
Keyword Search and

Oblivious Pseudorandom Functions

Michael J. Freedman1, Yuval Ishai2, Benny Pinkas3, and Omer Reingold4

1 New York University (mfreed@cs.nyu.edu)
2 Technion (yuvali@cs.technion.ac.il)
3 HP Labs, Israel (benny.pinkas@hp.com)

4 Weizmann Institute of Science (omer.reingold@weizmann.ac.il)

Abstract. We study the problem of privacy-preserving access to a database.
Particularly, we consider the problem of privacy-preserving keyword search
(KS), where records in the database are accessed according to their asso-
ciated keywords and where we care for the privacy of both the client and
the server. We provide efficient solutions for various settings of KS, based
either on specific assumptions or on general primitives (mainly oblivious
transfer). Our general solutions rely on a new connection between KS
and the oblivious evaluation of pseudorandom functions (OPRFs). We
therefore study both the definition and construction of OPRFs and, as
a corollary, give improved constructions of OPRFs that may be of inde-
pendent interest.

Keywords: Secure keyword search, oblivious pseudorandom functions, private
information retrieval, secure two-party protocols, privacy-preserving protocols

1 Introduction

Keyword search (KS) is a fundamental database operation. It involves two main
parties: a server, holding a database comprised of a set of records and their asso-
ciated keywords, and a client, who may send queries consisting of keywords and
receive the records associated with these keywords. A natural question in the area
of secure computation is the design of protocols for efficient, privacy-preserving
keyword search. These protocols enable keyword queries while providing privacy
for both parties: namely, (1) hiding the queries from the database (client pri-
vacy) and (2) preventing the clients from learning anything but the results of
the queries (server privacy).

To be more specific, the private keyword-search problem may be defined by
the following functionality. The database consists of n pairs {(xi, pi)}i∈[n]; we
denote xi as the keyword and pi as the payload (database record). A query from
a client is a searchword w, and the client obtains the result pi if there is a value
i for which xi = w and obtains a special symbol ⊥ otherwise. Given that KS
allows clients to input an arbitrary searchword, as opposed to selecting pi by an
input i, keyword search is strictly stronger than the better-studied problems of
oblivious transfer (OT) and symmetrically private information retrieval (SPIR).

1.1 Contributions

Our applied and conceptual contributions can be divided into the following:

– Specific protocols for KS. We construct direct instantiations of KS pro-
tocols, providing privacy for both parties, based on the use of oblivious poly-
nomial evaluation and homomorphic encryption. The protocols have a com-
munication complexity which is logarithmic in the size of the domain of the
keywords and polylogarithmic in the number of records, and they require
only one round of interaction, even in the case of malicious clients.1 All
previous fully-private KS protocols either require a linear amount of com-
munication or multiple rounds of interaction, even in the semi-honest model.

– KS using Oblivious Pseudorandom Functions (OPRFs). We describe
a generic, yet very efficient, reduction from KS to what we call semi-private
KS, in which only the client’s privacy is maintained. Specifically, we show
that any KS protocol providing (only) client privacy can be upgraded to
provide server privacy as well, by using an additional oblivious evaluation
of pseudorandom functions. This reduction is motivated by the fact that
efficient semi-private KS is quite easy to obtain by combining PIR with a
suitable data structure supporting keyword searches [20, 7].2 Thus, we derive
a general construction of fully-private KS protocols based on PIR, a data
structure supporting keyword searches, and an OPRF.

– New notion of OPRF. Motivated by the KS application and the above
general reduction, we put forward a new relaxed notion of OPRF which facil-
itates more efficient constructions and is of independent theoretical interest.

– Constructions of OPRF. We show a construction of an OPRF protocol
based on the DDH assumption. In addition, one of the our main contribu-
tions is a general construction of (relaxed) OPRF from OT. This construction
is based on techniques from [23, 25], yet improves on these works as (1) it
preserves privacy against (up to t) adaptive queries, (2) it is obliviously eval-
uated in constant number of rounds, and (3) it handles exponential domain
size. These improvements are partially relevant also in the context of t-out-
of-n OT, as originally studied in [23, 25]. We note that this is a black-box
construction of t-time OPRF from OT. From a theoretical point-of-view,
one of the most interesting open questions left by our work is to find an
efficient black-box construction of fully-adaptive OPRF and KS (supporting
an arbitrary number of queries) which only makes a black-box use of OT. In
contrast, such a construction is easy to obtain by making a non-black-box
use of OT. Thus, we have a rare example of a non-black-box construction
in cryptography for which no black-box construction is known, even in the

1 In the case of malicious parties, we use a slightly relaxed notion of security, following
one suggested in the context of OT [1, 23] (see Section 2).

2 In fact, if we allow a setup phase with linear communication complexity, we can
obtain a semi-private KS supporting adaptive queries by simply sending the entire
database to the client.

random-oracle model. In fact, we are not aware of any other such simple and
natural example that fully resides in the semi-honest model.

1.2 Related Work

The work of Kushilevitz and Ostrovsky [20], which was the first to suggest
a single-server PIR protocol, described how to use PIR together with a hash
function for obtaining a semi-private KS protocol (we denote a KS protocol as
“semi-private” if it does not ensure server privacy). Chor et al. [7] described how
to implement semi-private KS using PIR and any data structure supporting
keyword queries, and they added server privacy using a trie data structure and
many rounds. Our reduction from KS to semi-secure KS provides a more efficient
and general alternative, requiring only a small constant number of rounds.

Ogata and Kurosawa [27] show an ad-hoc solution for KS for adaptive queries,
using a setup stage with linear communication. The security of their main con-
struction is based on the random oracle assumption and on a non-standard
assumption (related to the security of blind signatures). The system requires a
public-key operation per item for every new query.

A problem somewhat related to KS is that of “search on encrypted data” [30,
3]. The scenario involves giving encrypted data to a third party. This party is
later given a trapdoor key, enabling it to search the encrypted data for specific
keywords, while hiding any other information about the data. This problem
seems easier than ours since the search key is provided by the party which
previously encrypted the data. Furthermore, there are protocols for “search on
encrypted data” (e.g., [30]) which use only symmetric-key crypto. therefore it is
unlikely that they can be used for implementing KS, as KS implies OT.

Another related problem is that of “secure set intersection” [10], where two
parties whose inputs consist of sets X, Y privately compute X∩Y . KS is a special
case of this problem with |X | = 1. On the other hand, set intersection can be
reduced to KS by running a KS invocation for every item in X . Thus, our results
can be applied to obtain efficient solutions to the set-intersection problem.

Cryptographic primitives. We make use of several standard cryptographic
primitives that can be defined as instances of private two-party computation be-
tween a server and a client, including oblivious transfer (OT) [29, 9], single-server
private information retrieval (PIR) [8, 20], symmetrically-private information re-
trieval (SPIR) [11, 23], and oblivious polynomial evaluation (OPE) [23]. Some
specific constructions for non-adaptive KS require a semantically-secure homo-
morphic encryption system.

1.3 Organization

The remainder of this paper is structured as follows. We provide definitions
and variants of keyword search in Section 2. Section 3 describes some direct
constructions of (non-adaptive) KS protocols based on OPE and homomorphic
encryption. In Section 4 we introduce our new relaxed notion of OPRF and use
it to obtain a reduction from fully-private KS to semi-private KS. We conclude
by providing efficient implementations of OPRFs in Section 5.

2 Preliminaries

This section defines the private keyword search problem and some of its variants.
We assume the reader’s familiarity with standard simulation-based definitions
of secure computation (cf. [5, 13]).

2.1 Private keyword search

The system is comprised of a server S and a client C. The server’s input is a
database X of n pairs (xi, pi), each consisting of a keyword and a payload. Key-
words can be strings of an arbitrary length and payloads are padded to some fixed
length. We may also assume, without loss of generality, that all xi are distinct.
The client’s input is a searchword w. If there is a pair in the database in which
the keyword is equal to the searchword, then the output is the corresponding
payload. Otherwise the output is a special symbol ⊥.

Private keyword search (KS for short) requires privacy for both the client and
the server, i.e., neither party learns anything more than is defined by the above
transaction. The strongest way of formalizing this requirement is by appealing
to general definitions of secure computation from the literature. That is, a KS
protocol can be defined as a secure two-party protocol realizing the above KS
functionality. However, when constructing specific KS protocols—rather than
general reductions from KS to other primitives—efficiency considerations dic-
tate a slight relaxation of this definition which still suffices to capture the core
correctness and privacy requirements. Specifically, when simulating a malicious
server, the relaxed definition only requires one to simulate the server’s view
alone, without considering its joint distribution with the honest client’s output.
(In the setting of semi-honest parties, this relaxed definition is equivalent to the
original one.)

With respect to a malicious server, this relaxed definition only requires that
the client’s query w remains private: It does not require the server to commit to
or even “know” a database to which a client’s search is effectively applied. Such
a relaxation is standard for related primitives such as OT (cf. [1, 23]) or PIR
(cf. [20, 4]). Moreover, it seems necessary for obtaining protocols that require
only a single round of interaction yet still achieve security against malicious
parties. (We note, however, that our protocols can be amended to satisfy the
stronger definition by adding proofs of knowledge.)

It is interesting to contrast the goals of KS and those of zero-knowledge
sets [22]. While KS provides privacy for both parties but does not require the
server to commit to its input, zero-knowledge sets require the server to commit
to its input but provides privacy for the server yet not the client.

The requirements of a private KS protocol can be divided into correctness,
client privacy, and server privacy components. We first define these properties
independently, and then define a private KS protocol as a protocol that satisfies
these definitions. (To avoid cumbersome notation, we omit the auxiliary inputs
required for sequential composition.)

Definition 1. (Correctness.) If both parties are honest, then, after running
the protocol on inputs (X, w), the client outputs pi such that w = xi, or ⊥ if no
such i exists.

Definition 2. (Client’s privacy: indistinguishability.) For any PPT S ′ ex-
ecuting the server’s part and for any inputs X, w, w′, the views that S ′ sees on
input X, in the case that the client uses the searchword w and the case that it
uses w′, are computationally indistinguishable.

For both client and server privacy, indistinguishability is parameterized by
a privacy parameter k, given to both parties as a common input. Note that
this definition, protecting only the privacy of the client’s query w, captures the
aforementioned relaxation.

In order to show that the client does not learn more or different information
from the protocol than from merely obtaining its output, we compare the pro-
tocol to the ideal implementation. In the ideal implementation, a trusted third
party gets the server’s database X and the client’s query w as input, and outputs
the corresponding payload to the client. Privacy requires that the protocol does
not leak to the client more information than in the ideal implementation.

Definition 3. (Server’s privacy: comparison with the ideal model.) For
every PPT machine C ′ substituting the client in the real protocol, there exists a
PPT machine C′′ that plays the client’s role in the ideal implementation, such
that on any inputs (X, w), the view of C ′ is computationally indistinguishable
from the output of C′′. (In the semi-honest model C ′ = C.)

Remark 1. The protocols from Section 3, as originally described, will actually
satisfy the following incomparable notion of server privacy: any computationally
unbounded client C′ can be simulated by an unbounded simulator C ′′. This can
be viewed as a pure form of information-theoretic privacy. Inefficient simulation
seems necessary in order to obtain 1-round KS protocols (see a discussion in [1]
for the similar case of OT). However, it is easy to convert these protocols to
ones that support efficient simulation, using standard zero-knowledge proofs of
knowledge: Clients should prove that they know the secret key corresponding
to the public key they generate. Such proofs need to be performed only once,
during the system’s initialization.

Definition 4. (Private KS protocol.) A two-party protocol satisfying Defi-
nitions 1 (correctness), 2 (client privacy) and 3 (server privacy).

The above definition can be immediately applied to protocols computing any
deterministic client-server functionality f . We refer to such a protocol as private
protocol for f .

Finally, we will later use KS protocols in which the server privacy is not
preserved (i.e., satisfy only Definitions 1 and 2). We refer to such protocols as
semi-private KS protocols.

2.2 Problem Variants

The default KS primitive can be extended and generalized in several ways. We
first outline three orthogonal variations on the basic model, and then define the
two main settings on which we focus.

– Multiple queries. The default notion of KS allows the client to search for
a single keyword. While this procedure can be repeated several times, one
may seek more efficient solutions allowing the client to retrieve t keywords
at a reduced cost. This generalized notion of t-time KS is straightforward to
define and makes sense even when t � n, since the client does not necessarily
have an a-priori knowledge of the keywords. (This is in contrast to the case
of 1-out-of-n OT or SPIR, where there is no point in letting t > n, since the
entire database can be learned using t queries.)

– Allowing setup. By default, KS does not assume any previous interac-
tion between the client and server. To facilitate prompt responses to future
queries, the client and server may engage in a setup phase involving a poly-
nomial amount of work. During the online phase, each keyword search may
then only require a sub-linear amount of work.

– Adaptive queries. In the default non-adaptive setting, the client may ask
multiple queries, but the queries must be defined before it receives the
server’s first answer. In the adaptive setting, the client can decide on the
value of each query after receiving the answers to previous queries. An adap-
tive t-time KS protocol allows the client to make at most t adaptive queries.
The privacy definition in this case extends the above in a natural way, sim-
ilarly to that of adaptive OT in [24].

The results of this work have applications to all of the above variations.
However, to make the presentation more focused, we restrict our discussion to
two “typical” settings for KS:

Non-adaptive t-time KS without setup. In our default notion of KS, when
t is unspecified, it is taken to be 1. This setting’s main goal in this setting is to
obtain solutions whose total communication complexity is sub-linear in n. Thus,
the problem can be viewed as an extension of PIR and SPIR.

Adaptive t-time KS with setup. In this setting, allowing t adaptive queries,
the setup phase typically consists of a single message in which the server sends
the database in encrypted form to the client. (This is the default setting also
considered in [23, 25, 27].) In general, however, the setup may be polynomial in
the database size. Ideally, each adaptive query should involve a small amount
of work—sub-linear in the database size—including both communication and
computation. When t is unspecified, it is taken to be an arbitrary polynomial in
the database size, where this polynomial may be larger than the cost of the setup.
Thus, one cannot apply solutions that separately handle each future query.

For brevity, we subsequently refer to these settings as non-adaptive KS and
adaptive KS, respectively.

3 Non-Adaptive KS from OPE

In this section, we construct a non-adaptive keyword search protocol using obliv-
ious polynomial evaluation (OPE) [23]. The basic idea of the construction is to
encode the database entries in X = {(x1, p1), . . . , (xn, pn)} as values of a poly-
nomial, i.e., to define a polynomial Q such that Q(xi) = (pi). Note that this
design is different than previous applications of OPE, where a polynomial (of
degree k) was used only as a source for (k + 1)-wise independent values. Com-
pared to our other constructions and to previous solutions from the literature,
this construction is unique in achieving sub-linear communication overhead in a
single round of communication.3

The following scheme uses any generic OPE to build a KS protocol. We then
show a specific implementation of the OPE based on homomorphic encryption.

Protocol 1 (Generic polynomial-based KS) .

Input: Client: an evaluation point w; Server: {xi, pi}i∈[n], all xi’s are distinct
Output: Client: pi if w = xi, nothing otherwise; Server: nothing

1. The server defines L bins and maps the n items into the L bins using a
random, publicly-known hash function H with a range of size L. H is applied
to the database’s keywords, i.e., (xi, pi) is mapped to bin H(xi). Let m be a
bound such that, with high probability, at most m items are mapped to any
single bin. (At this point, we keep L and m as parameters.)

2. For every bin j, the server defines two polynomials Pj and Qj of degree
(m−1). The polynomials are defined such that for every pair (xi, pi) mapped
to bin j, it holds that Pj(xi) = 0 and Qj(xi) = (pi|0`), where ` is a statistical
security parameter.

3. For each bin j, the server picks a new random value rj and defines the
polynomial Zj(w) = rj · Pj(w) + Qj(w).

4. The two parties run an OPE protocol in which the client evaluates all L
polynomials at the searchword w.

5. The client learns the result of ZH(w)(w), i.e., of the polynomial associated

with the bin H(w). If this value if of the form p|0` the client outputs p,
otherwise it outputs ⊥.

To instantiate this generic scheme, we need to detail the following three open
issues: (1) the OPE method used by the parties, (2) the number of bins L, and
(3) the method by which the client receives the OPE output for the relevant
bin. Additionally, one could consider using carefully-chosen hashing methods to
obtain a balanced allocation of items into bins, although this approach would
not yield substantial improvements.

An OPE method. Our construction uses an OPE method based on homomor-
phic encryption4 (such as Paillier’s system [28]) in the following way. We first
introduce this construction in terms of a single database bin.

3 Protocol 1 uses a public hash function H. To run it in the “plain” model, the client
can pick the hash function and send it to the server in its first message.

4 Other OPE constructions could be based on the hardness of noisy polynomial inter-
polation or on using log |F| 1-out-of-2 OTs, where F is the underlying field [23].

– The server’s input is a polynomial of degree m, where P (w) =
∑m

i=0 aiw
i.

The client’s input is a value w.
– The client sends to the server homomorphic encryptions of the powers of w

up to the mth power, i.e., Enc(w), Enc(w2), . . . , Enc(wm).
– The server uses the homomorphic properties to compute the following:

m
∏

i=0

Enc(aiw
i) = Enc(

m
∑

i=0

aiw
i) = Enc(P (w))

The server sends this result back to the client.

In the case of semi-honest parties, it is clear that the OPE protocol is correct
and private. Furthermore, the protocol can be applied in parallel to multiple
polynomials, and the structure of the protocol enforces that the client evaluates
all polynomials at the same point.

Now, consider that the server’s input is L polynomials, one per bin. The
protocol’s overhead for computing all polynomials is the following. The client
computes and sends m encryptions. Every polynomial Pj used by the server is
of degree dj ≤ m (where dj + 1 items are mapped to bin j), and the server can
evaluate it using dj + 1 homomorphic multiplications of plaintexts. Thus, the

total work of the server is
∑L−1

j=0(dj +1) = n exponentiations. The server returns
just a single value for each of the L polynomials.

A simple protocol. Let the server assign the n items to L bins arbitrarily
and evenly, ensuring that L items are assigned to every bin; thus, L =

√
n.

The client need not know which items are mapped to which bin. The client’s
message during the OPE consists of L = O(

√
n) homomorphic encryptions; the

server evaluates L polynomials by performing n homomorphic multiplications
(exponentiations), and replies with the L =

√
n results. This protocol has a

communication overhead of O(
√

n), O(n) computation overhead at the server’s
side, and O(

√
n) computation overhead at the client’s side.

Reducing communication: Receiving the OPE output using PIR. Note
that the client does not need to learn the outputs of all polynomials but rather
only the value of the polynomial associated with the bin to which w could be
mapped. To further lower the communication complexity, the protocol uses a
public hash-function H and invokes PIR to retrieve the result of the relevant
polynomial evaluation. Namely, the function H is chosen independently of the
content of the database, and it is used to map items to bins. After the server
evaluates the L polynomials on the client’s input w, the client runs a 1-out-of-L
PIR scheme to learn the result of the polynomial of bin H(w).

The total communication overhead is O(m) ≈ n/L (client to server) plus the
overhead of the PIR scheme. A good choice is to use a PIR scheme with a poly-
logarithmic communication overhead, such as the scheme of Cachin et al. [4]
(based on the Φ-hiding assumption) or the schemes of Cheng [6] or Lipmaa [21]
(based on the Paillier and Damg̊ard-Jurik cryptosystems, respectively). In these
cases, setting L = n/ log n gives a total communication of O(polylog n). We note

that the client can combine the first message from its KS scheme with that of its
PIR scheme. Thus, the round overhead of the combined protocol is the same as
that of the PIR protocol alone. The computation overhead of the server is O(n)
plus that of a PIR scheme with L inputs; the client’s overhead is O(m) plus that
of a PIR scheme with L inputs.

Theorem 1. There exists a KS system for semi-honest parties with a com-
munication overhead of O(polylog n) and a computation overhead of O(log n)
“public-key” operations for the client and O(n) for the server. The security of
the KS system is based on the assumptions used for proving the security of the
KS protocol’s homomorphic encryption system and of the PIR system.

Proof (sketch for semi-honest parties): Given a pair (xi, pi) in the server’s
input such that w = xi, it is clear that the client outputs pi. If w 6= xi for all i,
the client outputs ⊥ with probability at least 1− 2−`. The protocol is therefore
correct. Since the server receives semantically-secure homomorphic encryptions
and the PIR protocol protects the privacy of the client, the protocol ensures
the client’s privacy: The server cannot distinguish between any two client inputs
x, x′. Finally, the protocol protects the server’s privacy: If a polynomial Z with
fresh randomness is prepared for every query on every bin, then the result of the
client’s query w is random if w is not a root of P , i.e., if w is not in the server’s
input X . A party running the client’s role in the ideal model can therefore
simulate the client’s view in the real execution.

Handling malicious servers. Assume that the PIR protocol provides client
privacy in the face of a malicious server (as is the case with virtually all PIR
protocols from the literature). Then the protocol is secure against malicious
servers (per Definition 2), as the only information that the server receives, in
addition to messages of the PIR protocol, is composed of semantically-secure
encryptions of powers of the client’s input searchword.

Handling malicious clients. If the client is malicious then server privacy is
not guaranteed by Protocol 1 as given. For example, a malicious client could send
encryptions that do not correspond to powers of a value w. However, if the OPE
protocol used in Protocol 1 is secure against malicious clients, then the overall
protocol provides security against malicious clients, regardless of the security of
the PIR protocol. (Note that there are no server privacy requirements on PIR;
it is used merely to reduce communication complexity.)

One conceptually-simple solution therefore requires the client to prove that
the encryptions it sends in the OPE protocol are well-formed, i.e., correspond to
encryptions of a sequence of values w, w2, . . . , wm. Unfortunately, such a proof
in the standard model requires more than a single round of messages.

A more efficient solution can be based on a known reduction of the OPE of
a polynomial of degree m, to m OPEs of linear polynomials [12]. The overhead
of the resulting protocol is similar to that of a direct OPE of the polynomial,
and the protocol consists of only a single round (the m OPEs of the linear

polynomials are done in parallel). We describe the reduction of [12] in the full
version of this paper.

When the OPE protocol (based on homomorphic encryption) is applied to
a linear polynomial, any encrypted value (w) sent by the client corresponds to
a valid input to the polynomial, and thus the OPE of the linear polynomial
computes a legitimate value of the polynomial. Therefore, if we ensure that the
client sends a legitimate encryption we obtain a linear OPE (and thus a general
OPE) secure against malicious clients.

When considering concrete instantiations of the OPE protocol, we note that
the El Gamal cryptosystem has the required property, namely that any cipher-
text can be decrypted.5 The El Gamal cryptosystem can therefore be used for
implementing a single-round OPE secure against a malicious client. Yet, the
El Gamal system has a different drawback: given that it is multiplicatively ho-
momorphic, it can only be used for an OPE in which the receiver obtains gP (x),
rather than P (x) itself. Thus, a direct use of El Gamal in KS is only useful for
short payloads, as it requires encoding the payload in the exponent and asking
the receiver to compute its discrete log.

We can slightly modify the KS protocol to use El Gamal yet still support
payloads of arbitrary length. A detailed description appears in the full version
of the paper. The main idea, however, is to have the server map the items to
n/ logn bins as usual, but define, for every bin j, a random polynomial Zj of
degree m = O(log n). For an item (xi, pi), the server encrypts pi|0` using the key
gZH(xi)

(xi). The client sends a first message for an El Gamal-based OPE, namely
encryptions of gw, gw2

, . . . , gwm

. The server then prepares, for every bin j, a
message 〈 gZj(w), {EncZj(xj,i)(pj,i|0`)}i∈[m] 〉, where the xj,i’s are the messages
mapped to bin j. The client uses PIR to learn the message of its bin of interest,
and then can decrypt the payload corresponding to w if ∃ xj,i = w.

The only difference with this modified protocol is that the message learned
during the PIR is of size O(|pi| log n) rather than of size O(|pi|). The overall
communication complexity does not change, however, since the PIR has poly-
logarithmic overhead. We obtain essentially the same overhead, including round
complexity, as Protocol 1. (Note also that the security of the new protocol is
proved in the model of Remark 1.)

Multiple invocations. The privacy of the server in Protocol 1 and its variants
is based on the fact that the client can evaluate each polynomial Z at most
once. Therefore, fresh randomness ri must be used in order to generate new
polynomials Z1, . . . , ZL for every invocation of the protocol. This means that
using the protocol for multiple queries must essentially be done by independent
invocations of the protocol.

5 Unfortunately, as was observed for example in [1], the Paillier cryptosystem is not
verifiable. That is, given a public key and a ciphertext, it is not known how to verify
that the ciphertext is valid and can be correctly decrypted.

4 Keyword Search from OPRFs

In this section, we describe a general reduction of KS to semi-private KS us-
ing oblivious pseudorandom functions (OPRFs). Unlike the protocol from the
previous section, this reduction can yield fully-adaptive KS protocols. We first
recall the original notion of OPRFs from the literature [26] and then introduce a
new natural relaxation, which arguably suffices for most applications. Finally, we
describe our reduction from KS to semi-private KS using the relaxed notion of
OPRF. New constructions of such OPRFs will be presented in the next section.

4.1 Oblivious Pseudorandom Functions

The strongest definition of OPRF is as a secure two-party protocol realizing the
functionality g(r, w) = (λ, fr(w)) for some pseudorandom function family fr.
(Here and in the following, the first input or output corresponds to the server
S and the second to the client C; by λ we denote an empty output.) As usual,
the term “secure” can be interpreted in several ways. For consistency with the
security definitions of Section 2 and the constructions of the next section, we
interpret “secure” here as “private”. We note, however, that the definitions and
results of this section naturally extend the case of full security.

Definition 5. Strongly-private OPRF (s-OPRF). A two-party protocol π
is said to be a strongly-private OPRF (or strong OPRF for short) if there exists
some PRF family fr, such that π privately realizes the following functionality.

– Inputs: Client holds an evaluation point w; Server holds a key r.

– Outputs: Client outputs fr(w); Server outputs nothing.

One can similarly define adaptive and non-adaptive t-time variants of strong
OPRFs. Note that server privacy guarantees that a malicious client C ′ cannot
learn anything about r except what follows from fr(w

′) for some w′. Compos-
ability of secure computation [5] implies that a 1-time s-OPRF can be invoked
multiple times (with the same r and different wi) to realize an adaptive t-time
s-OPRF, where t can be an arbitrary polynomial in the security parameter.6

It follows from known reductions between cryptographic primitives that strong
OPRF exists if OT exists [14, 19, 16]. We note, however, that the construction of
s-OPRF from OT makes a non-black-box use of the OT primitive, even in the
semi-honest setting: The OT-based protocol for evaluating the PRF depends on
the function’s circuit representation [19], which in turn depends on the repre-
sentation of the OT primitive from which the PRF is derived.

6 Note that our definitions of KS and OPRF do not require protecting the client
against a malicious server who may choose different keys r in different invocations.
On the other hand, our definition coincides with that of [5] for the case of simulating
a (potentially malicious) client.

A new relaxed type of OPRF. As noted above, a strong OPRF guarantees
that the client learn no additional information about the PRF key r. As we shall
see, some natural and efficient OPRF protocols do not satisfy the strong defini-
tion, yet are sufficient for the KS application. We thus turn our consideration to
relaxing the definition of server privacy to the following.

Roughly speaking, we require that following the execution of the OPRF pro-
tocol, the client obtains no additional information about the outputs of a random
function fr, other than what follows from a legitimate set of queries, whose size
is bounded by t in the t-time case. (Recall that the strong definition requires
that no information be learned about the key of an arbitrary function fr.) In
other words, the outputs of fr on unqueried inputs cannot be distinguished
from the outputs of a random function, even given the client’s view. Note that
this does not prevent the client from learning substantial partial information
about r (which does not provide information about other values of fr).

7

This intuitive property is relatively straightforward to formalize in the case of
a semi-honest client. Specifically, one may require that following the protocol’s
execution, the client cannot efficiently distinguish between fr and a random
function if it only queries them on points not included in its queries w1, . . . , wt.
Obtaining a suitable definition for the case of malicious clients, however, requires
more care. In particular, the inputs on which the client queries fr in a particular
execution of the protocol may not even be well-defined.

We formalize our relaxed notion of OPRF by a careful modification of the
underlying functionality. The client’s privacy is defined as before. However, for
the purpose of defining the server’s privacy, we view fr as a randomized function-
ality (with randomness r picked by the TTP in the ideal implementation), and
we allow both the client and the server to provide inputs to and receive outputs
from this functionality.

Definition 6. Relaxed OPRF (r-OPRF). A two-party protocol π is said to
be a (non-adaptive, 1-time) relaxed OPRF if there exists some PRF family fr,
such that the following hold.

Correctness and client’s privacy. These properties remain the same as in
Definition 5, i.e., using the functionality g(r, w) = (⊥, fr(w)).

Server’s privacy. To define server’s privacy in π, we make the following men-
tal experiment. Consider an augmented protocol π̃ in which the input of S con-
sists of n evaluation points x1, . . . , xn (instead of a key r) and the input of C is an
evaluation point w (as in π). Protocol π̃ proceeds as follows: (1) S picks a key r
at random; (2) S, C invoke π on inputs (r, w); (3) S outputs (fr(x1), . . . , fr(xn))

7 As a concrete simple example, consider the following pseudo-random function based
on the Naor-Reingold construction. The key r consists of two sets x1, . . . , xm and
y1, . . . , ym; the function is defined for inputs (i, j) such that 1 ≤ i, j ≤ m, and
its value is fr(i, j) = gxiyj in a group where the DDH assumption holds and g is
a generator. Consider a 1-time OPRF protocol where a client whose input is (i, j)
learns xi and yj and uses them to compute fr(i, j). Although these values reveal part
of the key r to the client, the other outputs of the function remain pseudo-random.

and C outputs its output in π. We require that the augmented protocol π̃ provide
server security with respect to the following randomized functionality g̃:

– Inputs: Client holds an evaluation point w; Server holds an arbitrary set of
evaluation points (x1, . . . , xn).

– Outputs: Client outputs fr(w) and Server outputs (fr(x1), . . . , fr(xn)), where
the key r is uniformly chosen by the functionality.8

Specifically, for any (efficient, malicious) client C ′ attacking π̃, there is a simu-
lator C′′ playing the client’s role in the ideal implementation of g̃, such that on
all inputs ((x1, . . . , xn), w), the view of C′ concatenated with the output of S in
π̃ is computationally indistinguishable from the output of C ′′ concatenated with
that of S in the ideal implementation of g̃.

This definition applies to the non-adaptive 1-time case. In the t-time case, we
replace w with w1, . . . , wt, and fr(w) with (fr(w1), . . . , fr(wt)). In the adaptive
case, the protocols π, π̃ and the functionalities g, g̃ have multiple phases, where
the client’s input w in each phase may depend on the outputs of previous phases.

The above server’s privacy requirement implies that the client’s view gives no
information about the server’s inputs and outputs (x1, fr(x1)), . . . , (xn, fr(xn)),
other than what follows from some valid set (w′

1, fr(w
′

1)), . . . , (w
′

t, fr(w
′

t)). More-
over, this holds for an arbitrary choice of points xi made by the server (including
those possibly intersecting w′

i). In fact, this is precisely the requirement needed
for the keyword-search application.

Finally, we note that Definition 6 is indeed a relaxation of Definition 5.

Claim. If π is an s-OPRF, then it is also an r-OPRF.

Proof: The server’s privacy requirement of Definition 5 implies, in particular,
that on a uniformly-chosen r and an arbitrary w, the view V ′ of a malicious
client C′ concatenated with r is indistinguishable from the output V ′′ of its
simulator C′′ concatenated with r. This in turn implies that (V ′, {(fr(xi)}i∈[n])
is indistinguishable from (V ′′, {(fr(xi)}i∈[n]), as required by Definition 6.

4.2 Reducing KS to Semi-Private KS

We now present a general method of using (either variant of) OPRF to upgrade
any semi-private KS protocol into fully-private KS.

Recall that a semi-private KS protocol is a KS protocol which guarantees
privacy for the client but not for the server, similar to the privacy offered by
PIR protocols. (The notion of semi-private KS was first considered in [7], where
it was referred to as private information retrieval by keywords.) Semi-private KS
can be simply implemented by letting the server send its input X , or (better
yet) a data structure Y representing X , to the client. When the communication

8 Equivalently, fr can be replaced here with a totally random function. We prefer the
current formulation because of its closer correspondence with the notion of s-OPRF,
as well as the convention that ideal functionalities are efficiently computable.

is required to be sublinear, semi-private KS can be implemented using PIR to
probe the data structure Y , as suggested in [7].

Using the following high-level idea, we can now construct a fully-private KS
protocol from a semi-private KS protocol: The server uses a PRF to assign ran-
dom pseudo-identities to the original keywords xi (as well as mask the payloads
pi), and the client uses an OPRF protocol to learn the values of the PRF on the
selected searchword(s). Since the PRF values on unselected searchwords remain
random from the client’s point-of-view, knowledge of the original and pseudo-
identity pairs of the selected searchwords does not provide any more information
than does knowledge of just the set of searchwords that are in the database along
with their payloads.

More formally, given a semi-private KS protocol and a (possibly relaxed)
OPRF realizing fr, the KS protocol proceeds as follows. For simplicity, we ad-
dress below the case non-adaptive KS with t=1.

Protocol 2 (A KS protocol based on semi-private KS and r-OPRF) .

1. The server picks a random key r for the PRF. For 1 ≤ i ≤ n, it parses fr(xi)
as (x̂i, p̂i) and constructs a pseudo-database X ′ = {(x′

i, p
′

i)}i∈[n] with x′

i = x̂i

and p′i = pi ⊕ p̂i. (Both X and X ′ must be treated as unordered sets, whose
representation does not reveal the index i of each element; alternatively, one
may think of X and X ′ as lexicographically-sorted sequences.)

2. The parties invoke the r-OPRF protocol, with server input r and client input
w. As a result, the client learns fr(w) and parses it as (ŵ, p̂).

3. The parties invoke the semi-private KS protocol with server input X ′ and
client input ŵ. As a result, the client learns whether ŵ ∈ X ′, and if so, also
learns the corresponding payload p′

i. If ŵ ∈ X ′, the client outputs p′i ⊕ p̂;
otherwise, it outputs ⊥.

We stress that, due to the lack of server’s privacy in semi-private KS, we
should make the worst-case assumption that the client learns the entire pseudo-
database X ′ in Step 3. Still, the use of an OPRF in Step 2 guarantees that the
client does not learn more than it is entitled.

Remark 2. If a setup phase with linear communication is allowed, the semi-
private KS in Step 3 can be replaced by having X ′ (or a corresponding data
structure Y ′) sent to the client in the clear following Step 1.

Theorem 2. Protocol 2 is a private KS protocol.

Proof (sketch): The protocol’s correctness is easy to verify. The client’s privacy
follows immediately from its privacy in the OPRF and the semi-private KS.

Server’s privacy. Letting π denote the r-OPRF protocol, it is convenient to
reformulate the above protocol in the following equivalent way:

– The parties invoke the augmented protocol π̃ (from Definition 6) on server
input (x1, . . . , xn) and client input w. At the end of this protocol, S outputs
(fr(x1), . . . , fr(xn)) and C outputs fr(w).

– The server parses each fr(xi) as (x̂i, p̂i) and creates a pseudo-database X ′ =
{(x′

i, p
′

i)}i∈[n] with x′

i = x̂i and p′i = pi ⊕ p̂i, as before. Again, the client
parses fr(w) as (ŵ, p̂). The parties invoke the semi-private KS protocol with
server input X ′ and client input ŵ. As a result, the client learns whether
ŵ ∈ X ′, in which case the client outputs p′i ⊕ p̂; otherwise, it outputs ⊥.

By Definition 6, when considering only the client’s simulation, π̃ must be se-
cure with respect to the randomized functionality g̃ mapping (x1, . . . , xn) and
w to (fr(x1), . . . , fr(xn)) and fr(w), respectively. Hence, using protocol compo-
sition [5], it suffices to prove the server’s privacy in a simpler “hybrid” protocol,
where the invocation of π̃ is replaced by a call to an oracle (or TTP) computing
g̃. Moreover, by the pseudorandomness of fr, we can replace the oracle g̃ by a
similar oracle G̃ in which fr is replaced by a truly random function.

The resultant hybrid protocol is in fact perfectly private. Given a malicious
client C′ attacking the hybrid protocol, a corresponding simulator C ′′ can proceed
as follows. C′′ invokes C′ on input w. In the first step, after learning the query w′

which C′ sends to the oracle computing G̃, the simulator C′′ sends the query w′

to the TTP computing KS. As a response, it gets pi if w′ = xi or ⊥ if no such i
exists. Now the second step can be simulated jointly with the response (ŵ, p̂) of
the G̃ oracle. First, C′′ chooses X ′ to be a uniformly-random pseudo-database
of size n. Next, it simulates (ŵ, p̂) so that they are consistent with X ′ and the
response of KS: if a payload p was obtained from KS, then ŵ is taken to be
a random keyword from X ′ and p̂ is set to the exclusive-or of the keyword’s
corresponding payload and p; otherwise, ŵ and p̂ are chosen at random from
their respective domains. Finally, C ′′ simulates the view of C ′ in the semi-private
KS protocol by simply running the protocol on inputs (X ′, w′).

Efficiency. The cost of the protocol is dominated by that of the semi-private KS
and the OPRF. In the t-time non-adaptive model, this cost is typically dominated
by that of the semi-private KS, which in turn is dominated by the cost of the
underlying PIR protocol. We note that the latter cost can be amortized over
t non-adaptive queries [2, 18]. In the adaptive model—more generally, in any
setting allowing setup—the offline cost is dominated by linear communication in
the size of the database, and the online cost by the efficiency of the underlying
OPRF. We now consider efficient implementations of the OPRF primitive.

5 Constructing OPRFs

A generic implementation of an s-OPRF can be based on general secure two-
party evaluation. Namely, the server has as input a key r of a PRF fr and,
whenever the client wants to evaluate fr on x, the parties perform a secure
function evaluation (SFE), during which the client learns fr(x). As noted above,
this gives rise to a non-black-box reduction from strong OPRF to OT. In this
section, we discuss two other types of constructions:

– Constructions of fully-adaptive s-OPRFs based on specific assumptions (mainly
on DDH). These constructions are either given or implicit in [26, 24] and are
more efficient than the generic SFE-based construction sketched above.

– General constructions of t-time adaptive r-OPRFs making a black-box use of
OT. From a theoretical point of view, one of the most interesting open ques-
tions left by our work is to come up with any efficient black-box construction
of fully-adaptive r-OPRFs. This is indeed a rare example of a non-black-box
construction in cryptography for which no black-box construction is known.

For simplicity, we discuss these constructions mainly from the viewpoint of the
semi-honest model.

5.1 Strong OPRFs Based on DDH or Factoring

Naor and Reingold gave two constructions of PRFs based on number-theoretic
assumptions in [26]: one based on the Decisional Diffie-Hellman assumption
(DDH), and the other based on the hardness of factoring. The constructions
have a simple algebraic structure, and they were used to give oblivious, fully-
adaptive evaluations for these functions. While more efficient than general secure
function evaluation, these s-OPRFs have the disadvantage of requiring a linear
number of rounds and a linear number of exponentiations. Implicit in the work
of Naor and Pinkas on OT [23, 24],9 one can find a significantly more efficient
evaluation of the DDH-based PRFs of [26]. We now sketch this construction.

Initialization: Let g be a generator of a group Gg of prime order p for
which the DDH assumption holds. The key r̄ of the pseudo-random function
fr̄ : {0, 1}m 7→ Gg contains m values {r1, . . . , rm}, sampled uniformly at random
in Z∗

p . The function fr̄(x) is defined to be gΠxi=1ri , for any m-bit x = x1x2 . . . xm.
(This function was shown in [26] to be pseudorandom.)

Secure evaluation: The client has inputs x = x1x2 . . . xm. The server selects
m values {a1, . . . , am} sampled uniformly at random in Z∗

p . For each i, the parties

perform a 1-out-of-2 OT (denoted by
(

2
1

)

-OT), with the server using as inputs
the two values ai and ai · ri. Thus, the client learns ai if xi = 0 and ai · ri

otherwise. In addition, the server sends ĝ = g1/Πm
i=1ai in the clear. Let A be the

product of the values learned by the client, then A = (Πm
i=1ai) · (Πxi=1ri). Thus,

the client can compute ĝA and learn the desired value fr̄(x).
Security: This protocol’s security follows from the security of the OT pro-

tocol: The distribution of the m values learned by the m OTs, combined with
g1/Πm

i=1ai , can be easily sampled given access to fr̄(x) alone.
Efficiency: The computational cost of the protocol (for both client and

server) is m
(

2
1

)

-OTs and one exponentiation. The main cost in communication
is that incurred by the m OTs. Given the work on batch OT of [17], the OTs
performed by the oblivious evaluation protocol above can be considered, for prac-
tical purposes, to be almost as efficient as private-key operations. In particular,
using these s-OPRFs in the transformation of Section 4.2 gives quite an efficient
solution to KS. Unlike [27], this solution is in the standard model—rather than
in the random oracle model—and only relies on standard assumptions.

9 The construction was used to generate values that mask the server’s input in an
adaptive OT protocol.

5.2 Relaxed OPRFs Based on Black-Box OT

We now present a new construction of adaptive t-time r-OPRFs based on gen-
eral assumptions, using the OT and PRF primitives in a black-box manner.
(In fact, as discussed earlier, PRF is itself black-box implied by OT [14, 16,
15].) Our starting point is a construction of Naor and Pinkas [23] that gives
PRFs—originally designed for sub-exponential domains—with some weak form
of oblivious evaluation.

Consider a set of known PRFs {gs} over the domain [N] = [M]2. Naor and
Pinkas [23] construct related PRFs {fr̄} over the same domain. First, let each
key r̄ be composed of two sets of M random g keys (i.e., r̄1 = {r1,1, . . . , r1,M}
and r̄2 = {r2,1, . . . , r2,M}). Then, define fr̄(x) as gr1,x1

(x) ⊕ gr2,x2
(x) for any

x = (x1, x2) ∈ M2.10

We can now use fr̄ in place of gs to our advantage, as there exists a somewhat
oblivious way of evaluating fr̄(x). Namely, perform two independent

(

M
1

)

-OTs
to retrieve r1,x1 ∈ r̄1 and r2,x2 ∈ r̄2, and then evaluate fr̄(x) as desired using
these random keys. Of course, the client now learns r1,x1 and r2,x2 in addition
to just fr̄(x). Still, it is easy to argue that fr̄, when restricted to all inputs other
than x, remains pseudorandom. With a small additional effort, fr̄ can be turned
into a 1-time r-OPRF.

What happens if we perform an oblivious evaluation of fr̄ on t different
inputs? In this case, the client learns up to t keys in both r̄1 and r̄2, allowing it
to evaluate fr̄ in up to t2 places, which is certainly undesirable. Still, fr̄ maintains
a considerable amount of pseudorandomness, as its output looks random other
than at these t2 locations. In light of this property, [23] gives a technique that
can be translated into a construction of a non-adaptive t-time r-OPRF.

The PRF F (·) used in this construction is the exclusive-or of some ` functions
fr̄i(σi(·)), where fr̄i is defined as before and each σi is a random permutation
over [N]. All random inputs (for the sub-keys, r̄i

1 and r̄i
2, and for the permutations

σi) are chosen independently by the server for all 1 ≤ i ≤ `. The evaluation of
F (·) on t inputs x1 . . . xt proceeds in ` rounds. In the ith round, σi is sent to the
client and the parties perform t oblivious evaluations of fr̄i , as above.

This construction’s main idea is the following: In each round, the client may
learn at most t2 values of the current fr̄i(σi(·))—a t × t sub-matrix—from the
total of M2 possible values over which the PRF is defined. However, to learn
the value of F for t + 1 distinct inputs, the client must learn all intermediate
values for each one of the ` functions fr̄i(σi(·)) on these t+1 inputs. The random
permutations σi—each learned only during the execution of subsequent rounds—
ensure that this will only happen with negligible probability. See [23] for more
details. Note that for this probabilistic argument to hold, the number of rounds
` must depend on the security parameter.

Challenges. The above construction raises the following challenges left open
by [23] and the subsequent [24]: (1) Can the construction be made secure against
adaptive queries? We note that the adaptive solutions given in [24] rely either

10 This is a simple version of the construction; some useful optimizations are possible.

on specific assumptions or on random oracles. (2) Can one obtain oblivious eval-
uation in a constant number of rounds? Note that the number of rounds of the
above protocols depends on the security parameter. (3) Can the construction
handle an exponential domain size N? Various difficulties arise when naively ex-
tending the above solution to larger values of N . First, the random permutations
σi are too large to sample and transmit. Second, one has to extend the construc-
tion to higher dimensions than two and view [N] as [M]` for non-constant `: We
certainly want M to be sub-exponential, given that we are performing

(

M
1

)

-OTs.
We can indeed perform this extension, but the natural method as used below
reveals many more values of the PRFs: In t queries, the client learns t sub-keys in
every dimension. Thus, it can evaluate the function at t` locations, where t` may
be exponentially large (specifically, polynomially related to N). This expansion
seems to complicate the analysis and, in particular, implies a larger number of
rounds that also depends on t.

Our construction. In this section, we simultaneously answer all of the above
challenges: We obtain adaptive t-time r-OPRFs that can handle an exponential
domain size and can be securely evaluated in a constant number of rounds.

The technique of [23] for turning their 1-time r-OPRF into a t-time r-OPRF
is based on providing only indirect access to the functions fr̄i . Namely, the value
of the PRF F on x depends on the values fr̄i(σi(x)), rather than on fr̄i(x). How-
ever, since the permutation σi is transmitted in its entirety to the client, this
type of indirection is not very useful for obliviousness by itself. Instead, the pro-
tocol must be designed using several functions, revealing additional information
(each σi) in synchronous stages.

Instead, we will use only one function fr̄ and therefore will need only a single
permutation σ for the indirect access to fr̄. Rather than transmitting the entire
permutation σ to the client, we allow the client access only to t locations of σ
in some oblivious way. Since σ is now not completely known to the client, we
overcome both the need for a super-constant number of rounds and the large cost
of sending σ for large domain sizes. Of course, if σ is random or pseudorandom,
then the oblivious evaluation of σ is exactly the problem we wanted to solve in the
first place! Therefore, we relax this randomness requirement by replacing σ with
(t + 2)-wise independent functions (although, in fact, even weaker requirements
suffice).11 We proceed to the detailed construction of adaptive t-time r-OPRFs,
focusing on the setting where N is exponential.

Notion of privacy. In the above description and below, we argue that a func-
tion is an oblivious PRF if it remains pseudorandom on all inputs other than the
ones retrieved by the client. This makes our discussion simpler and more intu-
itive. However, this type of definition seems only to make sense in the semi-honest

11 A different variant of the construction uses the 1-time r-OPRFs based on [23] instead
of the random permutations. This construction may be more efficient in some settings
of the parameters. On the other hand, it seems theoretically inferior and somewhat
more complicated (e.g., it requires two levels of indirection). We therefore omit it
from this version for clarity.

model (as otherwise, the inputs retrieved by the client may not be well-defined).
Even in the semi-honest model, this notion—though sufficiently strong for the
KS application—falls short of obtaining the requirements of a r-OPRF, which
are defined in terms of simulation. Nevertheless, the protocol below gives a t-time
r-OPRF: All that is needed is that the basic PRFs {gs} used by this protocol will
have the additional property that, given t inputs and t corresponding outputs,
a random seed s can be sampled under the restriction that gs is consistent with
these inputs and outputs. This is easy to obtain if each gs is an exclusive-or of a
PRF and a t-wise independent function (as t-wise independent functions usually
have such “interpolation” property).

Extending the 1-time r-OPRF to higher dimensions. Let {gs} be PRFs
over a domain [N] = [M]`. Define the related PRFs {fr̄} over the same domain,
where each key r̄ is composed of ` sets {r̄1, . . . r̄`} of M random g keys, where
r̄i = {ri,1, . . . , ri,M}. Thus, r̄ defines an `×M matrix. For any x = {x1, . . . x`} ∈
M `, the value fr̄(x) is defined to be

⊕`
i=1 gi,xi

(x).

The 1-time oblivious evaluation of fr̄(x) goes as follows. First, perform `
independent

(

M
1

)

-OTs to retrieve ri,xi
∈ r̄i, for i = 1, . . . , `. Then, the client can

evaluate fr̄(x) as desired. As mentioned above, t evaluations of fr̄ may now give
information on t` values. However, fr̄ remains pseudorandom when restricted
to all inputs other than x.

Oblivious evaluation of (t + 2)-wise independent functions. The second
ingredient in our construction is a family H = {h : [N] 7→ [N]} of (t + 2)-
wise independent functions. This definition means that, restricted to any (t +2)
inputs, a function h sampled from H is completely random.12 We also rely on H
to have an oblivious evaluation (or a t-time oblivious evaluation). This problem is
an easier task than that of r-OPRFs. In particular, as (t + 2)-wise independent
functions exist unconditionally, they have oblivious evaluation based on OTs
in a black-box manner. Note that while this observation is based on general
secure evaluation, more efficient oblivious evaluations can be designed for specific
families of hash functions: for example, an OPE-based evaluation can be used
for a polynomial-based (t + 2)-wise independent hash function.

The new adaptive t-time r-OPRFs. We set M = 2t and assume without
loss of generality that ` is at least the security parameter.13 The key of these
adaptive t-time r-OPRFs is composed of a (t+2)-wise independent hash function
h ∈ H and a key r̄ of the `-dimension 1-time r-OPRF fr̄(·) defined above. The

value of this function Fh,r̄ on any input x ∈ [N] is given by Fh,r̄(x)
def
= fr̄(h(x)).

The oblivious evaluation of Fh,r̄(x) proceeds by first evaluating y = h(x) and
then evaluating fr̄(y), using the corresponding oblivious evaluation protocols.

12 In fact, h can be only statistically close to random or even just pseudorandom.
13 This implies r-OPRFs also for smaller values of N , although further optimizations

may be possible for these cases.

Security of the construction (sketch). We want to claim that after t eval-
uations of Fh,r̄(·), its restriction on all other inputs is indistinguishable from a
random function. Intuitively, this is true since each dimension has 2t keys of
which the client learns at most t, and the probability that another value of the
function is evaluated using only these learned keys is at most 2−`. Consider the
hybrid function R(h(·)), where R is a random function. It is easy to argue that
R(h(·)) is indistinguishable from random: It only can be distinguished from ran-
dom by querying inputs that cause collisions of h. Since conditioned on the values
of h already learned by the client, h is still pair-wise independent, collisions are
encountered with negligible probability. It remains to argue that R(h(·)) is in-
distinguishable from fr̄(h(·)). Note that at most t` values of fr̄ are compromised
by the client, and fr̄ is still pseudorandom on the rest. To distinguish R(h(·))
from fr̄(h(·)), the distinguisher needs to query with an input that causes the
output of h to fall into the compromised set. As the fraction of compromised
fr̄-inputs is negligible (at most 2−`), this happens with negligible probability.

Acknowledgements. Michael Freedman is supported by a National Defense
Science and Engineering Graduate Fellowship. Yuval Ishai is supported by Israel
Science Foundation grant 36/03. Omer Reingold is the incumbent of the Walter
and Elise Haas Career Development Chair at the Weizmann Institute of Science
and is supported by US-Israel Binational Science Foundation Grant 2002246.

References

1. Bill Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell
digital goods. In EUROCRYPT, Innsbruck, Austria, May 2001.

2. Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers’ computation in
private information retrieval: Pir with preprocessing. In CRYPTO, Santa Barbara,
CA, August 2000.

3. Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Pub-
lic key encryption with keyword search. In EUROCRYPT, Interlaken, Switzerland,
May 2004.

4. Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private
information retrieval with polylogarithmic communication. In EUROCRYPT,
Prague, Czech Republic, May 1999.

5. Ran Canetti. Security and composition of multiparty cryptographic protocols.
Journal of Cryptology, 13(1):143–202, 2000.

6. Yan-Cheng Chang. Single database private information retrieval with logarithmic
communication. In Proc. 9th ACISP, Sydney, Australia, July 2004.

7. Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval by key-
words. Technical Report TR-CS0917, Dept. of Computer Science, Technion, 1997.

8. Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private infor-
mation retrieval. In Proc. 36th FOCS, Milwaukee, WI, 23–25 October 1995.

9. Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Communications of the ACM, 28(6):637–647, 1985.

10. Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching
and set intersection. In EUROCRYPT, Interlaken, Switzerland, May 2004.

11. Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data
privacy in private information retrieval schemes. In Proc. 30th ACM STOC, Dallas,
TX, May 1998.

12. Niv Gilboa. Topics in Private Information Retrieval. PhD thesis, Technion - Israel
Institute of Technology, 2000.

13. Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, 2001.

14. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM, 33(4):792–807, October 1986.

15. Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Con-
struction of pseudorandom generator from any one-way function. SIAM Journal

on Computing, 28(4):1364–1396, 1999.
16. Russell Impagliazzo and Michael Luby. One-way functions are essential for com-

plexity based cryptography. In Proc. 30th FOCS, Research Triangle Park, NC,
October–November 1989.

17. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious
transfers efficiently. In CRYPTO, Santa Barbara, CA, August 2003.

18. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch codes and
their applications. In Proc. 36th ACM STOC, Chicago, IL, June 2004.

19. Joe Kilian. Founding cryptography on oblivious transfer. In Proc. 20th ACM

STOC, Chicago, IL, May 1988.
20. Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database,

computationally-private information retrieval. In Proc. 38th FOCS, Miami Beach,
FL, October 1997.

21. Helger Lipmaa. An oblivious transfer protocol with log-squared communication.
Crypto ePrint Archive, Report 2004/063, 2004.

22. Silvio Micali, Michael Rabin, and Joe Kilian. Zero-knowledge sets. In Proc. 44th

FOCS, Cambridge, MA, October 2003.
23. Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In

Proc. 31st ACM STOC, Atlanta, GA, May 1999.
24. Moni Naor and Benny Pinkas. Oblivious transfer with adaptive queries. In

CRYPTO, Santa Barbara, CA, August 1999.
25. Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In Proc. 12th

SIAM SODA, Washington, DC, January 2001.
26. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-

random functions. In Proc. 38th FOCS, Miami Beach, FL, October 1997.
27. Wakaha Ogata and Kaoru Kurosawa. Oblivious keyword search. Crypto ePrint

Archive, Report 2002/182, 2002.
28. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In EUROCRYPT, Prague, Czech Republic, May 1999.
29. Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical Report

TR-81, Harvard Aiken Computation Laboratory, 1981.
30. Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for

searches on encrypted data. In Proc. IEEE Symposium on Security and Privacy,
Berkeley, CA, May 2000.

