply (similar to ASPack) making it easy
to determine appropriate points for snapshotting execution images. We find that
Eureka is also robust to packers that naively employ multiple layers such as Mole-
Box and some incremental packers such as Armadillo.

In this comparison study, PolyUnpack failed in many instances including cases
where it just unveiled a single layer of packing while the output still remained
packed. We suspect that aggressive implementation of anti-debugging features
might be impairing its current success. Renovo, on the other hand, provided
several unpacked layers in all cases except for Obsidium. Further analysis of
the output however revealed that in some cases the binary was not completely
unpacked. Finally, our results show that Eureka’s API resolution technique was
able to determine almost all APIs for most packers and failed considerably in
some others. Particularly, we found ExeCryptor and FSG to use a large amount
of code rewriting for obfuscating API calls, including use of arbitrary combina-
tions of complex instruction sequences to dynamically compute the targets.

6.2 Malicious Data Set Evaluation

Spam corpus evaluation. We begin by evaluating how Eureka performs on
a corpus of 481 malicious executables obtained from spam traps. The results
are very encouraging. Eureka was able to successfully unpack 470 of 481 exe-
cutables. Of the 470 executables from this spam corpus, 401 were successfully
unpacked simply using the heuristic-based unpacker, the remainder could only
be unpacked using Eureka’s bigram statistical hypothesis test. We summarize
Eureka’s results in Tables 4 and 5. Table 4 illustrates the various packers used
(as classified by PeID) and describes how effectiveness of Eureka varies across
packers. Table 5 classifies the dataset based on antivirus (AV) labels obtained
from Virus-Total [27] illustrating how Eureka’s effectiveness varies across mal-
ware families and validating the quality of Eureka’s unpacking.
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Fig. 4. Bigram counts during execution of goat file packed with Aspack(left), Mole-
box(center), Armadillo(right)

Table 4. Eureka performance by packer
distribution on the spam malware
corpus

Packer Count Eureka Eureka API
Unpacking Resolution

Unknown 186 184 85%
UPX 134 132 78%
Warning:Virus 79 79 79%
PEX 18 18 58%
MEW 12 11 70%
Rest (10) 52 46 83%

Table 5. Eureka performance by malware
family distribution on the spam malware
corpus

Malware Count Eureka Eureka API
Family Unpacking Resolution
TRSmall 98 98 93%
TRDldr 63 61 48%
Bagle 67 67 84%
Mydoom 45 44 99%
Klez 77 77 78%
Rest(39) 131 123 78%

Honeynet corpus evaluation. Next, we evaluate how our system performs on
a corpus of 435 malicious executables obtained from our honeynet deployment.
We found that 178 were packed with Themida. In these cases, Eureka is only able
to obtain an altered execution image.2 These results highlight the importance of
building better analysis tools that can deal with this important problem. Out of
the remaining 257 binaries, 20 were binaries that did not execute on Windows
XP (either because they were corrupted or because we could not determine
the right execution environments). Eureka is able to successfully unpack 228
of the 237 remaining binaries and produce successful API resolutions in most
cases. We summarize results of analyzing the remaining 237 binaries in Tables 6
and 7. Table 6 illustrates the distribution of the various packers used in this
dataset (as classified by PeID) and describes how effectiveness of Eureka varies
across the packers. Table 7 classifies the dataset based on AV labels obtained
from Virus-Total and illustrates how the effectiveness of Eureka varies across
malware families.

7 Limitations and Future Work

The nature of the malware analysis game dictates that malware deobfuscation
and analysis is a perennial arms race between the malware developer and the
2 As we see from Table 3, this class of packers also poses a problem for the other

unpackers.
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Table 6. Eureka performance by packer
distribution on the honeynet malware cor-
pus minus Themida

Packer Count Eureka Eureka API
Unpacking Resolution

PolyEne 109 109 97%
FSG 36 35 94%
Unknown 33 29 67%
ASPack 23 22 93%
tElock 9 9 91%
Rest(9) 27 24 62%

Table 7. Eureka performance by malware
family on the honeynet malware corpus
minus Themida

Malware Count Eureka Eureka API
Family Unpacking Resolution
Korgo 70 70 86%
Virut 24 24 90%
Padobot 21 21 82%
Sality 17 17 96%
Parite 15 15 96%
Rest(19) 90 81 90%

malware analyst. We expect new challenges to emerge as adversaries learn of
and adapt to Eureka. In the near term, we plan to explore various strategies to
overcome some of our current known limitations.

Partial code revealing packers pose a significant problem for all automated
unpackers. These packers implement thousands of polymorphic layers, revealing
only a portion of the code during any given execution stage. Once the code sec-
tion is executed, the packer then re-encrypts this segment before proceeding on
to the next code segments. At the moment, the favored approach to counter this
packing strategy is to dump a continuous series of execution images, which must
be subsequently analyzed and reassembled into a single coherent process image.
However, this approach offers few guarantees of coverage or completeness. We
plan to investigate new methods to extend Eureka to address this important
problem. Another challenge is that malware authors will adapt their packing
methods to detect Eureka or to circumvent Eureka’s process tracking methods.
For example, malware could detect Eureka by looking for kernel API hooking.
This is not a fundamental problem with our approach, but rather a weakness in
our implementation. One potential solution is to move Eureka’s system call mon-
itoring capability outside the kernel, into the host OS (e.g., via a kernel virtual
machine). Knowledgeable adversaries could also design malware that suppresses
Eureka’s triggers. A malware author who is aware of the heuristics and thresh-
olds used by Eureka’s statistical models could explicitly engineer malware to
evade these triggers, for example, by avoiding certain system calls that trigger
the heuristics or limit the use of certain instructions. We believe some of this
concern could be addressed by parameterizing features of the statistical model
to introduce uncertainty in deciding what thresholds the malware must avoid.
Malware could alternatively choose to purposely induce Eureka to image dump
too soon, prior to performing its process unpacking. To counter this threat, Eu-
reka could produce multiple binary images, evaluating each dumped image to
choose the one with maximal analyzability.

To thwart API resolution, a packer may incorporate more sophisticated
schemes in the malware code to resolve APIs at runtime. Besides MOV instruc-
tions, a sequence of PUSH and POP instructions can transfer values from one
register to another. Although a simple sequence of a PUSH followed by a POP
can be treated as a MOV instruction, an arbitrary number of these sequences re-
quire modeling the program stack during dataflow analysis, which is costly but
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possible. To hide DLL base addresses from analyzers, packers may map a DLL
into one portion of memory and then copy the contents to another allocated
memory region. This action will not be revealed while intercepting system call
sequences. Even if such a technique is used by an unpacker, all allocated virtual
addresses can be scanned for PE header structures conforming to the API DLLs
at the point when the unpacking snapshot is taken. Eureka does not handle these
sophisticated cases at the moment, but we feel these could be addressed using
symbolic execution [12] or value-set analysis (VSA) [3].

8 Conclusion

We have presented the Eureka malware deobfuscation framework, to assist in
the automated preparation of malware binaries for static analysis. Eureka dis-
tinguishes itself from existing unpacking systems in several important ways.
First, it introduces a new methodology for automated malware unpacking, using
coarse-grained NTDLL system call monitoring. The unpacking system is ro-
bust, flexible, and very fast relative to other contemporary unpacking strategies.
The system provides support for both statistical and heuristic-based unpacking
triggers and allows child process monitoring. Second Eureka includes an API
resolution system that is capable of overcoming several contemporary malware
API address obfuscation strategies. Finally, Eureka includes an analyzability as-
sessment module, simplifies graph structure and automatically generates and
annotates nodes in the call graph with ontology labels based on API calls and
data references. While the post-unpacking analyses are novel to our system, they
are complementary and could be integrated into other unpacking tools.

Our results demonstrate that Eureka successfully unpacks majority of packers
(13 of 15) and that its performance is comparable to other automated unpack-
ers. Furthermore, Eureka is able to resolve most API references and produce
binaries that result in analyzable disassemblies. We evaluate Eureka on two col-
lections of malware: a spam malware corpus and a honeynet malware corpus.
We find Eureka is highly successful in unpacking the spam corpus (470 of 481
executables), reasonably successful in unpacking the honeynet corpus (complete
dumps for 228 of 435 executables and altered dumps for 178 of 435 executables)
and produces useful API resolutions. Finally, our runtime performance results
validate that the Eureka workflow is highly streamlined and efficient, capable
of unpacking more than 90 binaries per hour. Eureka is now available as a free
Internet service at http://eureka.cyber-ta.org.
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