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ABSTRACT
Pcap expressions are a popular domain-specific language for packet
filters, used extensively to capture network traffic during network
monitoring or testing. The language is simple but made nontrivial
by implicit subformulas and other features that can lead to unex-
pected and unwanted results.

This paper formalises the semantics of pcap expressions by ex-
panding them to disambiguate their meaning, and describes an
SMT-based approach to check the equivalence of pcap expressions.
This approach can be used to obtain increased confidence in the
semantics of a pcap expression, by checking it against other expres-
sions with which it is expected to be equivalent. These semantics
are implemented into an open-source practical tool to help users of
pcap expressions.
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1 INTRODUCTION
The BSD Packet Filter [19] (BPF) is the most successful host-based
system for capturing network packets. It is virtually ubiquitous
through the portable libpcap library, onwhich the tcpdump command-
line program is based [1]. It builds on the work of Mogul et al. [20]
to provide flexible yet performant packet capture: flexibility is pro-
vided by accepting packet capture expressions from the user, and per-
formance is improved by interpreting these expressions as packet
filters in the OS kernel to reduce overhead from userspace-kernel
transitions.

The packet-filtering expressions accepted by libpcap form a
domain-specific language (DSL) which we refer to as pcap expres-
sions, distinguishing them from the pcap file format that is used to
store captured packets.

Pcap expressions are used extensively to capture network traf-
fic when testing new systems and diagnosing network problems.
Once captured, packets can be immediately analysed “online”, for
network-intrusion detection [27] for example. Alternatively, pack-
ets captured from a network link could be stored in a pcap file for
offline analysis.
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In this paper we take a close look at the pcap expression language.
The language is simple but made nontrivial by implicit subformulas
and other features that can lead to unexpected and unwanted results.
This paper provides an approach for giving formal semantics to the
pcap expression language. These semantics are then implemented
in an equivalence-checking tool for pcap expressions. This tool,
called Caper, is intended to assist pcap users, and is made freely
available as open-source software.1

The conciseness and intuitiveness of pcap expressions has made
the language very popular. For example, the following expression
describes a filter for traffic that is directed at an unspecified Web
server – the filter matches packets whose destination port is that
used by HTTP:

dst port http (1)

Pcap expressions can contain clauses that are implicit, and these
might deviate from the user’s intended filter. For example, the
expression shown above does not specify whether the packets are
carried over a IPv4 or IPv6 network, nor which transport layer
protocol is used. By inspecting the machine code to which the filter
is translated [19] we find its behaviour to be equivalent to this pcap
expression:

(ip6 or ip) and (sctp or tcp or udp) and
(dst port http)

Two things worth pointing out:
• The two pcap expressions are equivalent, meaning that they
match (and reject) the same packets. The machine code for
the two filters is almost identical, and differ in one small
detail: the second filter explicitly rejects fragmented IPv6
packets [10], while the first filter simply does not accept
them. The original expression (1) results in an identical filter
to this expression:

(ip6 or ip) and (dst port http)

• The filter produced from expression (1) overapproximates
what the user intended since HTTP traffic is usually trans-
ported by TCP. Capturing UDP or SCTP traffic is unneces-
sary. The user might more accurately express their filter as
follows:

tcp dst port http (2)

This expression results in a shorter filter program executed
in the kernel, which – depending on the workload – might
improve performance since the filter program is executed
on every single packet.

Such implicit subformulas help make pcap expressions more suc-
cinct, which is part of the language’s appeal. Over time practitioners
get accustomed to the contribution of these implicit subformulas,
which is mostly intuitive and easily adjusted.

1https://www.nik.network/caper
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Using the approach described in this paper, the original expres-
sion (1) results in an equivalent fully-expanded form:2
(ether proto \ip && ip proto \sctp && sctp dst port 80) ||

(ether proto \ip6 && ip6 proto \sctp && sctp dst port 80) ||

(ether proto \ip && ip proto \udp && udp dst port 80) ||

(ether proto \ip6 && ip6 proto \udp && udp dst port 80) ||

(ether proto \ip && ip proto \tcp && tcp dst port 80) ||

(ether proto \ip6 && ip6 proto \tcp && tcp dst port 80)

One of the objectives of this paper is to implement a source-to-
source transformation of pcap expressions to make themmaximally
explicit in detail. This is achieved through an expansion semantics
which recursively expands themeaning of an expression. This paper
also describes quirks of the pcap expression language that influence
its semantics.

An interesting semantic feature of pcap expressions is that tau-
tologies are not necessarily equivalent since they might imply a
different packet structure. For example tcp[0] = tcp[0] matches
TCP packets whose first byte is equal to itself, but its meaning can
differ from that of other tautologies, such as ip[0] = ip[0]. The
first expression matches all TCP packets, while the second matches
all IPv4 packets. Neither expression is equivalent to “ip or not ip”
or “tcp or not tcp”, which describe the weakest pcap expression.
In pcap expressions, the simplification of expressions and pruning
of tautologies must be done with extra care.

To better model the behaviour of real implementations the se-
mantics presented in this paper include counter-intuitive features
which violate the “rule of least surprise” [22].3 One such example
involves the “vlan” term which is used to describe filters over IEEE
801.1Q (VLAN) virtual networks [14]. VLANs are widely used to
organise large Ethernet networks, such as corporate and univer-
sity networks. A frame in a VLAN has an extra header indicating
the identity of the VLAN to which it belongs, since several virtual
networks may be overlaid on the same physical Ethernet. More-
over, VLANs may be nested – in which case a frame would have
several tags, one for each level of the nesting. The “vlan” term in
pcap is problematic because once it is encountered then the rest of
the expression is interpreted in the context of the VLAN tag. This
deviates from the expected behaviour of disjunctions. For example,
it is not the case that “vlan or ip” iff “ip or vlan”. In the first
expression the test for “ip” is done at an offset in the packet that
accounts for a VLAN tag – even if “vlan” was not matched in the
packet. In other words, “ip or vlan” is subsumed by both “ip” and
“vlan” as expected; but “vlan or ip” is only subsumed by “vlan”
since non-VLAN IPv4 packets cannot be matched by the resulting
filter. The tool described in this paper emits warnings when such
expressions are encountered.

Method outline. Pcap expressions describe predicates over pack-
ets, but deriving their semantics involves intermediate, discrete
steps to map high-level pcap expressions into byte-level predicates
over packets. The semantics presented in this paper is organised

2The brackets are necessary, otherwise libpcap interprets it as an expression that
only accepts packets to TCP port 80 on IPv6. This is an artefact of libpcap’s parser
(see footnote 6) whose documentation states that “Alternation and concatenation have
equal precedence and associate left to right”. In other words, both connectives have
the same precedence, and are left-associative. This deviates from the conventional
precedence of && over ||.
3This rule relates to user interfaces, of which domain-specific languages are arguably
an instance.

into these steps, which we implement in Caper: 1) expansion of pcap
expressions to make explicit all implicit information; 2) resolution
of various names (such as protocols, ports, and fields); 3) picking
out side-effecting predicates and emitting a warning to the user;
4) mapping to a bit-vector formula that models a predicate over
packets.

The contributions of this paper consist of:

(1) The first semantics of pcap expressions. The semantics uses
a novel staging into two phases: first expanding pcap ex-
pressions to disambiguate their meaning, then mapping
fully-expanded expressions into a Satisfiability Modulo The-
ories [21] (SMT) formalisation as predicates over packets.

(2) Caper: a practical tool that implements these semantics,
warns users of potentially unwanted behaviour, and encodes
subsumption- and equivalence-checking of pcap expressions
in SMTLIBv2 format [17].

2 EXAMPLE
This section gives an example of using pcap expressions to describe
a non-trivial filter for network traffic. Despite its simplicity the pcap
expression language holds up to real-world use. This example by P.
J. Malloy [18] describes a signature for suspicious traffic related to
the Heartbleed [8] OpenSSL vulnerability, using which a server’s
memory could be read remotely without authorisation.

tcp src port 443 and
(tcp[((tcp[12] & 0xF0) >> 4) * 4] = 0x18) and
(tcp[((tcp[12] & 0xF0) >> 4) * 4 + 1] = 0x03) and
(tcp[((tcp[12] & 0xF0) >> 4) * 4 + 2] < 0x04) and
((ip[2:2] - 4 * (ip[0] & 0x0F)) -

4 * ((tcp[12] & 0xF0) >> 4) > 69)

(3)

This expression captures anomalously large replies to SSL’s
Heartbeat feature. Such replies might indicate an exploitation of
the Heartbleed vulnerability, but might also be a false-positive if
the size of the reply was justified. One can add other filters and
analysis to make the detection more accurate.

The expression conjoins together various sub-predicates. The
meaning of the first line should be clear from the description in
the previous section: it matches TCP-carried packets originating
from port 443 of an unspecified host. Port 443 is that which usually
listens for SSL connections.

The rest of the expression involves reading specific bytes of the
packet, computing other byte offsets using familiar operators such
as “&”, “>>”, and “*”, and nesting expressions to check the values of
bytes at those offsets. For instance the second line uses the result
of a calculation over the 13th byte in a TCP segment (tcp[12]) to
check a different part of the TCP payload.4

In the remainder of this sectionwe interpret the second line of the
expression to examine a non-trivial example of pcap usage, before
elaborating the syntax and semantics of the language in the next
section. Later in the paper we use the example from this section to
evaluate our equivalence-checking tool for pcap expressions. There
may be different ways to write an expression; for instance the first

4Byte offsets in pcap expressions are zero-indexed.
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line of the above example could be written as:

ip[9] = 0x6 && (ip[6:2] & 0x1fff) = 0 &&
ip[4 * (ip[0] & 0xf) : 2] = 0x1bb

(4)

Let S1 be the innermost compound expression of the second line
of expression (3): “tcp[12] & 0xF0”, which masks the first 4 bits
of the 13th byte of the TCP header. This corresponds to the “Data
Offset” part of the TCP header [16], which indicates where the TCP
payload begins – the TCP header is variable-sized, and one must
calculate the offset of the payload as done in this expression. Let
S2 be “(S1 >> 4) * 4” which provides the byte offset within the
packet where the TCP payload begins. Finally “tcp[S2] = 0x18”
checks that the first byte in the TCP payload consists of the value 24.
At this location in the TCP payload we find the 8-bit type indicator
of the SSL record [11], and the value 24 (or 0x18) indicates that the
TCP segment is carrying an SSL Heartbeat reply [23].

The rest of the expression checks the version of SSL being used
andwhether the size of the TCP segment exceeds 69 bytes. Thus this
expression matches packets that might be involved in Heartbleed-
enabled exfiltration.

3 PCAP EXPRESSIONS
This section presents a formalisation of the pcap language, based on
information obtained from the pcap-filter(7)man page, manual
experimentation using tcpdump, and reading of the target machine
language to which pcap expressions are translated to disambiguate
the contents of the documentation where needed.

We begin with some intuition about pcap expressions, before
defining formal syntax and semantics. Pcap expressions describe
predicates over packets, or “packet filters”. They consist of Boolean
connectives and two types of atoms.

One type of atoms is the matcher. It specifies a constraint on
the structure of the packet, including fields. Expression (1) consists
entirely of a matcher atom. As we saw earlier, one of the pecu-
liarities of pcap expressions is that matcher “atoms” might not be
fully-specified, and thus need to be expanded to give the expression
its full meaning. We describe such an expansion semantics in §3.2.1.

The other type of atom consists of relations over the contents of
the packet. Expression (4) consists entirely of such atoms conjoined
together.

The Boolean connectives (“and”, “or” and “not”) behave as those
of classical logic.5 Negating an expression results in the inversion
of what the derived packet filter accepts and rejects. For instance,
this filter rejects packets that the expression (2) accepts, and accepts
everything that (2) rejects:

not (tcp dst port http)

And the following expression filters for packets headed both to and
from a Web server:

(tcp dst port http) or (tcp src port http)

In the same spirit of brevity by which pcap expressions may contain
implicit clauses, a more compact syntax is provided for the above:

tcp dst or src port http

5The concrete syntax of pcap expressions also allows these to be written as “&&”, “||”
and “!”.

(Filter F )
F ::= A | R | F1 and F2 | F1 or F2 | not F ′

(Relation R )
R ::= E1 > E2 | E1 < E2 | E1 = E2
(Expression E)
E ::= L | P[E ′ :W] | E1 # E2 | len

where:
(Width in bytesW )
W = {1, 2, 4}
(Operator #)
# = {+, −, ×, ÷, &, |, >>, <<}

(Literal L)
L ::= Lstring | Ldec | Lhex
(Protocol P)
P ::= ether | vlan | mpls | ip | ip6

| arp | rarp | icmp | tcp | udp
(Type of entity T )
T ::= host | net | port | portrange | proto
(Direction D)
D ::= src | dst | src_or_dst | src_and_dst
(MatcherM)

M ::= P? D? T ?

(Atom A)

A ::= M V?

(Value V )
V ::= Vstring | Vdec | Vaddress | Vnetwork

Figure 1: Syntax of the pcap language.

3.1 Syntax
This section formalises the syntax of pcap expressions, relative to
which the semantics are given in the next section.

The abstract syntax is given in Fig. 1, which covers a substan-
tial part of the language. It is simplified slightly from the syntax
described in the pcap-filter(7) man page, to exclude some fea-
tures for clarity (e.g., syntactic sugaring such as E1 ≥ E2) and
conciseness. Caper supports the different notations for express-
ing the addresses of networks – i.e., as network prefixes, or using
netmasks – but these are elided in Fig. 1.

Fig. 1 shows the language’s various syntactic classes. The nota-
tion ·? indicates an optional component to a term. For example, an
atom A is formed from a matcherM and an optional value V?.
If the value is present, then it strengthens the matcher (to match
that specific value), otherwise the matcher matches any suitable
value. For example, matcher “ip ⌢⌢” matches any IPv4 address.
The notation ⌢ indicates the absence of an optional component: in
this example the D and T components. For example, the matcher
“ip src_or_dst host” has the exact meaning as the previous example
but includes all components.

We turn to the domain-specific elements of the language next.
The top-level syntactic categories (filters, relations, expressions) are
intuitive and mostly general. Within expressions E, len denotes the
size of the whole packet. P[E ′ :W] is used to identify a segment of
W bytes in the packet, beginning at an offset of E ′ bytes from the
header of protocol P. The interpretation of such an expression is
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conditional upon whether such a header is in its expected location
in the packet. Thus tcp[0 : 4] matches the first four bytes of a TCP
segment; but this is only meaningful if the packet contains a TCP
segment.

The categories of literals L and valuesV are abstracted in Fig. 1;
their opaque description is sufficient for our purposes. The two
categories might appear similar – for example both of them contain
strings of characters, and decimal numerals – but serve different
purposes in the syntax: literals may only appear in expressions, and
values may only appear in matched atoms, and this affects their
interpretation. For example, strings in expressions are interpreted
as the names of fields in a protocol header, while strings in a value
are interpreted to be the name associated with a host, network, or
port.

Finally, the components of matchers may include a protocol P,
direction D, and type T . “Type” here refers to which values are
applicable to a matcher: for example, matchers having type host
may only be applied to host names (strings) or network addresses;
and port may only be applied to well-known port names (also
strings) or port numbers (integers between 0 and 65535).

The pcap language does not have a type system, but there is a
notion of well-formedness of expressions: for example the matcher
“ip ⌢⌢” may only be applied to an IPv4 address value. It would not
be acceptable to apply it to an IPv6 address: the address field of
IPv4 packets is 32-bits wide, while that of an IPv6 packet is 128-bits
wide. The well-formedness relation is not included here since it
is straightforward, but it is included as a check on parsed pcap
expressions in Caper.

3.2 Semantics
The semantics of the pcap language is given in two stages: an expan-
sion semantics (§3.2.1) that rewrites expressions to disambiguate
them, and a bit-vector semantics (§3.2.2) that maps the expanded
expression into bit-vector logic to characterise a predicate over
packets. Then in §4 we describe how the bit-vector semantics is
used for equivalence-checking between pcap expressions, by using
off-the-shelf SMT solvers.

3.2.1 Expansion Semantics. This section describes a function{
⊆ F × F that rewrites pcap filter expressions into “long form”,
making all implicit details explicit.

For an example of how this works, consider the pcap filter ex-
pression “src foo” where “foo” is a host name. Using the notation
from §3.1, this corresponds to an atom (A) “⌢ src ⌢ foo”.
This expression is rewritten in the following steps:

⌢ src ⌢ foo
(i) ⌢ src host foo

(ii) *.
,

rarp src host foo or
arp src host foo or
ip src host foo

+/
-

(iii) *.
,

ether ⌢ proto rarp and rarp src host foo or
arp src host foo or
ip src host foo

+/
-

In step (i) the implicit type (T in Fig .1) host is added, in line with
the convention expressed in the pcap-filter(7) man page. In
step (ii) we fill in the details about which protocols can apply to

“host src foo”, and in step (iii) we specify which protocols can
carry the protocols specified in step (ii).

The information about the rewriting in these steps was extracted
from the pcap-filter documentation. It was also checked with the
implementation,6 particularly when the documentation was un-
clear: then the meaning of pcap expressions was reconstructed from
the machine code to which they were compiled. This led to the
realisation that the meaning of tcp[tcpflags], which extracts the
TCP flags from a TCP header, deviates from expectation since it
excludes two of the flags. Where such deviations were discovered,
Caper was changed to match the behaviour of libpcap.

The function “{” expands the expression fully. Starting with
“src foo” we end up with:7

(ether proto \rarp && rarp src host foo) ||
(ether proto \arp && arp src host foo) ||
(ether proto \ip && ip src host foo)

(5)

Once an expression is fully-expanded, then “{” behaves as the
identity function.

Note that expressions are not necessarily fully-specified when
“{” terminates: for example, “ether ⌢ proto rarp” in step (iii) is in
its final form. This is because fully-specifying atoms might not be
sensible: in this example, the direction (D in Fig .1) does not apply
to the value “rarp” since the latter is a protocol which, unlike a host
or a port, cannot in itself be the source or destination of packets.

The set of protocols might evolve over time: for example at
present there is a push to transition to using IPv6 more on the
public Internet, instead of IPv4. It appears that such changes will
have little effect on “{” beyond the updating of the mapping of
protocol dependencies. This mapping will be described further as
we look at the expansion function in more detail.

In Caper, “{” is defined as the following composition of func-
tions, each carrying out a transformation of the overall expression
until a fixpoint is reached.

{Simp ◦ {Subs ◦ {Dedup ◦ {ImplicitX ◦ {AtomX ◦ {DisjX

The functions DisjX, AtomX and ImplicitX carry out expansion,
while Dedup, Subs and Simp carry out simplification of pcap expres-
sions. The first three functions are described in more detail below;
the last three functions are mostly straightforward, and described
more briefly.

Disjunction expansion:{DisjX. For convenience, in pcap one can
write “host Alpha or Bravo or Charlie”, where Bravo and
Charlie are names, to abbreviate “host Alpha or host Bravo
or host Charlie”. Disjunction expansion simply propagates an
atom’s matcher components to adjacent disjunct atoms that have
undefined matchers.8 For conciseness we only show the key trans-
formation made by this function; Caper defines it for all syntax
phrases of F (Fig. 1):

��
p
��
d

��
t v1 or ⌢⌢⌢ v2 {DisjX

��
p
��
d

��
t v1 or

��
p
��
d

��
t v2

6libpcap version 1.8.1 -- Apple version 67.60.2
7Note that in (5) we backslash-escape \arp, but do not escape it in step (iii): this
is because the former uses actual pcap syntax, whereas the latter uses the simpler
grammar from Fig .1
8This expansion also seems to apply to conjunctions in libpcap, but this tends to
produce impossibly strong predicates, e.g., “src port 50 and 51” is interpreted to
mean “src port 50 and src port 51”.
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p ⌢⌢⌢ {AtomX ⌢⌢ proto p ◀��
p
��
d ⌢ v {AtomX

��
p
��
d host v (a)
if p <

{
vlan,mpls

}
and v addressable to p
or

��
p =⌢��

p ⌢ t v {AtomX
��
p src_or_dst t v (b)
if p <

{
vlan,mpls

}
��
p src_or_dst

��
t v {AtomX

��
p src

��
t v or��

p dst
��
t v

◀

��
p src_and_dst

��
t v {AtomX

��
p src

��
t v and��

p dst
��
t v

◀

⌢
��
d host v {AtomX ether

��
d host v

if v is an Ethernet address
⌢
��
d host v {AtomX ip

��
d host v or

arp
��
d host v or

rarp
��
d host v

(c)

if v is an IPv4 address
or a host name

⌢
��
d port v {AtomX tcp

��
d port v or

udp
��
d port v or

sctp
��
d port v

(d)

if v is a port name
or number

Figure 2: Some of the transformations effected during atom
expansion. The left-hand expression of{AtomX is rewritten
into the right-hand expression, possibly subject to a condi-
tion ( if . . . ) being satisfied.

The notation
��
p indicates a protocol (drawn from P, here ranged

over by p) or an empty component ⌢.

Atom expansion: {AtomX. The next step involves filling the
empty components of atoms as much as possible, as we saw happen
in steps (i) and (ii) in the example at the start of §3.2.1. Fig. 2 shows
some of the rules that are implemented in{AtomX.

Clause (a) in Fig. 2 contributed to step (i) of the earlier example,
and clause (c) contributed to step (ii).

The transformations described in both clauses are conditional: in
both cases, if p is given then it must not be vlan or mpls. Clause (a)
has the additional condition that value v must be interpreted to be
an address to protocol p, or

��
p is empty in which case the transfor-

mation can go through – by default v is then expected by libpcap
to be a host on an IPv4 network.

The conditions of clause (b) are simpler since the matchers for
vlan and mpls are less expressive than those for other protocols.
Using pcap expressions we can query packets for whether they
belong to a VLAN or MPLS network, and which such network
they belong to, by examinig the VLAN or MPLS tag. Thus VLAN
matchers can either be of form “vlan ⌢⌢⌢” or “vlan ⌢⌢ v”.

Clauses marked with ◀ serve to transform expressions into a
canonical form, to enable other transformations.

Clauses (c) and (d) are derived from the following sentence in
the libpcap documentation:

“If there is no proto qualifier, all protocols consistent
with the type are assumed. E.g., ‘src foo’ means ‘(ip
or arp or rarp) src foo’ (except the latter is not legal
syntax), ‘net bar’ means ‘(ip or arp or rarp) net bar’
and ‘port 53’ means ‘(tcp or udp) port 53’.”
– from pcap-filter(7) man page.

This is related to the protocol dependency mapping mentioned
earlier. Protocols and their dependencies can vary over time, and
Caper can be adjusted fairly easily to keep upwith changes since the
set of protocols and their dependencies are encoded prominently
in{AtomX.

Indeed some protocol evolution appears to have already taken
place since the libpcap documentation was written. The docu-
mentation quoted above does not fully agree with the libpcap
implementation, to which ‘port 53’ means ‘(tcp or udp or sctp) port
53’. As mentioned before, the source-to-source pcap expression
transformation in Caper seek to follow the implicit transformation
done by libpcap rather than rely entirely on libpcap’s documen-
tation.

Implicit subformula expansion: {ImplicitX. The last expansion
makes explicit the cross-layer protocol dependencies of pcap ex-
pressions. This expansion contributed to step (iii) of the earlier
example, as well as the remaining steps to reach the fully expanded
expression (5).

The function{ImplicitX starts by gathering the protocols men-
tioned in atom and relation terms (A and R from Fig. 1), and itera-
tively conjoins all the possible protocol dependencies, proceeding
down the layers of the network protocol stack. In so doing, it is
possible that redundant information is added to pcap filters; this is
simplified away during later transformations.

The function{ImplicitX is supported by two functions. The first
is a function that extracts the protocols mentioned in an atom
or relation. For example, for atom (1) this function returns ∅, for
atom (2) it returns

{
tcp
}
, for each relation in expression (4) it returns{

ip
}
, and for the more contrived expression tcp[5] = ip[0] it

returns
{
ip, tcp

}
.

The second function maps protocols to lower-layer protocols
that might encapsulate them. For example in step (iii) above we see
the result of “rarp” being mapped to “ether”.

A pcap expression may override the default dependency map-
ping, but the result might not be sensible. For example, libpcap
accepts the expression:

ip proto \icmp6 (6)

This filters for very unusual traffic: IPv4 packets carrying ICMPv6 [7]
datagrams. In line with libpcap’s behaviour, Caper was altered
to accept such expressions but it emits a warning for the user’s
benefit, in case a different expression was intended.9

Deduplication{Dedup, Subsumption{Subs, and Simplification
{Simp. These transformations are mostly straightforward, but sen-
sitive to the packet-level interpretation of matchers.
9Despite producing a filter for expression (6), libpcap does not produce a filter for
“ip && icmp6”, which suggests that (6) might be a corner case. Caper replicates this
behaviour.
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Simplification involves small changes such as eliminating double-
negations, and finding contradictions which might make subfor-
mulas redundant. Contradictions are not only purely logical – such
as “ip && not ip” – but are also domain-sensitive: e.g., “ip
&& ip6” and “tcp && udp” are both unsatisfiable. Caper de-
tects such contradictions by first mapping each protocol to an
integer associated with the protocol’s network layer – for exam-
ple
{
ip 7→ 3, ip6 7→ 3, udp 7→ 4, tcp 7→ 4

}
. Then conjunctions are

checked for multiple occurrences of the same integer. This trans-
formation is applied after the expression has been simplified, to
avoid the mistake of treating “tcp and tcp” as a contradiction. As
before, vlan and mpls matchers are treated specially: they cannot
contribute to a contradiction since at every occurrence they specify
a fresh encapsulation of the packet constrained by the expression
that follows.

Deduplication removes repeated subformulas, but because of
domain-sensitivity it must heed the subformula’s contents. For
example, “tcp and tcp” is simplified to “tcp” but “vlan and
vlan” is not changed since the second occurrence of vlan is not
redundant: it refers to VLAN-encapsulated packet that is itself
VLAN-encapsulated.10

3.2.2 Bit-Vector Semantics. Starting with a fully-expanded pcap
filter from the previous stage, we give it semantics by mapping the
filter into a formula in bit-vector logic [2]. In particular, we target
the theory of bit-vectors and arrays which was standardised for
implementation in various SMT solvers [17]. We can then give the
formula to a solver to check pcap filters for equivalence: two fil-
ters are equivalent when their SMT-encoded formulas are logically
equivalent.

Our formalisation is centered on a model M that represents a
packet, which is modelled as a function mapping an index to a
byte:M ∈

(
N→ B8

)
. To improve the model’s fidelity we bound its

size from above, thus capturing the observation that packets are
finite. We pick a number mtu ∈ N to be the maximum transmission
unit [15] – the size of the largest possible packet that may cross
the intended network interface. We also bound the size ofM from
below by picking a value min ∈ N to capture the observation that
packets in practice have a minimum size. In Caper we setmin = 64
and mtu = 1514, consistent with the widely-used Ethernet [12]
standard.

As a result of these bounds,M ranges over a finite set of finite
functions mapping indices to bytes, modelling the full set of possible
packets. The SMT solver surveys this set as it attempts to find anM
that refutes semantical properties of pcap expressions – for instance,
that two formulas are equivalent.

The notation M |= ϕ shall be used to mean that the model M
satisfies the SMT formula ϕ. This is a judgement decided by a SMT-
solver, which we use to deduce properties of pcap filter expressions.

We now turn to the mapping from pcap filters (§3.1) to bit-vector
logic. Let ⌜·⌝ denote this mapping, overloading the symbol to map
from the syntactic categories from Fig. 1 to corresponding terms in
bit-vector logic.

10One could argue that, for the sake of consistency, “tcp and tcp” should also denote
a TCP-encapsulated TCP segment, but this is not the interpretation used in libpcap.
For more flexible encapsulation syntax see Kneecap [25].

The mapping is mostly straightforward: logical connectives and
arithmetical operators are mapped to their analogues in the target
logic. Let f ∈ F be a pcap filter expression, and ⌜ f ⌝ be its SMT-
encoded counterpart. This is part of the definition of ⌜·⌝ for filters,
which proceeds in the obvious way:

⌜ f1 and f2⌝ =def ⌜ f1⌝ ∧ ⌜ f2⌝
⌜ f1 or f2⌝ =def ⌜ f1⌝ ∨ ⌜ f2⌝
⌜not f ⌝ =def ¬⌜ f ⌝

The most interesting mappings are those for atoms (A) and expres-
sions (E), and we will focus on these next.

In our semantics, pcap expressions are ultimately turned into
constraints onM . This cannot be seen at the level of filters, shown
above, but can be seen explicitly in the selection of atom semantics
shown in Fig. 3. In that mapping, the parameter i represents the
increase in the offset from the start of M as a side-effect of the
expression being translated; this captures the behaviour of vlan
and mpls that was described in §1.

Expressions (E) are translated into bit-vector expressions in a
mostly straightforward manner. For expressions we extend the
translation to thread a parameter S that accummulates conjunctive
constraints on the dependencies of an expression – for example,
an expression mentioning the protocol ip requires that protocol
to be involved in the packet being filtered. The two clauses below
are a sample showing a simple case – addition – which involves
straightforward recursion through the structure of the expression,
and the most complex type of expression to translate: packet-array
projection. This is complex since it combines a protocol-specific
offset ( ipOffset in the case of ip), adds a constraint to S , and nests
a user-provided expression e to project a value fromM .

⌜e1 + e2⌝ ◁ i, S =def ⌜e1⌝ ◁ i, S + ⌜e2⌝ ◁ i, S

⌜ip[e]⌝ ◁ i, S =def M
(
i + ipOffset + ⌜e⌝

)
◁ i, (S ∪ ip)

Bit-vector dimensioning. For clarity of presentation the above de-
scription did not include a specification of the widths of bit-vector
expressions. Well-formed bit-vector expressions in the target the-
ory must have a definite width. Caper’s mapping into bit-vector
formulas includes this width when it is explicit in the source ex-
pression. For example, P[E : 2] is 16-bits wide (cfW in Fig. 1).
When the width is not immediately known then Caper allows the
width to be undefined – for instance, the width of “17” in the ex-
pression “P[E : 2] + 17”. During a later pass it then propagates
known widths to calculate the undefined widths; thus in the pre-
vious example it encodes “17” as 0x0011 rather than 0x11. When
bit-vector widths are already known, they may be widened further
as needed to accommodate calculations over wider subexpressions.
For example, in the expression “P[E : 2] + P[E : 4]” we widen the
left subexpression to 32-bits from 16-bits in order to carry out the
addition.

Name resolution. Recall that the Web server is unspecified in
filter (2), but should we wish to strengthen the filter for packets to
or from specific hosts then this can easily be accommodated. For
example:

tcp dst port http and ip host www.cis.upenn.edu
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⌜ether ⌢ proto arp⌝ ◁ i =def

(
M
(
i + ethertype

)
·M
(
i + ethertype + 1

))
= 0x0806 ◁ i

⌜vlan ⌢⌢
��
v⌝ ◁ i =def

*....
,

M (i + ethertype ) ·M (i + ethertype + 1) = 0x8100 ∨
M (i + ethertype ) ·M (i + ethertype + 1) = 0x88a8 ∨
M (i + ethertype ) ·M (i + ethertype + 1) = 0x9100

+////
-

◁ i + 4

⌜ip ⌢ proto tcp⌝ ◁ i =def M
(
i + protocol

)
= 0x06 ◁ i

Figure 3: Bit-vector semantics of some atom clauses (A). Each clause specifies a constraint on a segment of the packet, based
on the description of standardised packet formats. The “·” bit-vector operator concatenates anm-bit vector and an n-bit vector
to yield an (m+n)-bit vector. The numeric constants ethertype and protocol are offsets of fields in Ethernet and IPv4 packet
formats respectively. Most clauses preserve the index offset i; vlan is an example of an expression that implicitly increments
the value of i.

During the translation process, libpcap converts the human-readable
name to a network address. We can also provide a network address
instead of a name:

tcp dst port http and ip host 158.130.69.163

An address does not require further resolution: its numeric value is
matched by the filter directly.

Different kinds of names can occur in pcap expressions, and we
look at several examples next. All names are ultimately resolved
into unsigned integers, but the kind of resolution used depends on
what kind of name is being resolved.

Host names such as www.cis.upenn.edu are resolved by calling
getaddrinfo() on POSIX systems. A host name might resolve to
several addresses, and on several networks. In such cases a formula
is turned into a disjunction with one disjunct for each address.
Similarly port names can be resolved by calling getservbyname()
on POSIX systems, which in turn queries the system’s mapping
from port names to numbers.

Other kinds of name occurrences usually do not have a system-
queryable resolution API, but their resolution is usually standard-
ised. For example, the expression “icmp[icmptype] != icmp-echo”
contains three types of names: a protocol (icmp), field (icmptype)
and constant (icmp-echo). The field and constant are mapped using
a simple table that was populated using information extracted from
the documentation of pcap filters. The protocol is resolved into an
offset in the packet. This offset adds to the offsets of lower-layer
protocols that are carrying the ICMP packet.

4 USING THE SEMANTICS
We can use the semantics to answer the following questions:

(1) What does a given pcap expression mean? We can answer
this question by using an implementation of the expansion
semantics described in §3.2.1 to write out the expression in
full, to reveal hidden meaning in the original expression as
we saw in example expression (1).

(2) Are two given pcap expressions related by subsumption – does
one expression capture the packets captured by the other ex-
pression? This is answered by an implementation of the bit-
vector semantics described in §3.2.2, and using a decision
procedure for the target theory.

We say “f2 subsumes f1” if f2 accepts all the packets that
f1 accepts. We encode the problem as follows for an SMT
solver:

M |= ¬ (⌜ f1⌝ −→ ⌜ f2⌝)

If the solver is unable to find a witnessing M then we con-
clude that the non-negated statement holds for all models.

(3) Are two given pcap expressions equivalent – do they capture the
same set of packets? This too is answered using the bit-vector
semantics. It involves proving that the two expressions sub-
sume each other, which corresponds to the following state-
ment:

|= ⌜ f1⌝ ←→ ⌜ f2⌝

5 EVALUATION
All the pcap expressions shown in this paper have been put through
Caper, a new tool that implements a parser for the full pcap lan-
guage and the semantics described in §3.2.1 to expand them into
equivalent pcap expressions. Some pairs of expressions were also
checked for equivalence, by using the semantics described in §3.2.2
to generate SMT problems for which we used Z3 [9] version 4.5.1
as the back-end SMT solver.

The remainder of this section describes equivalences that were
checked using this approach. If two expressions are determined
equivalent by the tool then this is a strong result: the SMT solver
proves a theorem stating that, for all packets π , one expression
accepts π iff the other expression accepts π . SMT solvers can emit
a proof for such a theorem [4], specialised for bit-vector reason-
ing [13] on which we rely heavily in this work. Emitted proofs are
usually not directly usable by humans, but can be imported into
proof assistants [6] for checking or reuse.

We also used this approach to disprove equivalence, such as that
between “vlan || ip” and “ip || vlan”, but this outcome is
arguably less useful in practice than the verification of equivalence
since we cannot yet use counter-models to help the user understand
why two expressions are not equivalent.

The simplest example verified is the equivalence between “ip &&
tcp src port 443” and a manually-rewritten expression (4). This
is a simple but non-obvious rewrite that casts a matcher (M) into a
conjunction of relations (R); moreover this rewrite does not directly
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correspond to the bit-vector formula mapping (§3.2.2) which casts
formulas in terms of packets, not in terms of the ip layer.

A more complex example involved expanding the expression
“tcp” and proving it to be equivalent to the following manually-
rearranged expression using the distributivity laws for proposi-
tional logic:
(ether proto \ip || ether proto \ip6) &&
(ether proto \ip || ip6 proto \tcp) &&
(ip proto \tcp || ether proto \ip6) &&
(ip proto \tcp || ip6 proto \tcp)

The most complex example verified is the equivalence between
expression (3), which encodes a signature for possible Heartbleed-
enabled exfiltration, and the manually-crafted equivalent:

ether proto \ip && ip[9] = 0x6 && (ip[6:2] & 0x1fff) = 0 &&
ip[4*(ip[0] & 0xf):2] = 0x1bb && ip[4*(ip[0] & 0xf) +

(((ip[4*(ip[0] & 0xf)+12]) & 0xf0)>>4)*4] = 0x18 &&
ip[4*(ip[0] & 0xf) + (((ip[4*(ip[0] & 0xf)+12]) &

0xf0)>>4)*4+1] = 0x03 &&
ip[4*(ip[0] & 0xf) + (((ip[4*(ip[0] & 0xf)+12]) &

0xf0)>>4)*4+2] = 0x04 &&
(ip[2:2]-4*(ip[0] & 0x0f))-4*((ip[4*(ip[0] &

0xf)+12] & 0xf0)>>4) > 0x45

The above expression seems contrived when compared to the origi-
nal but it tests various syntactic features of expressions to exercise
the semantics and their implementation in Caper when checking a
real-world pcap filter.

The last equation takes noticeably longer to verify than the first
two. Across 5 runs, the average (arithmetical mean) wall-clock
time, in seconds, of running Z3 to prove the equations was: 0.04s,
0.01s, and 3.99s for each equation respectively. This experiment
was carried out on a 2016 MacBook Pro with 2.9 GHz Intel Core
i5 and 16GB RAM. These timing results are not expected to be
robust or deeply meaningful, but were produced to measure the
relative complexity of proving the different equations using a state-
of-the-art solver as the expressions being equated become more
complex. Future work could survey a collection of real-world pcap
expressions and assess whether, for pairs of equivalent expressions,
the verification time is feasible in a real-world setting.

6 RELATEDWORK
This paper intersects with two closely-related bodies of work: prac-
tical advice on using pcap, and pcap-related work based on formal
methods.

Practical language clarifications. Begel et al. outline the develop-
ment of BPF [3] and Snellman [24] gives more examples of the pcap
language’s rough edges. This paper seeks to create a faithful model
of the pcap language to support existing users through tooling.

Pcap-related formal methods approaches. Jitk [26] seeks to de-
velop correct in-kernel interpreters, that can be used for packet fil-
tering among other uses. It targets the interpretation of the BPF ma-
chine language, to which pcap expressions are compiled, whereas
this paper focuses on the semantics of the pcap expressions them-
selves. Another related work is Kneecap [25], which devises a pcap-
like language and uses it for model-based packet generation. The

Kneecap language has cleaner semantics than pcap expressions
since it allows for arbitrary nesting of protocols and avoids some
of the shortcomings of pcap expressions, but the latter have wide-
spread usage. In this paper we sought to be consistent with the
widely-used language.

7 CONCLUSION
Formalisation is a means to understanding a language, and this
paper sought to model an existing and widely-used language, warts
and all. But formalisation is not sufficiently useful by itself: it is
more useful if it enables formalisation-based implementations of
tools.

This paper sought to use formalisation to achieve practical ben-
efits by developing a tool around the two-stage organisation of
semantics: (i) an expansion semantics to aid the understanding
of terse pcap expressions before they are turned into a filter, and
(ii) bit-vector semantics to compare expressions for equivalence
using off-the-shelf solvers.

One direction for future work involves validating our semantics
against an actual instance of libpcap [1], inspired from the ap-
proach used by Bishop et al. for model-based testing of real-world
implementations [5]. The semantics described in this paper were
extracted from the language’s documentation and implementation
in libpcap, and were tested against Caper to discover inconsisten-
cies between the libpcap and Caper; but more rigorous testing can
help tighten the consistency of the semantics with the libpcap.

Our formalisation consists solely of specification – no theorems
or proofs were given. Another direction for future work involves
formalising a translation of pcap expression to the BPF machine
language [19] and proving this to be behaviour-preserving.
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