
Using Linkability Information to Attack
Mix-Based Anonymity Services ?

Stefan Schiffner1 and Sebastian Clauß2

1 K.U.Leuven, ESAT/SCD/COSIC and IBBT
Kasteelpark Arenberg 10

B-3001 Leuven-Heverlee, Belgium
Stefan.Schiffner@esat.kuleuven.be

2 Technische Universität Dresden
Institute of Systems Architecture

D-01062 Dresden, Germany
Sebastian.Clauss@tu-dresden.de

Abstract. There exist well established models for anonymity focusing
on traffic analysis, i. e., analysing properties of single messages as, e. g.,
timing. However there is only little work done that use linkability in-
formation, that is information about the probability that two messages
have been sent by the same sender.
In this paper we model information about linkability between messages
as a weighted graph. We show lower and upper bounds with regards
to the usefulness of linkability information for matching messages to
senders. In addition to that we present simulation results, showing to
which extent a matching of messages to senders is possible by using
linkability information with different grades of noise.

1 Introduction

The number of applications and services on the Internet that enable or even
require the user to create a user account increases rapidly. By offering user
accounts, services try to achieve customer retention in a positive as well as in a
negative sense. More precisely, providers are able to offer user-specific services,
but they might also trace users, in order to place customized advertisements
or even to deploy a discriminatory pricing model. Also, with regard to recent
privacy scandals, service providers might aim for less personal data in their
databases to avoid recourse receivables from customers in the case of data loss.

Privacy-enhancing identity management (see e. g. [1]) is being developed in
order to protect users from overly greedy data collectors, but many services need
? This work was supported by the Integrated Projects IST-015964 AEOLUS on Algo-

rithmic Principles for Building Efficient Overlay Computers and ICT-2007-216483
PrimeLife on Privacy and Identity Management in Europe for Life.The information
in this document reflects only the authors’ views, is provided as is, and no guarantee
or warranty is given that the information is fit for any particular purpose. The user
thereof uses the information at its sole risk and liability.

a minimal amount of data to actually serve their customers. This leads to the
problem that users actually do reveal personal data, which might be analyzed
by the service provider. An identity management system needs to estimate how
much a service provider can learn from a user’s messages in order to assist the
user in choosing the least privacy compromising data for a given purpose.

Recently several attempts have been made to define and formalize the notions
of anonymity [2,3] and unlinkability [4,5]. Most of the models are only formulated
for communication scenarios.

In this paper we show how information about linkability between messages
(gathered, e. g., by a service provider from knowledge of the content of messages)
can be used to reduce sender anonymity beyond what is possible by traffic analy-
sis alone. We present a model where prior knowledge learned from network traffic
can be integrated in a “layer-combining model”. We simulate such a model and
show analytical lower and upper bounds for the attacker’s success rate, and we
show under which conditions the attacker can breach the user’s privacy.

In the next section we summarize related work on this topic. We describe
our model in the section thereafter. In Sect. 4 we present our attack. Finally, in
Sect. 5 we provide a conclusion on the results of this paper and briefly discuss
issues open to further research.

2 Related Work

In this paper we discuss how noisy linkability information can be utilized to
attack sender anonymity. Therefore, we focus on specifying a connection between
information gathered by traffic analysis and linkability information gathered
elsewhere.

First we need to model an anonymity system at the network layer, so that we
can model the information an attacker obtains by observing this system. Over
the past couple of years, much research has been done on aspects of anonymity
with regards to network layer anonymity systems. Basic concepts of anonymity
systems have been proposed [6,7] and enhanced in various ways. Systems, which
proved to be practically usable on the Internet, e. g., Web mixes [8] or Tor [9]
are based more or less on Chaum’s Mixes [6]. Various attacks on such systems
have been discussed, e. g. [10]. Since we focus on specifying a connection between
anonymity properties on the network layer and linkability information gathered
elsewhere, we do not emphasize a sophisticated traffic analysis model here. How-
ever, we want to keep close to well established models. Hence, the network-layer
part of the model we describe in Sect. 3 is based on Chaum’s Mixes [6].

Linkability aspects with regards to user profiles have been discussed not only
in the course of privacy-enhancing identity management systems, e. g. [11,12],
but as well with regards to statistical databases, e. g. [13,14]. In this paper we
abstract from the derivation of linkability information. Similar to [4], we just
assume that there is information about the fact whether pairs of messages have
been sent by the same sender or not, which, e. g., might be derived from the
contents of the messages sent over the network-layer anonymity system.

Recently, some aspects regarding the connection between information gath-
ered from observing an anonymity system on the network layer and linkability
information have been researched. In [11,12], Clauß and Schiffner focus on mod-
elling knowledge gained from attributes of user profiles, but information gained
by traffic analysis is not explicitly incorporated in this model. In [15], Dı́az et
al. calculate an example for combining information from network layer and ap-
plication layer. Finally, in [16], Dı́az et al. simulate a social network setting. In
this setting, they calculate anonymity of users of the social network based on a
combination of information gained by observations of the network layer and in-
formation gained from the known social network graph. From their simulations,
they derive conclusions about relations between profiles, size of network etc. to
anonymity of users. They especially focused on how much one can learn from
these profiles depending on their quality, i. e., their expressiveness. In contrast
to this work, we abstract from the source of profile information and model this
information as a weighted graph where every node is a message and every edge
is a score representing the probability that the two messages are from the same
user or not.

Furthermore, attacks have been presented that gain from longterm traffic
analysis, especially from evaluating the natural behavior of users with regards
to leaving and joining the system. Such attacks are, e. g., intersection attacks, like
the attack recently presented by Berthold et al. with regards to data retention
[17], and the hitting-set attack [10] by Kesdogan and Pimenidis. In contrast to
these we focus on a single round of a batch mix where we can assume that the
user set stays the same during the whole attack.

3 Model Description

When Internet users communicate with service providers, they often reveal per-
sonal information. A service provider can use this information to build up user
profiles, that is all kinds of data a service provider can collect about a user.
Some of these profiles might be linkable with a certain probability, i. e., the ser-
vice provider can guess that these profiles belong to the same user. In this section
we first explain our model, which is later on formalized.

We assume a set of users who send their messages to a single service provider,
while a batch mix is obfuscating the relation between senders and messages. The
service provider is considered as the attacker, who wants to de-anonymize his
users, i. e., he aims at a complete mapping of messages to users3. Naturally,
he has access to the content of the messages. We further assume that he gains

3 In our model, a user is an entity which can send messages. The attacker can distin-
guish users by observing senders on the network layer. With regards to information
about linkability between messages on the application layer, we do not explicitly
model users by their profiles. We just assume that there exists information about
the fact whether pairs of messages have been sent by the same sender or not, which,
e. g., might be derived from the contents of the messages sent over the network-layer
anonymity system.

additional information by observing all links in the network, but he is not able to
observe the mixing process of the messages. Furthermore the system is assumed
to be closed, i. e., all messages are transmitted between nodes within the system
and there are no messages sent/received to/from outside of the system. Fig. 1
illustrates our model.

Users

Anon Service

Service Provider

Fig. 1. The attacker’s view on the system. Users (squares on the left) send messages
(circles) to an anonymity service. The service provider on the right hand side receives
these anonymized messages and may analyze the content of the messages.

In the following paragraphs we formalize our model. It contains a set of users
U = {u1, . . . , um},m ∈ N,m ≥ 1, and sets of messages cu1 , . . . , cum , where cu

consists of the messages user u has sent. Furthermore, in our model we assume a
perfect anonymizer that obfuscates the relation between senders and messages.
Finally, we assume a service provider which receives all messages sent by the
users.

With respect to the (anonymized) network layer, the service provider can
observe the number of messages that a user u has sent, cardinality |cu|. This
is the type of information an attacker can learn from observing the network
traffic of a perfect batch mix implementation, where all messages sent within
the system form one single batch.

Clusterings and Number of Clusterings. With slight abuse of notation we will use
clusterings of the set of messages to describe intermediate results of the attack,
where a cluster ci is not necessarily assigned to a user ui, since the attacker can
often assume that messages are from the same sender but not from which. A
clustering is defined as follows:

Definition 1 (clustering). A set of sets C = {c1, . . . , cm},m ∈ N, is called
clustering of a set S if and only if S =

⋃m
i=1 ci and ∀ci, cj with i 6= j: ci∩cj = ∅.

Informally speaking, that is, sorting all elements of a set in different classes,
where every element can only be member of exactly one class.

For our aims, we are interested in the number of different clusterings of a set
S, n = |S| =

∑m
i=1 |ci|, under the condition that the clusters’ cardinalities are

given. This number can be calculated as follows:

(
n
|c1|

)
·
(
n−|c1|
|c2|

)
· . . . ·

(n−
Pn−1

i=1 |ci|
|cm|

)
=

∏m
k=1

(n−
Pk−1

i=1 |ci|
|ck|

)
= n!Qm

i=1 |ci|! (1)

Figuratively speaking, for the first (without loss of generality) partitioning
we start by choosing the elements of the first cluster (c1) from all n elements.
For the second partitioning now only n − |c1| elements are left to choose from
and so on.

Complexity. As one can see from (1), the number of possible clusterings with
regard of the order of clusters becomes huge even for small examples. Without
additional knowledge, each of these clusterings could represent the correct system
state. Thus, even if we can in principle calculate the probability of a state, it is
extremely time-consuming, and therefore practically not feasible, to iterate over
all states to find the most likely. Therefore, in Sect. 4 we present a simulation
that uses simulated annealing in order to find a good, i. e., a likely system state.

The Random Attacker (Lower Bound). The random attacker is an attacker that
randomly maps messages to senders, but only takes the known cluster sizes into
account. Given a set of messages S = {s1, . . . , sn}, a clustering C = {c1, . . . , cm}
of S, a hidden function f : S 7→ C that maps every message to its actual cluster,
and f ′ : S 7→ C which describes the random guess of the attacker for f , we
can calculate the expected number of messages the attacker guesses correctly.
Given an urn filled with coloured balls where the number of balls of each colour
is known, then the number of balls of a certain colour in a snap sample of a
given size follows a multivariante hypergeometric distribution. If all messages of
the same sender are seen as balls of the same colour, the number of messages
allocated to a certain cluster ci, that is messages that are actually sent by user ui

in a snap sample follows this distribution. The mean of the number of messages
belonging to cluster ci in a sample a of size |a| is then |a|∗|ci|

n .
Without loss of generality, we assume that the attacker first draws a sample

of size |c1|, then |c2| and so on in order to construct f ′. The expected number
of correctly guessed mappings for c1, i. e., the mean of the number of guessed
messages which really belong to c1, is thus |c1|∗|c1|

n . For the second sample, the
choice has narrowed down to |c2| out of n−|c1| and we have to take into account
that on average |c1|∗|c2|

n messages of cluster c2 are mapped to c1 in f ′. That is, the

expected number of correctly mapped messages in f ′ for c2 is |c2|∗(|c2|− |c1|∗|c2|
n)

n−|c1| .
Analogous, the number of correctly guessed messages can be described for c3 to
cn.

More generally, the expected number of correctly guessed messages in f ′ for

ci is E(ci) =
|ci|∗

|ci|−

(Pi−1
j=1 |cj |)∗ci

n

!
n−(Pi−1

j=1 |cj |)∗|ci|
. By factoring |ci| out of the numerator and

n out of the denominator we derive E(ci) = |ci|2
n .

The sum of all E(ci) is the expected number of correctly guessed messages
for a random attacker:

ERandom =
∑
(C)

|ci|2

n

Beyond these network layer observations, the service provider can analyze the
message content in order to “link” messages, i. e., to estimate whether pairs of
messages have been sent by the same user or not. Without such content analysis,
any clustering with the correct cardinalities is possible and equally likely.

The Perfect Attacker (Upper Bound). A perfect attacker, that is an attacker
that knows exactly which messages are from the same sender, might even not
be able to map all messages to the right sender. Even though he has a perfect
clustering, he can not distinguish between two clusters of the same size and thus
he can only randomly map the clusters of the same size to the senders that sent
the corresponding number of messages.

The multiplicity of a cluster size is the number of clusters of this size. For-
mally, given the multiplicity multi of the size of cluster |ci| and the cluster sizes
|ci|, we can calculate the expected number of correctly assigned messages of a
perfect attacker Eperf.

Eperf =
∑
(C)

|ci|
multi

Soundness of Lower and Upper Bound. Since the random attacker should never
be more successful than the perfect attacker, we need to show that the lower
bound is always smaller or equal to the upper bound. The multiplicity multi

of the cluster size ci is always smaller or equal to n
|ci| , since the sum of all

cluster sizes is n. Thus, ERandom =
∑

(C)
|ci|2

n =
∑

(C)
|ci|

n/|ci| ≤
∑

(C)
|ci|

multi
. Since

equality holds only for multi = n
|ci| , a random attacker can achieve as much as a

perfect attacker iff all clusters are of equal size. Otherwise, he is less successful.
Note that the perfect attacker indeed has the choice between less states than
the random attacker, since he will never assign messages sent from one single
sender to different senders. Nevertheless, in case of equal cluster sizes the perfect
attacker either assigns all messages sent by a given user correctly to this user,
or he assigns all messages of this user to another user. This leads to the same
expected number of correctly assigned messages as for a random attacker, even
though the number of possible states is much smaller for the perfect attacker.

Fig. 2. Overview of the experimental setting (gray arrows: simulation, black arrows:
attacker’s behavior)

4 Simulation and Results

In this section we present our simulation method and how we model the be-
havior of the attacker. In Fig. 2 our experimental setting is sketched. From the
knowledge gained from observation of the network layer, the attacker derives
the cluster sizes. Furthermore, by analyzing the message content, he derives a
weighted graph that represents the knowledge about which messages were proba-
bly sent by the same sender. Since we want to abstract from the concrete process
of gaining this knowledge by content analysis, we run the attack with the origi-
nal graph plus noise (circle). The following pseudocode shows the steps for one
simulation round.

SystemState sys = generate(message number n, cluster sizes
min,max,dist)
SystemState noisy = addNoise(s,d)
Clusters c = cluster(noisy)
for SystemState i = allPossibleStates(c) do

compare i and sys
end for

Initialization. The system state (see Fig. 2) is a random mapping of messages
to senders with a given total number of messages n, given minimal and maximal
number of messages per sender. Two senders might have sent either the same
number of messages, or the number of messages differs in at least a given distance
dist. Furthermore the messages are organized in a graph where a message si is

connected to another message sj with a weight 1 iff the two messages have been
sent by the same sender, otherwise with the weight 0.4

In the next step we add noise in order to model the uncertainty of the at-
tacker. Therefore, for every edge of the graph a random number r is chosen from
a zero-mean Gaussian distribution. If the edge’s weight was zero, it is replaced
by r. If the edge’s weight was 1, is is replaced by r + d, where d is a noise
distance5. Hence the resulting distribution for the former zero-weighted edges
becomes a zero-mean Gaussian distribution. For the former one-weighted edges
the resulting distribution becomes a Gaussian distribution with its mean at the
noise distance.

Clustering. In this step an optimal clustering is needed, i. e., a clustering where
messages that are strongly connected in the graph are assigned to the same
clusters. As fitness function we use the average fitness of all clusters, where the
fitness of a cluster is the sum of all edges within the cluster. In order to cluster
the graph we use simulated annealing [18], since we can guess a good starting
solution and the change of the fitness function is fast calculable. Furthermore
the algorithm is easy to adapt to fixed cluster sizes. The following algorithm
sketches simulated annealing. Note that ci[sj/sk] denotes that within cluster ci

message sj is replaced by sk.

Clustering c choseStartSolution(graph)
temp = startTemp
repeat

time = maxTime
repeat

chose 2 different clusters c1 and c2

chose s1 from c1, and s2 from c2

if fit(c1, c2) < fit(c1[s1/s2], c2[s2/s1]) then
c1 ⇐ c1[s1/s2]
c2 ⇐ c2[s2/s1]

else
if temp < rnd(temp) then

c1 ⇐ c1[s1/s2]
c2 ⇐ c2[s2/s1]

else
s = s− 1

end if
end if

until time == 0
temp = temp− 1

until temp == 0

4 Thereby, the weight can be interpreted as an (inverse) distance measure.
5 The higher the value of the noise distance, the better it is possible to distinguish

between former zero-weighted and one-weighted edges.

The general idea of simulated annealing is that it starts with a guessed solu-
tion, then randomly picks two elements and swaps these two. If the new solution
is better than the old one, it repeats the loop with the newly found solution.
Otherwise it continues with a certain probability with either the old or the new
solution. The probability that it continues with a worse solution decreases over
the running time and depends on how much the average fitness decreases by
using the worse solution.

For our problem, we search for the clustering where all messages that are in
the same cluster have been sent by the same sender. Edges between messages
from the same sender have more likely a higher weight than others, thus the
average of the sums of the edges’ weights between messages in the same cluster
should be maximal for the clustering where all messages from the same sender
are in the same cluster.

In order to calculate the change of quality of the solution in one optimization
step it is sufficient to calculate the fitness of each of the two clusters that are
chosen in that step. Thereby, a cluster’s fitness is the sum of all edges among
the messages within the cluster. If after swapping the sum of these two fitnesses
is higher than before, then the average fitness over all clusters increases as well,
thus the new solution is better than the old one. Otherwise, the old solution was
better.

In order to speed up the clustering we also take into account that the cluster
size is proportional to the degree of the nodes, which should be in this cluster.
Thereby, the degree of a node is the sum of the weights of all edges of this node.
We deploy this in two ways. At the beginning of the simulation, we need to
guess a first solution. This is done by putting higher degree messages in larger
clusters. Furthermore the fitness function is adapted in a way that the quality
of the solution is lower if messages are in clusters that are of a very different
size than their degree would let expect. This prevents that messages that are
actually members of small clusters are grouped in large ones, since this would
lead to high local maxima, that is a solution to which the algorithm is likely to
converge to, although it is not globally optimal.

However, if clusters are of similar size it still might happen that messages
end up in cluster of the wrong size as Fig. 3 illustrates. Since with simulated
annealing it is impossible to estimate the quality of a final solution, the algorithm
is then very likely to end up in the wrong maxima. In the following paragraph
we describe what the attacker does with this solution and which effect wrong
clustered messages have on the result of the attack.

System States and Success Rate. The attacker uses this optimal clustering to
enumerate all still possible system states. How many that are depends on the
number of clusters of equal size, since two states where clusters of the same size
are mapped to different senders are indistinguishable for the attacker (cp. Sect.
3). In order to determine the quality of the attack we compare every possible
system state with the original state and count the number of correctly allocated
messages. The average number of correctly allocated messages in relation to the

Fig. 3. Guessed solution with messages mapped to clusters of the wrong size

total number of messages in the system is the success rate of the attacker in the
given experiment.

Since we average over all possible system states the success rate goes never
over its upper bound. However it might fall below the expectation since if the
clustering is in fact not the right clustering (because of noise) it might make
the correct state impossible as illustrated in Fig. 3. Assume that most of the
messages of cluster ci are in cluster cj with |ci| 6= |cj |. If now a message pair
from these two clusters, which is actually correctly assigned to these clusters,
is chosen to be switched, the resulting fitness of the solution will be considered
better by the algorithm, since then both messages are among more messages
from the same sender.

Simulation Results

In this section we present simulation results that illustrate how an attacker could
use knowledge about the linkability of messages.

In Fig. 4, a typical result of our attack is shown. 100 messages were sent by
11 senders. On the x-axis the distance between the two Gaussian distributions
which were used to add noise is displayed, while on the y-axis the (min, max
and average) success rate is displayed. For this example, a random attacker
would have a success rate of about 0.1. Note that our attack is already for very
small noise distances, i. e., below 1, slightly better. However, for higher noise
distances our simulation reaches the theoretical upper bound (cp. Sect. 3) of
0.81. Furthermore, one can see that the errors are quite large. This is because
the noise affects also the local maxima, which might become global maxima by
analogous reasons as shown in Fig. 3 in the section before.

In cases where every sender sent a different number of messages our attack
can totally deanonymize the systems’ users as shown in Fig. 5. Furthermore, one
can see that with rising distance between the weights for messages belonging
to the same cluster and messages not belonging into the same cluster also the
errors start to diminish and therefore the average converges to the actual optimal
solution.

In Fig. 6 one can see that the larger the distances between the number of
messages different senders have sent are, the faster our attack converges to its
individual maximum. Thereby the red pluses represent results from a system

Fig. 4. Simulation results for 100 messages, distribution of cardinalities |ci|:
[4,5,7,8,9,9,10,10,11,12,15]. For each noise distance displayed, 25 experiments have been
made. For each noise distance, the minimum, maximum and average success rate is dis-
played.

Fig. 5. Simulation results for 100 messages, distribution of cardinalities |ci|:
[4,7,8,12,14,15,18,22], i. e. all clusters have different sizes. In this case we reach total
deanonymization.

where the number of messages sent by each two senders is either equal or differs
by at least 5. As we can see, already for small noise distances our simulation
reaches its maximum. In contrast to that, the blue stars represent results from
a system where the number of messages per sender is much closer to each other.
Hence, noise has much more influence on the simulation results since already a
small change of the degree of a message might lead to a different clustering.

Fig. 6. Faster convergence with larger distances between clusters. Red pluses: each two
senders sent either the same number of messages or the number of messages differs by
at least 5. Green crosses: same number of messages or at least 3 messages difference for
each two senders. Blue stars: same number of messages or at least 1 message difference
for each two senders

5 Conclusion

In this paper we show how information about linkability between messages (gath-
ered, e. g., by a service provider from knowledge of the content of messages) can
be used to reduce sender anonymity beyond what is possible by traffic analysis
alone. Therefore, we present a model which integrates information gathered from
the network layer with information about linkability between messages.

In order to show the usefulness of incorporating such linkability information
for deanonymizing users, we present an appropriate attack using both infor-

mation from observing the network and linkability information. Thereby, we
consider an abstract service provider that receives all messages. This models
many realistic attackers, such as coalitions of service providers or attackers that
observe the exit node of a mix cascade.6 However, even if the service provider
does not receive all messages he can assume for every unknown message that it
was sent equally likely by the same user as any other message, that is, it has an
edge to any other message with the same wight. This would introduce the more
noise, the more unknown messages are introduced, i.e., the less observations the
attacker had made. The hidden assumption thereby is that users which heavily
use the attacker’s service also use the other services often.

The information we consider from the network layer consists of the number
of messages sent by different senders. From the application layer we regard in-
formation about linkability between messages. We show upper and lower bounds
for the success rate of the attack. We simulate our attack in order to show that
messages belonging to the same sender are grouped together even in case of
rather noisy linkability information. Further, the attack is the more successful
in assigning messages to actual senders the more different amounts of messages
the senders have sent.

However, in further research we will deal with better clustering algorithms
especially with regards to proven quality bounds (e. g. branch and bound). Fur-
thermore we will extend our model to more comprehensive network as well as
application layer models. With regards to network layer models we will combine
our attack with more sophisticated traffic analysis attacks.

We expect that our attack is generalizable to pool mixes, since the incoming
message stream can be used to count the number of messages sent by the users.
Furthermore the attacker can exploit the expected delay of the messages (which
depends on the pool size) to determine which part of the outgoing message
stream should match the ingoing message stream.

Another interesting field of research will be to show how we can use our model
to directly derive sender anonymity measures in terms of Shannon entropy as
metric, that is calculating the probability distribution that a given user has sent
a given message.

References

1. Clauß, S., Pfitzmann, A., Hansen, M., Van Herreweghen, E.: Privacy-enhancing
identity management. The IPTS Report Special Issue: Identity and Privacy
(2002) 8–16

2. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity.
In Dingledine, R., Syverson, P., eds.: Proceedings of Privacy Enhancing Technolo-
gies Workshop (PET 2002). Number 2482 in LNCS, Springer-Verlag (April 2002)
41–53

6 Note, that most of the traffic is sent to service providers that do not support end to
end encryption.

3. Dı́az, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In
Dingledine, R., Syverson, P., eds.: Proceedings of Privacy Enhancing Technologies
Workshop (PET 2002), Springer-Verlag, LNCS 2482 (April 2002)

4. Steinbrecher, S., Köpsell, S.: Modelling unlinkability. In Dingledine, R., ed.: Pro-
ceedings of Privacy Enhancing Technologies workshop (PET 2003). Number 2760
in LNCS, Springer-Verlag (March 2003) 32–47

5. Franz, M., Meyer, B., Pashalidis, A.: Attacking unlinkability: The importance of
context. In Borosov, N., Golle, P., eds.: Proceedings of the Seventh Workshop
on Privacy Enhancing Technologies (PET 2007), Ottawa, Canada, Springer (June
2007)

6. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 24(2) (February 1981) 84–88

7. Chaum, D.: The dining cryptographers problem: Unconditional sender and recip-
ient untraceability. Journal of Cryptology 1 (1988) 65–75

8. Berthold, O., Federrath, H., Köpsell, S.: Web MIXes: A system for anonymous
and unobservable Internet access. In Federrath, H., ed.: Proceedings of Designing
Privacy Enhancing Technologies: Workshop on Design Issues in Anonymity and
Unobservability, Springer-Verlag, LNCS 2009 (July 2000) 115–129

9. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium. (August 2004)

10. Kesdogan, D., Pimenidis, L.: The hitting set attack on anonymity protocols. In:
Proceedings of 6th Information Hiding Workshop (IH 2004). LNCS, Toronto (May
2004)

11. Clauß, S.: A framework for quantification of linkability within a privacy-enhancing
identity management system. In Müller, G., ed.: Emerging Trends in Informa-
tion and Communication Security (ETRICS). Volume 3995 of Lecture Notes in
Computer Science., Berlin Heidelberg, Springer (2006) 191–205

12. Clauß, S., Schiffner, S.: Structuring anonymity metrics. In Goto, A., ed.: DIM ’06,
Proceedings of the 2006 ACM Workshop on Digital Identity Management, Fairfax,
Virgina, USA, ACM (November 2006) 55–62

13. Sweeney, L.: Guaranteeing anonymity when sharing medical data, the datafly sys-
tem. Journal of the American Medical Informatics Association (1997) Washington,
DC: Hanley & Belfus, Inc.

14. Fischer-Hübner, S.: IT-security and privacy: Design and use of privacy-enhancing
security mechanisms. Volume 1958 of Lecture Notes in Computer Science. Springer
(2001)

15. Dı́az, C., Troncoso, C., Danezis, G.: Does additional information always reduce
anonymity? In Yu, T., ed.: Proceedings of the Workshop on Privacy in the Elec-
tronic Society 2007, Alexandria,VA,USA, ACM (2007) 72–75

16. Dı́az, C., Troncoso, C., Serjantov, A.: On the impact of social network profiling
on anonymity. In Borisov, N., Goldberg, I., eds.: Proceedings of the Eighth In-
ternational Symposium on Privacy Enhancing Technologies (PETS 2008), Leuven,
Belgium, Springer (July 2008) 44–62

17. Berthold, S., Böhme, R., Köpsell, S.: Data retention and anonymity services –
introducing a new class of realistic adversary models. In Švenda, P., ed.: The
Future of Identity in the Information Society – Challenges for Privacy and Security,
Springer Verlag (2008) To appear.

18. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated anneal-
ing. Science (1983)

