
1

The Cryptographic Hash Function RIPEMD-160

Bart Preneel1∗ Hans Dobbertin2 Antoon Bosselaers1

1 Katholieke Universiteit Leuven, ESAT-COSIC

K. Mercierlaan 94, B-3001 Heverlee, Belgium
2 German Information Security Agency

P.O. Box 20 03 63, D-53133 Bonn, Germany

1 Introduction

RIPEMD-160 is a fast cryptographic hash function that is tuned towards soft-
ware implementations on 32-bit architectures. It has evolved from the 256-bit
extension of MD4, which was introduced in 1990 by Ron Rivest [20, 21]. Its main
design feature are two different and independent parallel chains, the result of
which are combined at the end of every application of the compression function.
As suggested by its name, RIPEMD-160 offers a 160-bit result. It is intended
to provide a high security level for the next 10 years or more. RIPEMD-128
is a faster variant of RIPEMD-160, which provides a 128-bit result. Together
with SHA-1, RIPEMD-160 and RIPEMD-128 have been included in the Inter-
national Standard ISO/IEC 10118-3, the publication of which is expected for
late 1997 [17]. The goal of this article is to motivate the existence of RIPEMD-
160, to explain the main design features and to provide a concise description of
the algorithm.

2 Applications of Hash Functions

The main application of hash functions in cryptography is the digital ‘finger-
printing’ of information before applying a digital signature algorithm. Hash
functions have also been used to design Message Authentication Codes or MACs
[1, 18], and for key derivation purposes.
Most applications require from hash functions that they are (2nd) preimage

resistant, i.e., that it is hard to find an input (respectively a 2nd input) hashing
to a given value. For digital signature algorithms, one also typically needs

∗F.W.O. postdoctoral researcher, sponsored by the Fund for Scientific Research — Flanders
(Belgium).

Appeared in CryptoBytes 3(2), pp. 9–14, 1997.
c©1997 RSA Laboratories



2

collision resistance, i.e., that it should be hard to find two distinct inputs with
the same hash result.

3 Hash Function Constructions

Historically, the first designs for hash functions have been based on block ciphers;
several successful proposals are still widely in use. A second approach has been
the use of modular arithmetic. After many failures, it seems that finally a
satisfactory solution has been developed within ISO/IEC SC27 [17]. In order
to obtain a better performance, cryptographers started in the late eighties to
design efficient custom hash functions based on ad hoc design principles. It is
not an understatement to say that designers have typically overestimated the
security of their hash functions; new attacks often forced them to double the
number of operations per input word.
The most popular algorithms from the early nineties were certainly MD4 and

MD5, both designed by R. Rivest [20, 21, 22]. On 32-bit machines, they were
about one order of magnitude faster than any other cryptographic primitive
(such as DES or other hash functions). Both algorithms have been submitted
to the RIPE consortium1, which was an EU-sponsored project active between
’88 and ’92 with as goal to propose a portfolio of recommended integrity prim-
itives based on an open call for algorithms [19]. Its independent evaluation of
MD4 and MD5 led to the conclusion that these hash functions are less secure
than anticipated: for MD4, collisions for 2 rounds out of 3 were found [7], and
collisions for the compression function of MD5 were discovered [8]. As a con-
sequence, the consortium proposed a strengthened version of MD4, which was
called RIPEMD [19]. RIPEMD consists of essentially two parallel versions of
MD4, with some improvements to the shifts and the order of the message words;
the two parallel instances differ only in the round constants. At the end of the
compression function, the words of left and right halves are added to yield a
128-bit result. RIPEMD was believed to be stronger than extended MD4, which
consisted of two parallel versions of MD4 with a 256-bit result [20]. RIPEMD
was used in several European banking projects, but did not enjoy the same
commercial success as MD4 and MD5.

4 Hash Function Cryptanalysis

On January 31, 1992, NIST (National Institute for Standards and Technology,
USA) published in the Federal Register a proposed Secure Hash Standard (SHS)
that contains the description of the Secure Hash Algorithm (SHA) [15]. While

1RIPE stands for RACE Integrity Primitives Evaluation; the consortium members were
C.W.I. (NL) prime contractor, Århus University (DK), KPN (NL), K.U.Leuven (B), Philips
Crypto B.V. (NL), and Siemens AG (D).

Appeared in CryptoBytes 3(2), pp. 9–14, 1997.
c©1997 RSA Laboratories



3

SHA borrows many of its design features from MD4 and MD5, it also has some
remarkable differences in the message processing: instead of reordering message
blocks in the different rounds, they were processed through a linear function,
which at bit level can be described as a shortened cyclic code. Moreover, it has
80 steps compared to 48 for MD4 and 64 for MD5. On July 11, 1994 NIST
announced a revision of FIPS 180, under the name SHA-1, which “corrects a
technical flaw that made the standard less secure than had been thought. The
algorithm is still reliable as a security mechanism, but the correction returns the
SHS to the original level of security” [16]. No further details on the flaw were
made available.
In 1992 Th. Berson tried to cryptanalyze MD5 using differential cryptanaly-

sis [2]. A new cryptanalytic result on MD4 was obtained in 1994 by S. Vaudenay
[24]. One year later, the 2nd author started his successful cryptanalytic work
on the MD4-type hash functions. This resulted in collisions for MD4 [9, 11],
and collisions for the compression function of MD5 [13] and extended MD4 [12].
Moreover, he developed collisions for 2 out of the 3 rounds of RIPEMD [10].
Early 1997 he showed that it is also possible to compute a preimage for 2 rounds
out of 3 for MD4 [14]. The results on RIPEMD were of some concern to the
members of the RIPE consortium, as RIPEMD was designed to withstand the
partial attacks developed by the consortium on MD4 and MD5.
An independent reason to upgrade RIPEMD is the limited resistance against

a brute force collision search attack. P. van Oorschot and M. Wiener demon-
strated in [23] a design for a $10 million collision search machine for MD5 that
could find a collision in 24 days. It is clear that these results extend easily to
any similar hash function with a 128-bit result. Taking into account ‘Moore’s
law’ (the cost of computation and memory is divided by four every three years),
a 128-bit hash-result does not offer sufficient protection for the next ten years.
As a consequence, it was decided to upgrade RIPEMD. RIPEMD-128, with a

128-bit result was designed as a plug-in substitute for RIPEMD, while RIPEMD-
160 was intended to provide long term security (10 years or more) with a 160-
bit result. In addition, it was decided to stay as close as possible to RIPEMD,
in order to capitalize on the evaluation effort for this algorithm. Moreover,
all design criteria and evaluation results should be public. Finally, note that
both designs are rather conservative: RIPEMD-128 has four double rounds, and
RIPEMD-160 has five double rounds, while breaking three double would require
a substantial improvement of existing cryptanalytic techniques. This means that
RIPEMD-160 can provide the long term security required for digital signatures;
we believe that this is worth the small penalty paid in terms of performance.

5 Description of RIPEMD-160

Like all MD4-variants, RIPEMD-160 operates on 32-bit words. Its primitive
operations are:

Appeared in CryptoBytes 3(2), pp. 9–14, 1997.
c©1997 RSA Laboratories



4

• left-rotation (or “left-spin”) of words;
• bitwise Boolean operations (AND, NOT, OR, exclusive-OR);
• two’s complement modulo 232 addition of words.
RIPEMD-160 compresses an arbitrary size input string by dividing it into

blocks of 512 bits each. Each block is divided into 16 strings of 4 bytes each,
and each such 4-byte string is converted to a 32-bit word using the little-endian
convention, which is a.o. used on the Intel 80x86 architecture; MD4, MD5 and
RIPEMD use the same convention, while SHA-1 uses the big-endian convention.
In order to guarantee that the total input size is a multiple of 512 bits, the

input is padded in the same way as for all the members of the MD4-family: one
appends a single 1 followed by a string of 0s (the number of 0s lies between 0 and
511); the last 64 bits of the extended input contain the binary representation of
the input size in bits, least significant byte first.
The result of RIPEMD-160 is contained in five 32-bit words, which form the

internal state of the algorithm. The final content of these five 32-bit words is
converted to a 160-bit string, again using the little-endian convention.
This state is initialized with a fixed set of 5 32-bit words, the initial value.

The main part of the algorithm is known as the compression function: it com-
putes the new state from the old state and the next 16-word block. The com-
pression function consists of five parallel rounds, each containing 16 steps. The
total number of steps is thus 5×16×2 = 160, compared to 3×16 = 48 for MD4
and 4 × 16 = 64 for MD5. First, two copies are made from the old state (five
left and right registers of 32-bits). Both halves are processed independently.
Each step computes a new value for one of the registers based on the other
four register and one message word. At the end of the compression function,
we compute the new state by adding to each word of the old state one register
from the left half and one from the right half (see Figure 1). Pseudo-code for
RIPEMD-160 is given in Appendix A.

1. Operations in one step. A := (A + f(B,C,D) +X +K)¿s + E and
C := C¿10. Here ¿s denotes cyclic shift (rotation) over s bit positions.

2. Ordering of the message words. Take the following permutation ρ:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ρ(i) 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8

Further define the permutation π by setting π(i) = 9i+5 (mod 16). The
order of the message words is then given by the following table:

Line Round 1 Round 2 Round 3 Round 4 Round 5

left id ρ ρ2 ρ3 ρ4

right π ρπ ρ2π ρ3π ρ4π

Appeared in CryptoBytes 3(2), pp. 9–14, 1997.
c©1997 RSA Laboratories



5

RIPEMD-160 derives its strength from a judicious choice of the parameters,
combined with the fact that the processing of the two halves is much more
different than for RIPEMD: the order of the message blocks in the two iterations
is completely different and the order of the Boolean functions is reversed.
The operation for RIPEMD-160 on the A register is related to that of MD5

(but five words are involved); the rotate of the C register has been added to
avoid the MD5 attack which focuses on the most significant bit [8]. SHA-1 has
two rotates as well, but in different locations. The value of 10 for the C register
was chosen since it is not used for the other rotations.
The permutation of the message words of RIPEMD was designed such that

two words that are ‘close’ in round 1-2 are far apart in round 2-3 (and vice
versa). This principle has been extended to RIPEMD-160, but it required a
small modification to the permutation ρ. The permutation π was chosen such
that two message words which are close in the left half will always be at least
seven positions apart in the right half.
For the Boolean functions, it was decided to eliminate the majority func-

tion because of its symmetry properties and a performance disadvantage. The
Boolean functions are now the same as those used in MD5. As mentioned above,
the Boolean functions in the left and right half are used in a different order.
The design criteria for the shifts are the following:

• the shifts are chosen between 5 and 15 (too small/large shifts are consid-
ered not very good, and a choice larger than 16 does not help much);

• every message block should be rotated over different amounts, not all of
them having the same parity;

• the shifts applied to each register should not have a special pattern (for
example, the total should not be divisible by 32);

• not too many shift constants should be divisible by four.

Note that the design decisions require a compromise: it is not possible to make
a good choice of message ordering and shift constants for five rounds that is also
‘optimal’ for three rounds out of five.

6 Performance

In this section we compare the performance of RIPEMD-160, RIPEMD-128,
SHA-1, MD5, and MD4. Implementations were written in Assembly language
optimized for the Pentium processor (90 MHz); the optimizations are tuned
to make use of the instruction-level parallelism of this processor. In spite of
their serial design, the algorithms can still make use of this feature. More
implementation details concerning the MD4-family of hash functions can be
found in [3, 5, 6]. The relative speeds coincide more or less with predictions

Appeared in CryptoBytes 3(2), pp. 9–14, 1997.
c©1997 RSA Laboratories



6

based on a simple count of the number of operations. RIPEMD-160 is about
15% slower than SHA-1 and four times slower than MD4. On a big-endian
RISC machine, the difference between SHA-1 and RIPEMD-160 will be slightly
larger. Optimized C implementations are a factor of 2.2. . . 2.6 slower.

Table 1: Performance of several MD4-based hash functions on a 90 MHz Pen-
tium

algorithm performance (Mbit/s)
Assembly C

MD4 190.6 81.4
MD5 136.2 59.7
SHA-1 54.9 21.2
RIPEMD-128 77.6 35.6
RIPEMD-160 45.3 19.3

7 Status of RIPEMD-160

RIPEMD-160 has been put in the public domain by its designers so that anyone
can use it. Portable C source code and test values are available at:
http://www.esat.kuleuven.ac.be/~bosselae/ripemd160.
We invite the reader to explore the security of RIPEMD-160. We envisage

that in the next years it will become possible to attack one of the two lines and
up to three rounds of the two parallel lines, but that the combination of the two
parallel lines will resist attacks.

References

[1] M. Bellare, R. Canetti, H. Krawczyk, “Keying hash functions for mes-
sage authentication,” Advances in Cryptology, Proceedings Crypto’96,
LNCS 1109, N. Koblitz, Ed., Springer-Verlag, 1996, pp. 1–15. Full version:
http:// www.research.ibm.com/security/.

[2] T. Berson, “Differential cryptanalysis mod 232 with applications to MD5,”
Advances in Cryptology, Proc. Eurocrypt’92, LNCS 658, R.A. Rueppel,
Ed., Springer-Verlag, 1993, pp. 71–80.

[3] A. Bosselaers, R. Govaerts, J. Vandewalle, “Fast hashing on the Pentium,”
Advances in Cryptology, Proceedings Crypto’96, LNCS 1109, N. Koblitz,
Ed., Springer-Verlag, 1996, pp. 298–312.

Appeared in CryptoBytes 3(2), pp. 9–14, 1997.
c©1997 RSA Laboratories



7

[4] A. Bosselaers, H. Dobbertin, B. Preneel, “The RIPEMD-160 cryptographic
hash function,” Dr. Dobb’s Journal, Vol. 22, No. 1, January 1997, pp. 24–
28.

[5] A. Bosselaers, R. Govaerts, J. Vandewalle, “SHA: a design for parallel archi-
tectures?,” Advances in Cryptology, Proceedings Eurocrypt’97, LNCS 1233,
W. Fumy, Ed., Springer-Verlag, 1997, pp. 348–362.

[6] A. Bosselaers, “Even faster hashing on the Pentium,” Presented
at the rump session of Eurocrypt’97, Konstanz, Germany, May
12–15, 1997, and updated on November 13, 1997. Available as
ftp://ftp.esat.kuleuven.ac.be/pub/COSIC/bosselae/pentiumplus.ps.gz.

[7] B. den Boer, A. Bosselaers, “An attack on the last two rounds of MD4,”
Advances in Cryptology, Proc. Crypto’91, LNCS 576, J. Feigenbaum, Ed.,
Springer-Verlag, 1992, pp. 194–203.

[8] B. den Boer, A. Bosselaers, “Collisions for the compression function of
MD5,” Advances in Cryptology, Proc. Eurocrypt’93, LNCS 765, T. Helle-
seth, Ed., Springer-Verlag, 1994, pp. 293–304.

[9] H. Dobbertin, “Alf swindles Ann,” Cryptobytes, Vol. 1, No 3, 1995, p. 5.

[10] H. Dobbertin, “RIPEMD with two-round compress function is not colli-
sionfree,” Journal of Cryptology, Vol. 10, No. 1, 1997, pp. 51–69.

[11] H. Dobbertin, “Cryptanalysis of MD4,” Fast Software Encryption,
LNCS 1039, D. Gollmann, Ed., Springer-Verlag, 1996, pp. 53–69.

[12] H. Dobbertin, “Cryptanalysis of MD4,” submitted to Journal of Cryptol-
ogy.

[13] H. Dobbertin, “The status of MD5 after a recent attack,” Cryptobytes,
Vol. 2, No 2, 1996, pp. 1, 3–6.

[14] H. Dobbertin, “The first twp rounds of MD4 are not one-way,” Fast Soft-
ware Encryption, LNCS, Springer-Verlag, 1998, to appear.

[15] FIPS 180, “Secure Hash Standard,” NIST, US Department of Commerce,
Washington D.C., May 1993.

[16] FIPS 180-1, “Secure Hash Standard,” NIST, US Department of Commerce,
Washington D.C., April 1995.

[17] ISO/IEC 10118, “Information technology – Security techniques – Hash-
functions, Part 1: General (IS, 1994); Part 2: Hash-functions using an
n-bit block cipher algorithm,” (IS, 1994); Part 3 Dedicated hash-functions
(IS, 1997); Part 4 Hash-functions using modular arithmetic, (FCD, 1997).

Appeared in CryptoBytes 3(2), pp. 9–14, 1997.
c©1997 RSA Laboratories



8

[18] B. Preneel, P.C. van Oorschot, “MDx-MAC and building fast MACs
from hash functions,” Advances in Cryptology, Proceedings Crypto’95,
LNCS 963, D. Coppersmith, Ed., Springer-Verlag, 1995, pp. 1–14.

[19] RIPE, “Integrity Primitives for Secure Information Systems. Final Re-
port of RACE Integrity Primitives Evaluation (RIPE-RACE 1040),”
LNCS 1007, Springer-Verlag, 1995.

[20] R.L. Rivest, “The MD4 message digest algorithm,” Advances in Cryptol-
ogy, Proc. Crypto’90, LNCS 537, S. Vanstone, Ed., Springer-Verlag, 1991,
pp. 303–311.

[21] R.L. Rivest, “The MD4 message-digest algorithm,” Request for Comments
(RFC) 1320, Internet Activities Board, Internet Privacy Task Force, April
1992.

[22] R.L. Rivest, “The MD5 message-digest algorithm,” Request for Comments
(RFC) 1321, Internet Activities Board, Internet Privacy Task Force, April
1992.

[23] P.C. van Oorschot, M.J. Wiener, “Parallel collision search with application
to hash functions and discrete logarithms,” Proc. 2nd ACM Conference on
Computer and Communications Security, ACM, 1994, pp. 210–218.

[24] S. Vaudenay, “On the need for multipermutations: cryptanalysis of MD4
and SAFER,” Fast Software Encryption, LNCS 1008, B. Preneel, Ed.,
Springer-Verlag, 1995, pp. 286–297.

Appeared in CryptoBytes 3(2), pp. 9–14, 1997.
c©1997 RSA Laboratories



9

A Pseudo-code for RIPEMD-160

All operations are defined on 32-bit words. First we define all the constants and
functions.

RIPEMD-160: definitions

nonlinear functions at bit level: exor, mux, -, mux, -

f(j, x, y, z) = x⊕ y ⊕ z (0 ≤ j ≤ 15)
f(j, x, y, z) = (x ∧ y) ∨ (¬x ∧ z) (16 ≤ j ≤ 31)
f(j, x, y, z) = (x ∨ ¬y)⊕ z (32 ≤ j ≤ 47)
f(j, x, y, z) = (x ∧ z) ∨ (y ∧ ¬z) (48 ≤ j ≤ 63)
f(j, x, y, z) = x⊕ (y ∨ ¬z) (64 ≤ j ≤ 79)

added constants (hexadecimal)

K(j) = 00000000x (0 ≤ j ≤ 15)
K(j) = 5A827999x (16 ≤ j ≤ 31) b230 ·

√
2 c

K(j) = 6ED9EBA1x (32 ≤ j ≤ 47) b230 ·
√
3 c

K(j) = 8F1BBCDCx (48 ≤ j ≤ 63) b230 ·
√
5 c

K(j) = A953FD4Ex (64 ≤ j ≤ 79) b230 ·
√
7 c

K ′(j) = 50A28BE6x (0 ≤ j ≤ 15) b230 · 3
√
2 c

K ′(j) = 5C4DD124x (16 ≤ j ≤ 31) b230 · 3
√
3 c

K ′(j) = 6D703EF3x (32 ≤ j ≤ 47) b230 · 3
√
5 c

K ′(j) = 7A6D76E9x (48 ≤ j ≤ 63) b230 · 3
√
7 c

K ′(j) = 00000000x (64 ≤ j ≤ 79)

selection of message word

r(j) = j (0 ≤ j ≤ 15)
r(16..31) = 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8

r(32..47) = 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12

r(48..63) = 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2

r(64..79) = 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13

r′(0..15) = 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12

r′(16..31) = 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2

r′(32..47) = 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13

r′(48..63) = 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14

r′(64..79) = 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11

amount for rotate left (rol)

Appeared in CryptoBytes 3(2), pp. 9–14, 1997.
c©1997 RSA Laboratories



10

s(0..15) = 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8

s(16..31) = 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12

s(32..47) = 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5

s(48..63) = 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12

s(64..79) = 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6

s′(0..15) = 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6

s′(16..31) = 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11

s′(32..47) = 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5

s′(48..63) = 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8

s′(64..79) = 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11

initial value (hexadecimal)

h0 = 67452301x; h1 = EFCDAB89x; h2 = 98BADCFEx;

h3 = 10325476x; h4 = C3D2E1F0x;

Padding is identical to that of MD4 and MD5 [20, 21, 22]. The message
after padding consists of t 16-word blocks that are denoted with Xi[j], with 0
≤ i ≤ t − 1 and 0 ≤ j ≤ 15. The symbol denotes addition modulo 232

and rols denotes cyclic left shift (rotate) over s bit positions. The pseudo-code
for RIPEMD-160 is then given below; an outline of the compression function is
given in Figure 1. The final output string then consists of the concatenatation
of h0, h1, h2, h3, and h4 after converting each hi to a 4-byte string using the
little-endian convention.

RIPEMD-160: pseudo-code

for i := 0 to t− 1 {
A := h0; B := h1; C := h2; D = h3; E = h4;

A′ := h0; B
′ := h1; C

′ := h2; D
′ = h3; E

′ = h4;

for j := 0 to 79 {
T := rols(j) (A f(j, B,C,D) Xi[r(j)] K(j)) E;

A := E; E := D; D := rol10(C); C := B; B := T ;

T := rols′(j) (A
′ f(79− j, B′, C ′, D′) Xi[r

′(j)] K ′(j)) E′;

A′ := E′; E′ := D′; D′ := rol10(C
′); C ′ := B′; B′ := T ;

}
T := h1 C D′; h1 := h2 D E′; h2 := h3 E A′;

h3 := h4 A B′; h4 := h0 B C ′; h0 := T ;

}

Appeared in CryptoBytes 3(2), pp. 9–14, 1997.
c©1997 RSA Laboratories



11

h0

?

?

q

h1

?

?

q

h2

?

?

q

h3

?

?

q

h4

?

?

q

? ?? ?? ?? ?? ?

f5, K5Xρ4(i) -

?????

f4, K4Xρ3(i) -

?????

f3, K3Xρ2(i) -

?????

f2, K2Xρ(i) -

?????

f1, K1Xi
-

?????

f1, K
′
5

Xρ4π(i)¾

?????

f2, K
′
4

Xρ3π(i)¾

?????

f3, K
′
3

Xρ2π(i)¾

?????

f4, K
′
2

Xρπ(i)¾

?????

f5, K
′
1

Xπ(i)¾

?????

- ¾

- ¾

- ¾

- ¾

- ¾

?

h0

?

h1

?

h2

?

h3

?

h4

Figure 1: Outline of the compression function of RIPEMD-160. Inputs are a
16-word message block Xi and a 5-word chaining variable h0h1h2h3h4, output
is a new value of the chaining variable.

Appeared in CryptoBytes 3(2), pp. 9–14, 1997.
c©1997 RSA Laboratories



12

B Test Values for RIPEMD-160

Hash of "" =

0x9c1185a5c5e9fc54612808977ee8f548b2258d31

Hash of "a" =

0x0bdc9d2d256b3ee9daae347be6f4dc835a467ffe

Hash of "abc" =

0x8eb208f7e05d987a9b044a8e98c6b087f15a0bfc

Hash of "message digest" =

0x5d0689ef49d2fae572b881b123a85ffa21595f36

Hash of "abcdefghijklmnopqrstuvwxyz" =

0xf71c27109c692c1b56bbdceb5b9d2865b3708dbc

Hash of "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" =

0x12a053384a9c0c88e405a06c27dcf49ada62eb2b

Hash of "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789" =

0xb0e20b6e3116640286ed3a87a5713079b21f5189

Hash of 8 times "1234567890" =

0x9b752e45573d4b39f4dbd3323cab82bf63326bfb

Hash of 1 million times "a" =

0x52783243c1697bdbe16d37f97f68f08325dc1528

Appeared in CryptoBytes 3(2), pp. 9–14, 1997.
c©1997 RSA Laboratories


