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Abstract—At the foundation of every network security archi-
tecture lies the premise that formulated network flow policies are
reliably deployed and enforced by the network infrastructure.
However, software-defined networks (SDNs) add a particular
challenge to satisfying this premise, as for SDNs the flow pol-
icy implementation spans multiple applications and abstraction
layers across the SDN stack. In this paper, we focus on the
question of how to automatically identify cases in which the SDN
stack fails to prevent policy inconsistencies from arising among
these components. This question is rather essential, as when
such inconsistencies arise the implications to the security and
reliability of the network are devastating. We present AudiSDN,
an automated fuzz-testing framework designed to formulate test
cases in which policy inconsistencies can arise in OpenFlow
networks, the most prevalent SDN protocol used today. We also
present results from applying AudiSDN to two widely used SDN
controllers, Floodlight and ONOS. In fact, our test results have
led to the filing of 3 separate CVE reports. We believe that the
approach presented in this paper is applicable to the breadth
of OpenFlow platforms used today, and that its broader usage
will help to address a serious but yet understudied pragmatic
concern.

Index Terms—SDN, Software-Defined Networking, Network
Policy Inconsistency

I. INTRODUCTION

Software-defined networking has emerged as one of the
most influential technology directions in modern digital net-
works. SDNs are now being widely deployed in data comput-
ing centers, by network infrastructure providers, and in enter-
prise networks. With this greater adoption, so too has come
increasing scrutiny on all aspects of SDN architectures and
implementations. Since the work of FortNox has first explored
the feasibility of SDN-specific attack scenarios [1], many
researchers have introduced attack scenarios and proposed a
range of defensive measures [2]-[12]. However, to date nearly
all SDN security projects have proposed protections from
the perspective of mitigating system-level concerns, such as
software bugs and application misuse, or countering malicious
traffic.

The security community has paid limited attention to the
examination of the consistency of network policies (flow rules)
as they are translated among the layers and components that
compose the SDN. While there is substantial prior work to
address the concerns of policy conflict prevention in SDNs
[13]-[18], these studies have primarily focused on policy
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conflicts that arise within a single component (such as policy
DB in an SDN controller). These previous projects are not
directly applicable for detecting policy inconsistencies that
may manifest between different components in an SDN stack
(e.g., between an SDN controller and a switch).

We posit that network policy inconsistency issues raise
significant reliability and security concerns for SDNs. Even a
minor syntactic mistake that arises during the multi-step pro-
cess of translating SDN application inputs to instantiated flow
rules can lead to significant instability in network operations
(examples are presented in Section II). While such issues can
cause serious problems in SDN, scrutiny of these problems
and approaches to mitigate these concerns have been poorly
studied by SDN security researchers.

This paper proposes a new framework, AudiSDN, for au-
tomatically analyzing the processes by which administrative
SDN policies are communicated through SDN components,
and detecting inconsistencies that arise among those compo-
nents. We present a specialized network policy fuzz-testing
module designed to stimulate opportunities for generating
potential malformed SDN policies, and introduce a detection
strategy for automatically detecting these inconsistencies in
real SDN stacks. Our detection approach is informed by a
state-transition diagram conception of how SDN flow rules are
relayed among components and at each layer of the SDN. This
model informs the fuzz testing strategy and our understanding
of how to achieve a consistent test coverage that is gener-
alizable across the most widely used SDN implementation:
OpenFlow.

We implement a prototype system, AudiSDN for OpenFlow,
and evaluate it with two well-known open-source SDN con-
trollers: ONOS [19] and Floodlight [20]. Using AudiSDN,
we have identified various network policy inconsistency cases,
and among them, we demonstrated three case studies. In the
case of ONOS, we reported our findings to the vendor as
we discovered them, resulting in three new CVEs (Common
Vulnerabilities and Exposures). In addition, the paper also
categorizes the discovered inconsistencies that were found
among ONOS and Floodlight. While our analysis focused
on two OpenFlow SDN implementations, we believe that
AudiSDN is applicable across the breadth of OpenFlow SDN
stacks that are implemented and widely deployed today.

Our project is scoped to a narrow but important and under-
studied question: how to mitigate concerns that programmatic
and interface errors among SDN components do not produce



unexpected network policy inconsistencies. With this objective,
this paper makes the following contributions:

o We present a methodology for fuzz testing SDN stacks
for the purpose of stimulating policy inconsistencies.

« We present an SDN policy translation state model and
inconsistency detection method for automatically identi-
fying which of our test inputs produce potential policy
inconsistencies.

o We present the design and implementation of a new
testing framework called AudiSDN, which is capable of
automatically generating randomized OpenFlow rules and
detecting flow-rule inconsistencies.

o« We evaluate AudiSDN by performing analyses on two
popular and widely deployed OpenFlow controllers:
Floodlight and ONOS. Our evaluation illustrates the
effectiveness of AudiSDN in identifying a range of con-
sistency errors and design problems in these controllers,
resulting in three new CVE reports that were published
based on our analysis.

II. BACKGROUND AND MOTIVATION
A. SDN and OpenFlow
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Fig. 1: SDN architecture overview.

Figure 1 provides an overview of the SDN architecture.
Unlike traditional networks, SDNs decouple the control plane
(i.e., application and control layers) that decides how network
traffic is handled from the data plane (i.e., infrastructure layer)
which implements the pack forwarding policy defined by the
control layer. SDN introduces logically centralized network-
policy control, enabling agile and flexible administrative con-
trol over the internal network topology. SDN controllers can
also provide an abstraction of the low-level management
of flow rule implementation, providing a network operating
system that enables network programmers to implement in-
tuitive network functions as an SDN application. The SDN
controller manages network configurations and forwarding
rules to the network forwarding devices (e.g., SDN-enabled
switches) through the southbound APIs (e.g., OpenFlow [21]).

OpenFlow is currently the de-facto SDN protocol, defin-
ing commands and behaviors that enable the controller to
interact with the forwarding devices (OpenFlow-compatible
network switches). Every OpenFlow-enabled switch maintains

a number of flow tables, which manage a set of flow entries.
According to the OpenFlow specification, each flow entry
consists of three main parts; (¢) match fields (criteria) that are
compared to incoming packets, (z¢) a set of actions (same as
instructions) that define how to process the matched incoming
packets, and (¢i7) packet/byte counters that add up the total
number of packets/bytes. When an incoming packet arrives in a
switch and has no matching flow rule entry, the switch sends a
PACKET _IN message, including the partial information of the
packet to the controller. The controller decides how to handle
the packet, builds a relevant flow rule, and then sends the rule
to the switch through a FLOW_MOD message. FLOW_MODs
include the priority, match fields, actions per
rule, enabling the switch to bind the rule to all subsequent
packets that meet the same criteria. When two or more flow
rules have identical match fields, the higher priority rule takes
precedence.

B. Network Policy Enforcement in SDN

For SDNs, each FLOW_MOD message represents a net-
work security policy decision in the truest sense. Flow rules
define exactly what data will be allowed in and out of the SDN,
which path the packet will traverse, and to which endpoint
(host) the packet will target. A network administrator has two
options in submitting network flow rules; (i) use an SDN
application that computes flow rules dynamically, in response
to PACKET_IN messages reactively and (it) proactively re-
quest the flow rule through the REST APIs! or command line
interfaces provided by the existing SDN application running
inside the controller.
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Fig. 2: The procedure of installing a flow rule to the switch
and four different states of the flow rule.

The procedure for installing a flow rule into a network
switch in a proactive way (the second option) is illustrated in
Figure 2. First, an administrator submits a flow rule addition
to an SDN application through the external interface (e.g., the
REST APIs) (1). Next, the application builds a FLOW_MOD

IThe REST (REpresentational State Transfer) API provides users with an
interface to GET, PUT, POST and DELETE data through HTTP requests.



message based on the received request (2) and saves the flow
rule in the internal database that the controller manages (3).
Then, the controller sends the FLOW_MOD message to the
switch (4). Finally, the switch installs the flow rule within
the FLOW_MOD message into its flow table. Following this
procedure, we observe that a flow rule is managed at four dif-
ferent processing points; administrator, application, controller,
and switch. Of interest for this paper, this observation implies
that a network policy can (potentially) have different views
(states) at each processing point. We refer to the concern that
such a state difference may arise during the course of SDN
operations as the policy inconsistency problem.

C. Motivating Example
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Fig. 3: This figure illustrates a Floodlight controller bug that
an ill-formed flow rule can cause a CPU burst due to an
infinite loop within the controller, which may result in a switch
disconnect.

Let us consider the example of policy inconsistency rep-
resented in Figure 3. The figure illustrates how a missed
precondition made by a network administrator causes an error
in the controller that can lead to a state inconsistency between
the control and data plane. In this example, we assume
that there is a network topology consisting of a Floodlight
SDN controller, one OpenFlow-enabled switch, and two hosts.
The administrator attempts to install a flow rule into the
switch through REST APIs provided by the StaticEntryPusher
application, enabling Host A to communicate with Host B over
TCP port 80. The procedure of installing the flow rule into the
switch is as follows. First, the network administrator makes the
request for flow rule addition in the REST API form and sends
it to the application (step 1). Then, the application stores the
flow rule in the policy database and sends the success of the
reception back to the administrator (step 2).

However, when the application tries to build a FLOW_MOD
message, the switch is disconnected from the controller due to
a processing error (step 3). Specifically, in Figure 3, a missed
precondition results in a malformed FLOW_MOD request.
According to the OpenFlow specification [21], one should
specify the IP protocol when the TCP/UDP port numbers are
used in match fields of a flow rule. The problem here is that the
application did not check for this precondition, and thus tries

to build the FLOW_MOD message. This condition is known
to cause a CPU burst due to an internal controller loop, which
may result in the switch disconnecting from the controller.

More seriously, the controller returns the result message,
indicating that the requested flow rule was successfully in-
stalled when it was not. The outcome of this scenario is that
the administrator believes that the requested rule was properly
installed. The controller will also preserve the flow rule in
its policy database, which will now affect all of the SDN
applications operating through the controller.

III. SYSTEM DESIGN

This section provides an overview of the design consid-
erations motivating AudiSDN and a detailed description of
its system architecture. Succinctly, AudiSDN is designed to
identify whether the SDN under evaluation provides adequate
protections for preventing flow policy inconsistencies that may
manifest between the SDN components.

A. Design Considerations

The motivating example (from Section II) demonstrated
how a simple omission can lead to network policy (flow
rule) inconsistency between the SDN control and data planes.
Manual detection of such issues is quite error-prone and
complicated. Hence, we propose an automated framework for
testing and detecting policy inconsistencies in SDN stacks
based on the following two design considerations.

1. Automatic Testing. First, it should be highly automated to
minimize the human intervention and time needed to generate
flow rules for testing. Manually enumerating all possible
network policies (flow rules), that may cause an inconsis-
tency, is an impractical and arduous task. Thus, we adopt a
black-box fuzzing technique that enables us to automatically
generate various flow rule candidates and employ a flow-
rule dependency tree to increase the probability of inducing
inconsistencies.

2. Causality Detection. Second, it should effectively and
concretely pinpoint the root cause of the SDN flow rule
inconsistency. We begin by designing a flow-rule state diagram
which we use to track the state transition of flow rules from
the network administrator’s request to the installation in the
switch. Using this state model, our approach seeks to identify
the first point where a flow rule inconsistency arises during its
path from formulation to deployment.

B. Network Policy (Flow Rule) Fuzzing

The likelihood of network policy inconsistencies by mal-
formed flow rules is arguably higher than from well-formed
rules. Hence, we adopt a fuzzing technique to randomly
generate malformed flow rules. Our technique uses flow rule
dependency trees to efficiently create such malformed flow
rules that allow us to inspect if the target SDNs are prone to
unexpected inconsistency issues.

Network Policy (Flow Rule) Dependency Tree. The first
step in randomizing flow rules is that of determining the set of
input parameters that must be subject to input randomization.
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Fig. 4: The partial dependency tree example: white elements
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In our framework, all elements comprising the flow rule
are potential targets. For efficient randomization of flow-rule
elements, we employ a flow-rule dependency tree (as opposed
to selecting elements for randomization in an ad hoc manner).

Figure 4 illustrates the partial dependency tree of a flow rule.
The rectangular node and circular nodes stand for the element
and its value type respectively. For example, the table_id
element is of the unsigned byte type, so its value should
be from 0 to 255. In addition, if an element has a parent
element, there is a dependency between them. Hence, if a
flow rule wants to filter packets based on the TCP source port
(tcp_src), it should specify the IP protocol (ip_proto)
to 6 in its match fields. The dependency tree is derived from
the OpenFlow specification, but it can be extended for other
SDN controllers according to their implementations (as shown
in the grey nodes in Figure 4).

The dependency-tree-based flow rule fuzzing framework is
divided into the following two subcomponents; (2) randomiz-
ing values, (ii) randomizing semantics.

Overflow

Fig. 5: Value and type randomization example in the depen-
dency tree.

Value Randomization. The values of each element in the
flow rule can be simply randomized. For example, based on the
dependency tree (shown in Figure 5), the priority element
should be numeric value and its range is from 0 to 65535. We
can randomize this value without consideration of ranges to
mislead applications that try to create the flow rule (e.g., 65536
or -1) to cause the overflow or underflow for the numeric types.
Also, we can manipulate the numeric type of the element (i.e.,
type casting) to the string type by adding double quotation
marks (“65535”), or the boolean type by changing the value
to false so that it can cause the application to mistakenly
set the value of the element to be empty.
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Fig. 6: Semantic randomization example in the dependency
tree by removing the element.

Semantics Randomization. In addition to randomizing the
values, we can manipulate the semantics of flow rules by
pruning the dependency between the elements. For example, as
shown in Figure 6, the ipv4_dst element has a dependency
on the ethertype element, which means that if we want
to filter IP packets, we should specify the Ethernet protocol
type (e.g., 0x0800) in the match fields as well. However, we
can eliminate the ethertype element to see if the controller
can properly handle it. And, it is also possible to append an
arbitrary element to the dependency tree as well to corrupt the
processing of building the flow rule.

Algorithm 1 Fuzzing Algorithm with Dependency Tree

Input: a dependency tree Ta: = (Vai, Fat), a seed flow rule
flowseed

Qutput: a set of mutated flow rule trees M

1: procedure DEPENDENCYTREEFUZZING(T 4, flowseed)

M < empty set

Tsced < BUILDSEEDTREE(flowseed, Tat)

for v € Vieeq Where v.type = value do
T Tceed
Umutated S RANDOMIZEVALUE(v.type)
T,modify(v, Umutated)
M.append(T)

> Randomizing Values
9: for e € E4; do

10: T < Tseed

11: Uparent < GETNODE(e, T'ype.element)
12: Vchild < GETNODE(e, T'ype.value)

13: if Uparent; Uchild € ‘/seed then

14: T.removeDependency(vparent, Vehild)
15: M.append(T)

16: else

17: v <—GETRANDOMNODE(Tsced, element)
18: T.addDependency(v, vparent)

19: T.addDependency(vparent, Vchild)

20: M.append(T)

> Randomizing Semantics
21: return M

Algorithm. To automatically randomize the values and se-
mantics of flow rules, we present a fuzzing algorithm using
tree traversal and graph matching concepts [22] as shown in
Algorithm 1. This algorithm requires two inputs. The first
input is the dependency tree Ty; = (Var, Far), where Vg is
a set of the nodes whose types are element and value, and
FEg4: is a set of dependency relations among V.. The second



input is a seed flow rule flows..q. The output is a set of the
mutated flow rules M.

The algorithm initializes the output M as an empty set, and
translates the seed flow rule into a seed tree Tieeq (line 2, 3).
To conduct the value randomization, the algorithm iteratively
visits all the nodes v of the seed tree, and mutates each value
given a type. It then modifies the original node v to the mutated
one Umyutateq 1N the seed tree, and appends it to the output
(lines 4 to 8). In the case of the semantics randomization,
the algorithm mutates the seed tree by appending new nodes
or removing existing nodes. To do this, it visits all edges e
of the dependency tree Ty, and gets an element-value node
pair (lines 9 to 12). If they are included in the seed tree, the
algorithm removes the dependency by removing that node pair
Uparent» Uchild from the seed tree, and appends it to the output
set (lines 13 to 15). Otherwise, it randomly selects an element
node v from the seed tree, and adds new dependency edges
by adding the node pair vparent, Venita (lines 17 to 20) to the
element node v in turn.
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Fig. 7: Overall architecture and its workflow of AudiSDN
with three key components: (i) Flow Rule Generator, (i7)
Application Agent, and (#¢7) Inconsistency Detector.

C. System Architecture

This section presents the overall architecture of AudiSDN
and explains its components. As illustrated in Figure 7, our
framework consists of three main components; flow rule
generator, application agent, and inconsistency detector. Our
framework supports two different modes of operation. First,
the festing mode aims to detect network policy inconsistency
problems in the SDN stacks by using fuzzing techniques
as described in the previous section. Second, the runtime
mode enables us to detect inconsistencies through real-time
monitoring.

Workflow. Figure 7 illustrates how an SDN policy incon-
sistency is detected by AudiSDN. (1) First, the user inputs a
seed file with flow rule requests to the flow rule generator.
The generator analyzes the seed rule based on the dependency
tree and then randomizes the semantics and values of the seed
rule. The generator sends the mutated flow requests with the
original one to the application agent. (2) The agent processes
the flow rule requests received from the generator in turn. (3)
The agent stores the flow rule in the policy database and sends
FLOW_MOD message to the switch through the flow service
provided by the controller. (4) The application agent fetches
the installed flow rule in the switch using FLOW_STATS
messages, and (5) then packs all the information about one
flow rule into a rule history and sends it to the inconsistency
detector. (6) Finally, the inconsistency detector inspects the
rule history based on the state diagram, and renders a verdict
on the existence of flow rule inconsistencies.

Flow Rule Generator. The flow rule generator is composed
of two main modules: the dependency analyzer and flow re-
quest fuzzer. The generator receives a seed file of the flow rule
request, which is based on a JSON or XML format from a user.
The seed file is first forwarded to the dependency analyzer
module. The dependency analyzer maintains the internal de-
pendency tree of flow rules (described in the previous section).
It inspects the seed flow request based on the dependency tree,
and then decides whether the seed flow request is malformed
or not. It further determines which elements and values of
the seed flow request will be randomized during test case
generation.

Next, the generator module hands decisions over to the
flow request fuzzer module together with the initial flow
rule request. The flow request fuzzer module generates one
or numerous mutated flow rule requests according to the
decisions received from the analyzer module (i.e., value and
semantics randomization). After randomizing the flow rule
request, the fuzzer module sends all the requests (i.e., original
and mutated ones) to the flow-rule handler module in the
application agent.

Application Agent. The application agent runs on the target
SDN controller, so it is dependent on the implementation of
each controller. There are two main modules in this agent;
the flow rule handler and flow rule collector. The flow rule
handler module takes the role of managing flow rules in the
switch through the flow services provided by the controller.
Thus, the handler receives all flow rule requests (including
the original seed request from the flow rule generator). It then
creates flow rules based on each request and stores it in the
controller database. Finally, the handler builds FLOW_MOD
messages including the created flow rule, which it sends to
the switch together with the BARRIER_REQUEST message
to confirm the flow rule installation by the switch.

The flow rule collector module gathers flow rule states and
corresponding relevant message information, which will be
used for detecting flow rule inconsistencies. Specifically, the



collector tracks the process whereby one initial flow request
received from the generator ultimately becomes a flow rule
in the switch. If the flow rule is dropped in the middle, it
records where the rule processing was stopped. Lastly, all
records corresponding to each flow rule are compiled into a
rule history, which is provided to the inconsistency detector.
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Fig. 8: Flow rule state diagram with four different states in
grey color used to detect the inconsistencies.

Inconsistency Detector. The inconsistency detector com-
ponent has two main modules: the inconsistency analyzer
and the inconsistency solver. For detecting the flow rule
inconsistencies, the inconsistency analyzer module maintains a
flow-rule state diagram (as shown in Figure 8). In this diagram,
we define 11 different states from SO to S10, and each edge
designates the specific behavior of the application agent that
is responsible for handling the flow rule. For example, when
the application agent in state S1 succeeds in creating a flow
rule on behalf of a user request, the state of the flow rule
transitions to state S2, otherwise, it moves to state S3.

The inconsistency analyzer module investigates the oc-
currence of flow-rule inconsistencies by exploring each rule
history based on the state diagram. First, the analyzer module
filters out three abnormal cases by checking whether the flow-
rule request in state S1 is malformed. The first case arises
when the flow request is malformed, but the flow rule state
successfully arrived at the state S9. Second, we filter cases
where the flow request is protocol-compliant but the final states
were in the failed set (S3, S5 or S8). The last case arises when
the number of the flow rules in the switch is not equal to the
requests. Then, the analyzer module extracts the flow rules in
the four states S1, S2, S4 and S92 from the filtered cases and
interrogates these states for any inconsistency between them.

The inconsistency solver is a runtime module. Its purpose
is to deal with flow rule inconsistencies detected by the
analyzer module. Since the module considers the database in
the controller as first priority by default, the module deletes the

2State S1, S2, S4 and S9 correspond to network administrator, application,
database, and switch respectively in Figure 2.

inconsistent flow rules in the switch through the application
agent. It attempts to resynchronize the flow rules between the
controller and the switch. However, if the flow rule cannot be
installed because the rule is malformed or the switch cannot
accommodate it, the solver module deletes the flow rule in the
controller as well. In addition, the module leaves the logs for
ex-post-facto analysis.

IV. IMPLEMENTATION

We have implemented an instance of AudiSDN using a
combination of Java and Python to verify its feasibility and ef-
fectiveness. AudiSDN currently includes application agents for
two well-known open source controllers (i.e., ONOS [23] and
Floodlight [20]), enabling it to conduct the functions handling
the flow rules. To randomly generate various flow requests in
the flow rule generator, we implemented our fuzzing module
with dependency trees and leveraged FuzzDB [24] for various
malformed contents. The dependency trees are derived from
the OpenFlow 1.3 specification [21] and extended according
to the controller implementation, as shown in Table I. In the
case of the OpenFlow, we extracted the elements of flow
rule specified as required in it. In summary, to support
the design features described in Section III, we implemented
two types of application agents, a flow rule generator, and an
inconsistency detector, in approximately 5,000 lines of code.

TABLE I: The number of elements and dependencies in each
dependency tree.

OpenFlow ONOS Floodlight
Element 66 106 82
Dependency 44 80 77

V. NETWORK POLICY INCONSISTENCY CASE STUDIES

This section discusses a few case studies of flow rule
inconsistencies that we have identified using AudiSDN. In
each case, we detail how AudiSDN detected the inconsistency
and its results. For the testbed, we used a Mininet [25] as
the infrastructure layer in the SDN. In the case of the SDN
controller, the latest versions of Floodlight [20] and ONOS
[19] controllers were tested.

A. Flow Rule Priority OverFlow (CVE-2019-1010249)

A priority value, which is one of elements of a flow rule,
is used by the switch to determine which flow rule that
matches an incoming packet stream will be applied first. In
this instance, we demonstrate how very large flow rule priority
values can switch to the lowest one in the switch due to nu-
meric overflows. This leads to a network policy inconsistency
between the switch, the controller, and the application that had
intended to install the highest priority flow rule. We identified
such an inconsistency risk in the case of the ONOS controller.

Detection and Results. After the inconsistency detector
fetches the rule histories from the application agent, as il-
lustrated in Figure 7, it filters out the abnormal cases first. In
this instance, one rule history was filtered out as the flow rule
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Fig. 9: Four different states of the flow rule based on the state
diagram shown in Figure 8 of the ONOS controller.

arrived at state S9. Unfortunately, its arrival produced no error
message feedback, even though the priority of the flow request
in state S1 has an invalid value (i.e., out of range). However,
the detector compares each flow rule in different states (S1,
S2, S4, and S9 as shown in Figure 8) extracted from the rule
history shown in Figure 9. Thus, it was able to infer that there
was a flow-rule inconsistency originating between states S1
and S2 (i.e., the invalid priority value in state S1 became 0 in
state S2). Contrary to the intent of the initial flow rule request,
the detector discovers that the final flow rule installed in the
switch has the lowest priority value.

B. Improper Flow Rule Association and Overwriting

For identifying many flow rules correctly, various informa-
tion from each flow rule could be maintained in the SDN
controller such as the priority, match fields, switch ID, and
flow ID. However, we discovered that improper flow associa-
tion can overwrite other irrelevant flow rules using AudiSDN.
In this example, the test environments consist of two switches
(switch A and B) and one Floodlight controller.
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(2) Flow Rule B
Flow-Rule-A-
Floodlight Controller
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(DELETE Flow Rule A) ¥ /" \_ '\ (ADD Flow Rule B)
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(00:00:00:00:00:01) Switch A Switch B (00:00:00:00:00:02)

Fig. 10: Mlustration of an improper flow rule association
discovered in the Floodlight controller. Flow rule B overwrites
flow rule A, although they correspond to different switch IDs.
This example was uncovered by AudiSDN and illustrates an
implementation issue (or error) that exists in the Floodlight
controller.

Detection and Results. In this case, the flow rule generator
created two normal flow rule requests, but in state S9, there
was only one flow rule in the switch causing the rule history
to be filtered out first by the inconsistency detector. Then, an
inspection of the rule history revealed the presence of flow rule
inconsistencies between the application and the controller, as
shown in Figure 10. The application agent creates flow rule
A for switch A and installs it in the switch successfully. But,
when the next flow rule (rule B) for switch B is created and
stored in the controller (1), rule A is overwritten by the rule
B (2). Thus, the controller sends FLOW_MOD messages to
delete rule A in the switch A (3) and then installs rule B
into switch B (4). The reason is that the controller considers
each flow name as the identification method, regardless of
the switch ID and the flow rule information. In this case,
both flow rules have their name property set to default.
Thus, although the two flow rules (A and B) have distinct
switch device IDs, match fields, and actions, the inconsistency
between the application and the controller occurs, causing
network corruption at the switches.
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Fig. 11: A code snippet of the Floodlight controller causing
the flow rule overwriting.

Figure 11 provides a code snippet from the Floodlight
controller that causes such improper flow rule overwriting. As
shown in Figure 11 (A), when the flow name conflicts, the
application checks whether the switch ID is the same along
with the match fields, priority, and cookie. If all the fields
are the same, it just modifies the flow rule with the new one.
However, the problem arises that if at least one of them is
different, it removes the old flow rule (i.e., (B) in Figure 11)
and then installs a new one although the switch ID (DPID)
is different. We argue that flow rules for switch ID should be
maintained independently to avoid such issues.

C. Infinite Synchronization by Broken Precondition (CVE-
2019-1010252)

The OpenFlow protocol has evolved with support for more
message types and features across versions. Thus, when adding
a flow rule in the switch, we should carefully consider which
OpenFlow version is installed. In the case of the group
action, it was added from version 1.1, and it is associated with
a predefined group ID that is used in the switch as the pre-
condition. In this example, we identified an instance of infinite



flow rule synchronization between the ONOS controller and
the switch due to the flow rule inconsistency between them.

1—1\

Fig. 12: Different flow rule states between the ONOS con-
troller (S4) and the switch (S9).

Detection and Results. In this instance, the ONOS controller
handshakes with the switch using OpenFlow version 1.0 and
hence the switch cannot interpret the group action. However,
the flow rule generator creates an abnormal flow request that
has the group action using its semantics randomizer. And, the
final flow rule derived from the flow request arrived in state
S9, which is one of the filtering cases for the inconsistency
analyzer. Finally, after inspecting the rule history received
from the application agent, the inconsistency analyzer detects
the inconsistency between the controller and the switch as
shown in Figure 12. The flow rule built from the application
agent is successfully installed in the controller. However,
the switch misinterprets the FLOW_MOD message, so it
installs the drop action. This example illustrates how a flow
inconsistency between the controller and the switch occurs,
which can affect other decisions by applications.

ONOS
antroller

' Switch

Fig. 13: Illustration of infinite synchronization in the ONOS
controller.

Furthermore, when reproducing this example, we discovered
that messages are continuously exchanged between the con-
troller and the switch [26], (as shown in Figure 13). In the case
of the ONOS controller, to handle the flow rule inconsistency
with the switch, all matching flow rules in the switch are
removed and reinstalled in the switch through FLOW_MOD
messages. This reinstallation process runs every 5 seconds
by default, but administrators can modify the interval time.
The problem is that the flow rule in the controller cannot be
installed in the switch because the switch handshake was for
OpenFlow version 1.0. This repeated reinstallation process can
affect overall network performance.

D. Errors due to Undefined Elements (CVE-2019-1010250)

When a network administrator manually crafts a flow rule
addition request, there is a potential for “undefined elements”
due to typos in the element name. If there are such undefined
typos in the flow rule, the SDN controller should not process
the rule and should return an error message to the administra-
tor. However, AudiSDN formulated a test case illustrating that
a simple typo caused by the network administrator can raise
inconsistency issues in the ONOS controller.

®
®

—

Fig. 14: Different flow rule states (S1, S2 and S9) from the
rule history caused by the undefined element instruction.

Detection and Results. First, the inconsistency detector dis-
covered that a malformed flow rule in state S1 was ultimately
installed in the switch at state S9 without an error state
transition from the rule history. Figure 14 shows the different
states of the flow rule extracted from the rule history. In
state S1, the flow rule request contains the undefined element
instruction, so it is malformed because the one defined
in the application running on the ONOS controller is the
instructions element. Since the application cannot un-
derstand it, it builds the FLOW_MOD message by leaving the
instructions as an empty field (S2 in Figure 14). However, the
FLOW_MOD message that has an empty instructions
field is recognized as a drop rule by the OpenFlow specifica-
tion. Such undefined elements can be caused by a human error
in the real world. As our results demonstrate, such problems
are not limited to the ONOS controller but also applicable to
the Floodlight controller.

E. Summary

In summary, by leveraging the dependency tree, the flow
rule generator in AudiSDN can create four abnormal cases
of flow rule handling as follows; (¢) numeric overflow, (i)
invalid type, (i7%) broken precondition, and (¢v) undefined
element. The former two cases are instantiated by value
randomization, while the others are created by semantics
randomization. Besides abnormal flow requests, the flow rule
generator can also design normal flow requests that can lead to
the unintended network state, as stated in the aforementioned
“false association” case study. We comprehensively evaluated
flow rule handling by 18 major elements using AudiSDN with
respect to ONOS and Floodlight controllers, and the results are
summarized in Table II.

For each element, out of the 18 elements, if there exists
at least one flow inconsistency between the SDN stacks, we



TABLE II: Flow rule inconsistency cases in ONOS and Flood-
light controllers for major elements: NO(Numeric overflow),
IT(Invalid type), and BP(Broken precondition).
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examined it using three types of abnormal flow rule requests
(numeric overflow, invalid type, broken precondition). For
example, in the case of the ONOS controller, an inconsistency
due to a broken precondition affects 12 out of the 18 elements,
but the Floodlight controller has only 6 cases. Overall, the
Floodlight controller has better validation of abnormal flow
requests than the ONOS controller (as shown by the total count
in Table II). Finally, in the case of undefined elements, we
discovered that both of the controllers do not verify it because
they process elements using a whitelist.

VI. RELATED WORK

There are several studies describing threat models and attack
scenarios in SDNs [4], [27]. Kreutz et al. [27] introduce
possible attack vectors of SDN, and Yoon et al. [4] analyze
SDN-specific attack models and vulnerabilities according to
CIA metrics (Confidentiality, Integrity, and Availability).

For the control plane in SDN, Indago [28] and Shield
[29] show how easily SDNs can be corrupted by an SDN
application bug and propose means to identify whether an
application is malicious or benign. Others have raised inter-
application conflict issues, access control problems in SDN,
and then propose secure SDN controller architectures [6], [11],
[12], [30].

Limited prior work on data plane security [7], [31], [32]
largely relied on ad hoc empirical methods to document
security flaws from diverse perspectives. In contrast, AudiSDN
systematically and synthetically tests and detects network
policy inconsistency through the SDN stack. SDN security
testing such as DELTA [8] and BEADS [33] use fuzzing
techniques to find bugs and vulnerabilities in SDNs by manip-
ulating OpenFlow messages. Most similar to our work, RE-

CHECKER [34] and AIM-SDN [9] randomize the REST-API
inputs to check for faulty management logic in the data store
of the SDN controller. However, their work primarily reports
flooding attacks against SDN controllers and does not reason
about the potential policy inconsistency issues of the SDN
stack. Specifically, while AIM-SDN [9] mentions the potential
for inconsistency between an administrator and the control
plane, they find just a single software bug in a policy DB (other
use cases are not related to inconsistency) and they do not
provide a systematic technique for enumerating network incon-
sistency issues. As a result, unlike previous studies, AudiSDN
provides a comprehensive strategy to assess potential network
policy inconsistency problems between network administrator,
application, controller (policy DB), and the data plane.

The problem of issuing consistent updates to the data plane
has been well studied [35], [36]. However, this problem is
orthogonal to ours, as they do not address bugs in software
implementations. Likewise, Veriflow [13], Header Space Anal-
ysis [14], and NetKat [17] provide methods for analyzing SDN
flow rules to detect possible conflicts. In addition, Ravana [15]
and Covisor [16] introduce methods to update SDN flow rules
without conflict. VeriDP [18] proposes a way of checking the
flow rule integrity between the control plane and the data
plane. While these studies propose an efficient way of finding
possible network rule conflicts, they do NOT consider the
problem of software bugs leading to inconsistencies between
components in the SDN network.

VII. CONCLUSION

The paper presents an automated software framework for
identifying deficiencies in real-world SDN implementations
with respect to preventing runtime network flow policy in-
consistencies. Several examples of how and why such policy
inconsistencies may arise are presented, including an evalua-
tion that utilizes our framework to uncover some implemen-
tation weaknesses in two widely used OpenFlow controllers.
The paper is the first to present a fuzz-testing methodology
for automatically recognizing when and where such inter-
component policy inconsistencies can arise in an SDN stack,
and it highlights a fundamental security and reliability concern
that has to date been largely understudied. AudiSDN offers a
novel reference implementation that can be applied for testing
across the breadth of OpenFlow implementations used today,
and could (through the extension of its flow-state transition
model) be extended to analyze other SDN architectures beyond
OpenFlow.
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