
Differential Privacy for Collaborative Security

Jason Reed, Adam J. Aviv, Daniel Wagner,
Andreas Haeberlen, Benjamin C. Pierce, Jonathan M. Smith

University of Pennsylvania

ABSTRACT
Fighting global security threats with only a local view is inherently
difficult. Internet network operators need to fight global phenom-
ena such as botnets, but they are hampered by the fact that operators
can observe only the traffic in their local domains. We propose a
collaborative approach to this problem, in which operators share
aggregate information about the traffic in their respective domains
through an automated query mechanism. We argue that existing
work on differential privacy and type systems can be leveraged to
build a programmable query mechanism that can express a wide
range of queries while limiting what can be learned about individ-
ual customers. We report on our progress towards building such
a mechanism, and we discuss opportunities and challenges of the
collaborative security approach.

1. INTRODUCTION
The constant evolution of the Internet has given rise to new dis-
tributed software systems supporting antisocial and criminal be-
haviors. Among these are botnets, collections of exploited network
hosts, or bots, under a common control. Botnets can place a se-
vere drain on network resources, as they are often leased [1] for the
purposes of distributed denial of service [18] or massive spamming
campaigns [19]. Detecting and mitigating botnets is thus an area of
urgent concern.

Current approaches to botnet detection often rely on the fact that
bots act in concert. Intrusion detection systems (IDS) use extensive
logging and data collection to identify anomalous behavior and to
verify it as botnet activity [2, 7, 12, 13, 14, 15, 20, 22, 29]. How-
ever, this approach is hampered by the fact that, for privacy reasons,
networks do not usually share collected data across administrative
domains: each domain maintains its own IDS, whose view is lim-
ited in scope. This helps botmasters to hide their bots’ activity by
spreading it across diverse regions of the Internet. Similarly, dis-
rupting a botnet’s command and control (C&C) structure can be
difficult within a single administrative domain because the control
structure can change dynamically and span multiple domains.

A collaborative approach to botnet detection could mitigate these
visibility restrictions. For example, suppose the IDS in network α
signals an unusual spike in UDP traffic on port 55555, but the op-
erator in network α is unsure if this is caused by a botnet or is
simply a false alarm. If the operator had access to statistics from
an adjacent network, say β, she could check whether this anomaly
is a broader phenomenon. But there are two obvious difficulties.
First, β will not make the necessary data available to α without
assurances that it does not reveal sensitive information about β’s
customers. Deriving such assurances may require detailed and ex-
pensive analysis of the data being transferred. Second, even if β
could establish some assurance on the sensitivity of this particular

query, the next anomaly will likely cause α to ask for completely
different statistics, requiring β to repeat the same expensive analy-
sis. Without automated support, this sort of cross-domain informa-
tion sharing seems infeasible.

We believe that differential privacy [21, 3, 4, 9, 8, 10, 11, 27]
offers a promising approach to enabling collaboration across ad-
ministrative domains. Differential privacy offers statistical guar-
antees about the privacy of randomized query functions, avoiding
the limitations of deterministic anonymization [8]. It does this by
quantifying how much an individual’s privacy is affected by re-
vealing the result of a particular query, and thus how much random
noise is needed to perturb the results sufficiently to assure privacy.
In the above example, only a little random noise would be needed,
since UDP traffic statistics can be aggregated over many flows from
many different customers; the information contributed by any indi-
vidual customer would be negligible. Moreover, it is possible to
algorithmically derive a bound on the impact of a given query [24].
There is reason to hope that this approach can address both of the
problems discussed above—first, by allowing networks to offer an
automated service by which other networks can query their IDS’s
data; and second, by providing well-understood and automatically
verifiable guarantees on the amount of privacy loss, which are ro-
bust even against adversaries with external information. The latter
property is important for avoiding unexpected deanonymization, a
significant worry in practice (as Netflix recently discovered [26]).

However, applying differential privacy to queries over network
statistics poses some fundamental challenges. Existing work on
differential privacy considers queries over a static database, whereas
in the Internet new traffic needs to be collected and queried contin-
uously. Query responses might be correlated over time by the at-
tacker, so enforcing an upper bound on information leakage in this
setting is difficult. Another significant challenge stems from the
multi-directionality of communication over the Internet: a given
party may communicate with many different partners over time,
causing potentially sensitive information to be widely distributed
across varied administrative domains; this makes it difficult to or-
ganize the stored information to protect the privacy of individuals.

In this paper, we analyze both the opportunities and the chal-
lenges of implementing collaborative botnet detection using differ-
ential privacy. Our contributions include (1) a sketch of a simple
cross-domain IDS architecture, (2) a proposal for a core query lan-
guage with a type system that can automate the process of deter-
mining the appropriate amount of random noise needed to suffi-
ciently anonymize a query result, (3) a set of sample botnet detec-
tion queries that can be shown to be sufficiently privacy-preserving,
and (4) an analysis of some important remaining challenges, in-
cluding issues of continuous collection of data, correlating query
results over time, and determining appropriate “privacy budgets.”

2. BACKGROUND
Before presenting our model for collaborative security, let us briefly
review the basic concepts of differential privacy.

2.1 Differential Privacy
A key requirement for collaborative security is the ability to share
data without unduly compromising the privacy of individuals. At a
high level, we can do this by sharing not the data itself, but rather
aggregate statistics about the data. However, it is not obvious a
priori how much information a particular statistic reveals about a
specific individual.

Differential privacy provides a way to quantify this. In general, it
is not possible to guarantee that publishing even an aggregate statis-
tic will preserve an individual’s privacy in absolute terms, since an
attacker can always come to some unwanted conclusion if he has
access to outside information [8]. However, differential privacy can
provide a strong relative limit on how much more an individual’s
privacy is jeopardized by including her in the aggregate, compared
to computing the aggregate on the rest of the data only.

Consider an adversary that is trying to learn something about
a specific individual by observing the results of queries against
some database. Intuitively, a mechanism for releasing data from the
database is private if, with high probability, anything that could be
deduced from the released data could also be deduced from the data
without the contribution from any given individual. This means
that any individual can safely allow their data to be included in a
database because an adversary cannot make any conclusions that
could not already have been made, except with low confidence.

This intuition can be formalized as follows. A database is a col-
lection of tuples (or rows), where we think of each tuple as belong-
ing to a user whose privacy we are concerned with protecting. For
example, in a hospital database, one tuple might contain a patient’s
entire medical record. Let T be the set of all possible tuples and
the powerset B = P(T) of T be the set of all possible databases.
Write b ∼ b′ (“b is close to b′”) to mean that b′ differs from b by
the inclusion or deletion of one tuple.

A randomized function f : B → Rn that computes a vector of
real numbers from a database is called ε-differentially private (or,
it ‘achieves ε-differential privacy’) iff, for any databases b, b′ with
b ∼ b′ and for any set S ⊆ Rn,

Pr[f(b) ∈ S] ≤ eε · Pr[f(b′) ∈ S]. (∗)

The number ε is a parameter that the system designer can choose
based on how much privacy is desired — the smaller the ε, the
smaller the statistical violation of privacy. Intuitively, the set S
plays the role of a ‘conclusion’ that an adversary might try to make
based on the vector of real numbers that is output. The impact of
(∗) is that the probability that the adversary comes to that conclu-
sion cannot vary much — only at most by a factor of eε — depend-
ing on the inclusion or exclusion of one individual in the database.

2.2 Mechanisms for Differential Privacy
Continuing the hospital example, we might want to compute a his-
togram of weights of the patients. This function is not ε-differentially
private on its own because it returns precise results without any ran-
dom perturbations. A set S such as:

S = {x ∈ Rn | x says ≥ 1 person weighs 200-210 lbs.}

can very well include or not include the result of a query based on
the presence or absence of just one person.

To achieve differential privacy for this query, we add a bit of
noise to the output of the deterministic query. In particular, when

the deterministic query returns a vector of real numbers, we can ap-
ply the well-known Laplace mechanism [11] to analyze the under-
lying function and apply the appropriate amount of random noise
to achieve ε-differential privacy.

The analysis consists of considering the deterministic function’s
sensitivity to the input database. We say that f : B → Rn is η-
sensitive if, for any databases b, b′ with b ∼ b′, we have ||f(b) −
f(b′)||1 ≤ η, where ||v||1 is the L1-norm of a vector v ∈ Rn,
defined as usual by ||(x1, . . . , xn)||1 =

P
i |xi|. A function that

is η-sensitive for small η only varies (deterministically) a little for
each change in the database, and so adding just a bit of noise to it
will effectively conceal the influence of individual participants.

The Laplace mechanism takes a deterministic function f and
adds noise to its output, distributed according to the Laplace distri-
bution, transforming it into an ε-differentially private randomized
function. Formally, a random vector Ln

σ in Rn has the Laplace
distribution in n dimensions with parameter σ iff it satisfies:

Pr[Ln
σ = v] ∝ e−||v||1/σ

The distribution is peaked around v being zero, and falls off quickly
as v gets bigger. In other words, we are most likely to add little
noise. The parameter σ controls the spread of the distribution: a
larger σ means a more spread-out, more ‘noisy’ distribution. The
key theorem, which can be found in [11], is this:

THEOREM 2.1. Suppose g : B → Rn is a deterministic func-
tion that is η-sensitive. If we set σ = η/ε, and define the ran-
dom function f : B → Rn by f(x) = g(x) + Ln

σ , then f is
ε-differentially private.

Theorem 2.1 relates the choice of how much noise is added (con-
trolled by σ) to our ability to achieve ε-differential privacy. Driving
the selection are η (the maximum possible variation in the output
of g due to the absence of any given individual) and ε (the amount
of privacy required). For large η (i.e, large variation is possible)
and for small ε (strong privacy requirements), σ must be large, and
thus a greater amount of noise is necessary. Conversely, if privacy
requirements are weaker, then less noise is needed; and if there is
less variation in the contribution of an individual, then again less
noise is needed to ensure ε-differential privacy of the function.

There are other mechanisms for differential privacy [23, 16],
dealing with output types other than Rn. For brevity, we do not
discuss them here; we conjecture that they could be incorporated
into our proposed framework.

3. SYSTEM MODEL
In this section, we describe our assumptions about the environment
in which a query mechanism would operate, and the threats it needs
to protect against. We also introduce some terms and definitions.

3.1 Assumptions and Definitions
We model a network as a set of interconnected autonomous systems
(ASes). Each user is connected to at least one AS by an access link,
such as a DSL or cable connection. An access link may have mul-
tiple connected users, and a user may connect via multiple links.
However, it is assumed that a flow will cross exactly two access
links: upstream from the sender and downstream to the receiver.

At any point in time, some fraction of the users’ machines may
be compromised and actively participating in a botnet. The AS
administrators want to identify these infected machines.

To aid in this effort, administrators share information regarding
the traffic within their networks across AS boundaries. Initially,
we assume that an AS α has a database Iα that can be queried

locally. Iα consists of packet traces1 over all access links within
α’s network, and is collected during a fixed time T , e.g., a specific
day. Section 6.1 discusses generalizing this assumption to allow
continuous collection. An AS β can request a query over Iα in
the form of a function f , to which α responds (if it chooses to) by
returning f(Iα) + ν, where ν is the Laplace noise term.

Initially, we assume the database has one tuple for each access
link, and that each tuple contains all the packets sent or received
over the corresponding link. Since the differential privacy guaran-
tees are stated in terms of tuples, organizing the database in this
way means that we obtain privacy guarantees in terms of access
links. This is useful because each link typically corresponds to ei-
ther a single customer or a group of closely related customers (e.g.,
family members). Alternative choices are discussed in Section 6.2.

Each AS α maintains trust relationships with some other ASes
β1, . . . , βk. For each AS βi, α chooses a privacy budget εi and a
number ni of queries it is willing to answer from βi. When βi asks
a query f , α determines the sensitivity ηf of f (see Section 4) and
then chooses the noise ν such that f is εi/ni-differentially private.
Thus, α can enforce a hard limit on the exposure of its customers’
sensitive information. By reasoning about the effects of multiple
queries (see for instance [24]) we can see that the privacy losses
add together, and the total exposure is bounded by

P
i εi. Note the

tradeoff between privacy and detection power: lower values of εi

result in better privacy but cause more noise to be added to each
query, which decrease their usefulness.

3.2 Threat Model
We assume that the privacy of the customers in an AS α must be
protected against an adversary who is interested in learning (poten-
tially private) information about an individual customer or a small
group of customers. We assume that the adversary (1) can choose
all of the queries that are asked of α, (2) can eventually learn all of
the results, and (3) may have arbitrary prior knowledge about α’s
customers. This is a very conservative assumption, but we believe
that it is necessary because ASes are unlikely to deploy a query
mechanism unless they can give their customers strong assurances
that their privacy will not be compromised.

We also assume that the adversary does not have direct access
to Iα, and that it is permissible for the attacker to learn aggregate
statistics about large groups of customers. The latter is inherent in
our approach because the query mechanism is intended to reveal
such aggregate information.

4. INFERRING QUERY SENSITIVITY
Botnet detection and mitigation is an arms race; botnets are contin-
ually evolving and adapting. Even in the last five years, there have
been huge advances in command and control, coordination, and
propagation strategies. Maintaining pace with these changes in-
volves adaptability and flexibility: detection of future botnets will
likely need different queries than the detection of today’s botnets.
Thus, rather than supporting a fixed set of queries, we believe it is
necessary to provide open-ended support in the form of a flexible
and expressive programming language. A critical question, then,
is whether we can design this language so that it also tracks the
sensitivity as queries are composed from operators.

Recent work by McSherry [24] proposed the idea of a rich, com-
positional language for differentially private queries and identified
the notion of sequential and parallel composition of queries to pre-

1To simplify the discussion, we assume that the AS collects com-
plete traces. In practice, the AS might choose to collect less data to
save space, or to avoid liability.

serve privacy properties. However, we believe that a language can
be much more flexible by building upon the notion of a differential
privacy type system.

We have designed the theoretical core of a functional program-
ming language for queries, with a type system that expresses the de-
terministic notion of sensitivity. For any well-typed program writ-
ten in our language, the sensitivity of the outputs to the inputs can
be read off, informing how much noise is required to provide the
desired degree of differential privacy.

In outline, the key idea of this language is that we equip each
data type τ of the programming language with a metric that allows
us to measure how far apart two values of τ are from one another.
A metric is a function dτ : τ × τ → R required to satisfy the usual
metric space axioms:

dτ (x, x) = 0
dτ (x, y) = dτ (y, x)

dτ (x, y) + dτ (y, z) ≥ dτ (x, z)

For instance, while the type of real numbers would have the usual
metric dR(x, y) = |x − y|, the type of databases would have a
metric such that dB(b, b′) = 1 when b and b′ differ by one tuple
(b ∼ b′). With such metrics, the previous notion of η-sensitivity
generalizes to arbitrary functions: a function τ1 → τ2 is said to be
η-sensitive if, for any x and y such that dτ1(x, y) = r, it is the case
that dτ2(f(x), f(y)) ≤ ηr.

This notion of sensitivity is compositional: We can reason about
the sensitivity of large programs in terms of their smaller parts. For
example, note that f ◦ g is η1η2-sensitive if f is η1-sensitive and g
is η2-sensitive. Similar properties hold concerning the calculations
involving more complex data structures, and from these arise the
language’s typing rules.

Our design is still preliminary but, even with a modest set of
primitive operations, it is already possible to capture many com-
mon basic programming idioms. In particular, our core language
supports: Queries that use linear arithmetic; SQL-like operations
such as joins of tables and selecting rows satisfying an arbitrary
predicate; functional programming idioms like map and fold; and
aggregation such as sums, max, and min of collections. The type
system permits programming the sort of histogram computations
typical in the differential privacy literature [27] in a natural way.
Some examples from Chaudhuri [5]—including sorting algorithms
and finding minimum-cost paths in graphs—can be adapted to our
setting. It is also possible to program divide-and-conquer analyses
like the Fast Fourier, Haar Wavelet, and Walsh-Hadamard trans-
forms, enabling queries to take advantage of existing work in spec-
tral analysis of network traffic [6].

5. SAMPLE QUERIES
We now discuss several examples based on present-day botnet de-
tection techniques, to give a feel for the sorts of queries we have
in mind, their privacy implications, and the way these can be ad-
dressed by the differential-privacy-sensitive programming language
sketched in the previous section. There are three main use-cases:
confirming that a local anomaly is part of a global phenomenon,
discovering C&C channels used in other networks and preemp-
tively throttling or censoring them, and measuring the magnitude
of some botnet action. For the sake of familiarity, we present the
examples in SQL-like pseudocode.

5.1 Rishi
Bots using IRC for C&C must all choose unique nicknames, and
although botmasters may change the location of the IRC server,
the procedure for choosing IRC nicknames usually remains fairly

consistent. The Rishi botnet detection system exploits this fact; it
identifies new bots by observing the nickname selected (and some
other characteristics) as hosts join an IRC chat session [12]. For
example, some botnets use nicknames that contain a country code,
operating system info, and a random sequences of digits. The Rishi
system provides a heuristic for assessing how bot-like a nickname
is. Suppose an operator wanted to estimate the size and threat level
of an IRC botnet based on the nicknames. Internally, the threat
may seem relatively small and not worth the disruption effort, but
externally there may be thousands of bots participating. An opera-
tor could pose this query to learn such information.

Select Count(
RISHI_Score(results) > RISHI_Thresh)

Where type == IRCMessage &&
IRC.channel = target_channel &&
IRCHeader In (NICK, JOIN, MODE)

From the point of view of the differential privacy analysis, this is
a very straightforward query. A simple count of even a rather com-
plex property of users is 1-sensitive, since the presence or absence
of a single user can only change the count by one.

5.2 Work weight
Binkley et al. proposed another method for detecting IRC C&C
channels. They observed that many bots have a high ratio of TCP
control packets to data packets during denial-of-service attacks [2].
They called this ratio the TCP work weight, and observed that it
was possible to correlate spikes in work weight with IRC traffic
to identify potentially evil channels. This detection scheme can be
used even without knowing which IRC servers a botnet connects
to or the command protocol within the channel. As operator could
frame a work-weight query in three parts, separately finding the
work weight of each host, the IRC channels each host participated
in, and finally the statistic of interest based on these two pieces of
information.

Select (source,
Count(control) / Count(all))

Where type == TCP
GroupBy source
As TCP(source, weight)

Select (target, channel)
Where type == IRCMessage
As IRC(target, channel)

Select (IRC.channel, Count(*), Sum(TCP.weight))
From InnerJoin TCP IRC

On TCP.source == IRC.target
GroupBy IRC.channel

Such a query could potentially enable the discovery of channels that
bots in other ISPs were connected to, and preemptively regulate
traffic on those channels within our own network.

The intent is that only the results of the final Select are noised
and published. Query programmers are allowed to phrase their
queries in terms of (not obviously privacy-safe) intermediate data,
provided the final result has sufficiently low sensitivity to inputs.

Analyzing the sensitivity of this query is more subtle. Part of
it is easy: the count and the sum are each of sensitivity 1, so the
sensitivity for the two together is simply 2. Although we have not
discussed how to analyze the sensitivity of returning channel names
(which are not numbers), there is a way to make the analysis for-
mal; we omit the discussion for brevity.

Ultimately, we want to know whether the average work weight is
anomalously high, but this query returns the population and sum-
of-work-weights, leaving the operator to divide them. This is to
achieve a low sensitivity (relative to the size of the result of the
query). A query that returned just the average work weight would
yield a number between 0 and 1, but still with a sensitivity of 1
(since the worst case is that there is one person in the channel, and
the result reflects exactly that person’s work-weight), so query re-
sults would have to be very noisy.

This example highlights the importance of flexibility in the query
language. It gives the programmer the freedom to choose at what
point in the computation noise is added to maximize the effective-
ness of the query.

5.3 Domain flux
Some botnets—notably Torpig [28]—locate their C&C channels
using a technique called domain flux. A bot in a domain-flux bot-
net has a long list of domain names that could potentially be control
servers. When the time comes to contact the control server, it runs
down the list and attaches to the first one that behaves like a control
server. To help avoid detection, the list is rotated frequently. Sup-
pose an AS observes an unusually popular string of DNS requests
and wonders whether it is part of a domain-flux botnet. In this case,
the AS can run a query like:

Select Count((evil.monday.com,
evil.monday.org,
evil.monday.net)

All In target)
Where type == DNSRequest
GroupBy source

which, being a count of users, has a sensitivity of 1. This means
that end-users can expect their interest in suspected subdomains to
be well-masked by a small amount of noise.

5.4 Fast flux
Some botnets use fast flux to protect the identity of the command
servers. In fast flux, some of the bots self-identify as proxy bots,
which exist only to forward messages between normal bots and the
command servers. To contact the proxy bots, there is an agreed-
upon domain name for the normal bots to look up. This domain
name is given a very short time-to-live, so that the IP address that
it resolves to can be rapidly rotated between the addresses of the
available proxy bots. This behavior can be detected with fairly high
accuracy [17]. In particular, it is unusual for benevolent domain
names to resolve to IP addresses in many different autonomous
systems; from this observation, Holz et al. derived a classification
function that can be formulated as a query in the following way:

Select Top 10
(1.32*Count(Unique(resultIP))
+ 18.54*Count(Unique(AS(resultIP)))
- 142.38, target)

Where type == DNSRequest
GroupBy target

The result of this query can be thought of as a histogram. For
any particular target domain name, the sensitivity is 19.86 (that
is, 1.32 + 18.54), and, since sensitivities add, the total sensitivity
would be the highest so far: 198.6. This means that providing
privacy would require a lot of noise. Still, the query can be useful
because the expected aggregates are also quite large.

5.5 Backscatter analysis
Finally, we consider backscatter analysis, a technique for estimat-
ing the size of distributed denial-of-service attacks [25]. Some
DDoS attacks involve flooding the victim with SYN packets; to
avoid detection, these packets have forged return IP addresses (which
we assume are drawn approximately uniformly at random from all
possible IP addresses to make our final analysis easier). One way
to detect this is to scan for unsolicited SYN/ACK packets, that is,
packets sent to a host with a different identifier than any SYN pack-
ets that host sent:

Select Count(target)
Where type == TCPSynAck &&

(target, packetNumber) Not In
(Select (source, packetNumber)
Where type == TCPSyn)

Select Count(target)

Once an AS has the number of hosts that received stray ACKs
(the first Select above) and the total number of hosts (the last
Select above), it can extrapolate to the number of hosts anywhere
on the net that were impersonated; this is also the size of the attack-
ing botnet. Since the accuracy of this measurement depends crit-
ically on the number of hosts covered by the result, cross-domain
collaboration would be ideal.

Again, the sensitivity of this and any other pure counting query
is low: 1 for each of the Select clauses, for a total of 2. Thus,
only a small amount of noise will need to be added to mask any
particular individual’s contribution to the count.

6. CHALLENGES
In this section, we identify some fundamental challenges to address
in future work.

6.1 Continuous data collection
The most straightforward application of differential privacy is the
execution of a single query (or a finite number of queries) on a
database, after which the entire database is discarded. However,
the monitoring of network traffic is an ongoing event. Even if we
assume just a single query can be requested for each day’s worth of
data, the privacy guarantees can only be applied to that day’s collec-
tion. However, when correlated, queries performed over multiple
days may actually reveal sensitive information.

Suppose the adversary is interested in whether or not a person X
has visited embarrassing.com. If Iα just contains data for one
day, the adversary can learn very little. However, if Iα is replaced
with fresh data every day and the privacy budgets are replenished,
the situation is different. While the adversary may not be able to
conclusively prove that X visited embarrassing.com on a par-
ticular day, his confidence that X visited embarrassing.com
on some day will continue to increase without bound for each sub-
sequent query. We are not aware of any technique that could prop-
erly apply differential privacy in a setting with streaming data col-
lection and a potentially unbounded number of queries.

6.2 Correlation
A closely related challenge involves the correlation between tuples
in the input database. As discussed in Section 3, we propose an
organization indexed by access link, grouping together all packets
sent from a particular link. But Internet traffic always involves two
parties, a sender and a receiver. This means that some information
about the receiver (namely, that he was sent a packet) is not stored

in the tuple associated with the receiver. This may seem acceptable
on the surface; in one sense, people can only really be held respon-
sible for the packets they send, and not for the packets other people
choose to send them.

In the context of the Internet, however, many interactions have
request-response dynamics: person x sends person y a request (say,
for the contents of the embarrassing.com website), and per-
son y sends back a response. Thus, potentially private information
about x is spread out among all the tuples with which he commu-
nicated, and is therefore not protected by the guarantees of differ-
ential privacy.

One way to avoid this problem is to organize the database Iα

in a different way. For example, we might consider including only
packets sent, rather than packets sent or received; however, this
might preclude some useful queries, and it would still not prevent
semantic connections between packets, e.g., in request-response
communications. Another option would be to choose the tuples
differently, e.g., by having not one tuple per access link, but rather
one tuple per packet, per flow, per time interval, etc. However, re-
call that the tuples define the entities whose privacy is guaranteed,
and it is not obvious what it would mean in practice to protect the
privacy of, for example, an individual packet.

Another approach is to break the correlation by relaxing the pri-
vacy of some entities on the network whose privacy is considered
unimportant. Domain-name servers, for example, are inherently
public; suppose we could convince the owners of the servers to
waive their privacy guarantees. In that case, we could then avoid
storing customer x’s domain-name server requests (and the server’s
responses) in the tuple for the server – in fact, we can eliminate the
server’s row from the database entirely. This would allow us to give
very strong guarantees about the information that could be gleaned
about customer x’s domain-name lookup behavior. Similar waivers
could protect x’s web traffic to large websites or IRC sessions with
public IRC servers.

6.3 Reasoning about beliefs
Ideally, it would be desirable for an ASes to establish a fixed limit
ε̄ on the likelihood that an adversary can infer a particular (pri-
vate) fact about one of their customers, such as whether or not cus-
tomer X visited a particular web page. This guarantee would be
both extremely strong and easy to understand. However, differen-
tial privacy actually provides a slightly different guarantee. The
two main differences are that (1) knowledge of a private fact is not
binary, in the sense that the adversary may also believe that the fact
is true with some probability p, and (2) how much the adversary
actually learns from the results depends on his prior beliefs.

To see the first point, consider a situation in which an AS β
suspects a SYN flood on cnn.com and therefore asks AS α how
many of its customers have sent a TCP SYN packet to cnn.com
recently. Suppose that AS α has 10, 000 customers and the answer
(including noise) is 6, 384. If the adversary learns about this, he can
infer that about 63.8% of α’s customers have visited cnn.com.
Thus, if the adversary has prior knowledge that some individual X
is a customer of α, he can deduce that there is a good chance that
X has visited cnn.com as well. However, differential privacy
limits how much the adversary can learn about the behavior of X
specifically. Thus, X has plausible deniability – he can always
claim to be one of the 3, 616 customers who did not send a SYN to
cnn.com.

To see the second point, consider an incredibly powerful ad-
versary who already knows for each of the 9, 999 other customers
whether or not they visited cnn.com but is not sure about X . If
there are 6, 383 other visitors and the answer to the query is 6, 384

including noise, the attacker can increase his confidence about X
a little by applying Bayes’ rule. However, the absolute increase
in confidence is still limited by the privacy budgets εi. This is a
strong result, since X’s privacy is protected even against such a
powerful attacker. However, the fact that the increase in knowledge
depends on prior beliefs makes the guarantee hard to understand. If
we could state the guarantee in a simpler but perhaps more conser-
vative way, this would make it easier for ASes to justify the query
mechanism to their customers.

6.4 Setting a privacy budget
An AS can choose the relative magnitudes of its privacy budgets εi

according to how much it trusts the corresponding ASes; however,
it is not obvious how to choose a good absolute value for the total
budget ε =

P
i εi. There is obviously a trade off between privacy

and usefulness, and we would like to choose a ε low enough to
satisfy the privacy needs of the end-users but large enough that we
can extract useful information from our queries. In particular, if we
expect that the results of queries will grow approximately linearly
with the number N of end-users in the database, then we could
get useful results even if the noise was proportional to the number
of end-users. In particular, even if we choose ε to be as low as
1/N , Theorem 2.1 tells us that the noise σ = η/ε ∼ Nη will be
acceptable in this model. This is a great result for large ISPs, since
it will result in very small values of ε – that is, very private queries!

7. CONCLUSION AND NEXT STEPS
We have given a detailed analysis of the challenges and opportuni-
ties of applying differential privacy in a networked setting to sup-
port collaborative detection and mitigation of botnets. We sketched
a new programing language and typing system that allow one to
write flexible queries and to track the privacy loss of the results,
and we have presented a preliminary model of a novel coordina-
tion system that would permit separate administrative domains to
collaborate with consideration to privacy. We have also identified
fundamental challenges to address in future work; in particular, the
handling of streaming data and continuous collection, as well as
managing duplicated data that may be stored across multiple do-
mains.

Detecting, observing, and measuring botnet activity is only the
first step in any defense campaign. The end goal is to mitigate and
disrupt the attacks of botnets or disable them entirely. Exploring
connections between our framework and known mitigation tech-
niques such as pushback [18] may be valuable.

References
[1] P. Bächer, T. Holz, M. Kötter, and G. Wicherski. Know your

enemy: Tracking botnets, 2005. http://honeynet.org/
papers/bots.

[2] J. R. Binkley. An algorithm for anomaly-based botnet detec-
tion. In Proc. SRUTI, pages 43–48, 2006.

[3] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical
privacy: the SuLQ framework. In Proc. ACM PODS, 2005.

[4] A. Blum, K. Ligett, and A. Roth. A learning theory approach
to non-interactive database privacy. In Proc. STOC, pages
609–618, 2008.

[5] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity
analysis of programs. SIGPLAN Not., 45(1):57–70, 2010.

[6] C.-M. Cheng, H. T. Kung, and K.-S. Tan. Use of spectral anal-
ysis in defense against DoS attacks. In Proc. IEEE GLOBE-
COM, volume 3, pages 2143–2148, 2002.

[7] E. Cooke, F. Jahanian, and D. McPherson. The zombie

roundup: Understanding, detecting, and disrupting botnets.
In Proc. SRUTI, July 2005.

[8] C. Dwork. Differential privacy. In Proc. ICALP, 2006.
[9] C. Dwork. Differential privacy: A survey of results. In Proc.

TAMC, 2008. Invited paper.
[10] C. Dwork. The differential privacy frontier (extended ab-

stract). In Theory of Cryptography, Lecture Notes in Com-
puter Science, chapter 29, pages 496–502. Springer, 2009.

[11] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrat-
ing noise to sensitivity in private data analysis. In Theory of
Cryptography Conference, 2006.

[12] J. Goebel and T. Holz. Rishi: Idneitfy bot contaminated host
by IRC nickname evaluation. In Proc. HotBots, April 2007.

[13] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer: Clus-
tering analysis of network traffic for protocol- and structure-
independent botnet detection. In Proc. USENIX Security, July
2008.

[14] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee.
Bothunter: Detecting malware infection through IDS-driven
dialog crrelation. In Proc. USENIX Security, Aug. 2007.

[15] G. Gu, J. Zhang, and W. Lee. Botsniffer: Detecting botnet
command and control channels in network traffic. In Proc.
NDSS, February 2008.

[16] A. Gupta, K. Ligett, F. McSherry, A. Roth, and K. Talwar.
Differentially private combinatorial optimization, Nov 2009.
http://arxiv.org/abs/0903.4510.

[17] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling. Measur-
ing and detecting fast-flux service networks. In Network and
Distributed System Security (NDSS), 2008.

[18] J. Ioannidis and S. Bellovin. Implementing pushback: Router-
based defense against DDoS attacks. In Proc. NDSS, vol-
ume 2. Citeseer, 2002.

[19] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. M.
Voelker, V. Paxson, and S. Savage. Spamalytics: an empir-
ical analysis of spam marketing conversion. In Proc. ACM
CCS, pages 3–14, 2008.

[20] A. Karasardis, B. Rexroad, and D. Hoeflin. Wide-scale botnet
detection and characterization. In Proc. HotBots, 2007.

[21] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhod-
nikova, and A. Smith. What can we learn privately? In Proc.
FOCS, pages 531–540, October 2008.

[22] C. Livads, R. Walsh, D. Lapsley, and W. Strayer. Using ma-
chine learning techniques to identify botnet traffic. In 2nd
IEEE LCN Workshop on Network Security (WoNS ’06), 2006.

[23] F. McSherry and K. Talwar. Mechanism design via differen-
tial privacy. In Proc. FOCS, pages 94–103, 2007.

[24] F. D. McSherry. Privacy integrated queries: an extensible plat-
form for privacy-preserving data analysis. In Proc. SIGMOD,
pages 19–30, 2009.

[25] D. Moore, G. M. Voelker, and S. Savage. Inferring internet
denial-of-service activity. In Proc. USENIX Security, 2001.

[26] A. Narayanan and V. Shmatikov. Robust de-anonymization
of large sparse datasets. In Proc. IEEE Security and Privacy,
2008.

[27] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensi-
tivity and sampling in private data analysis. In Proc. STOC,
pages 75–84, 2007.

[28] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szyd-
lowski, R. Kemmerer, C. Kruegel, and G. Vigna. Your botnet
is my botnet: analysis of a botnet takeover. In Proc. ACM
CCS, pages 635–647, 2009.

[29] T. Yen and M. K. Reiter. Traffic Aggregation for Malware De-
tection, volume 5137, pages 207–227. LNCS Springer Berlin
/ Heidelberg, 2008.

