
The Discoverability of the Web

Anirban Dasgupta∗ Arpita Ghosh∗ Ravi Kumar∗

Christopher Olston∗ Sandeep Pandey∗ Andrew Tomkins∗

ABSTRACT
Previous studies have highlighted the rapidity with which
new content arrives on the web. We study the extent to
which this new content can be efficiently discovered in the
crawling model. Our study has two parts. First, we employ
a maximum cover formulation to study the inherent diffi-
culty of the problem in a setting in which we have perfect
estimates of likely sources of links to new content. Second,
we relax the requirement of perfect estimates into a more
realistic setting in which algorithms must discover new con-
tent using historical statistics to estimate which pages are
most likely to yield links to new content.

We measure the overhead of discovering new content, de-
fined as the average number of fetches required to discover
one new page. We show first that with perfect foreknowledge
of where to explore for links to new content, it is possible
to discover 50% of all new content with under 3% overhead,
and 100% of new content with 28% overhead. But actual al-
gorithms, which do not have access to perfect foreknowledge,
face a more difficult task: 26% of new content is accessible
only by recrawling a constant fraction of the entire web. Of
the remaining 74%, 80% of this content may be discovered
within one week at discovery cost equal to 1.3X the cost
of gathering the new content, in a model with full monthly
recrawls.

1. INTRODUCTION
In this paper we are concerned with crawling the web in

order to discover newly-arrived content. Figure 1 illustrates
the key challenges of our problem. First, page p5 may be
discovered by crawling either page p1 or page p3, introduc-
ing a combinatorial cover problem that is NP-hard to solve
exactly. Second, pages p6 and p7 may be discovered only by
crawling new page p4. We will study policies for recrawling
known pages in order to maximize the efficiency of discov-
ering new content.

We study new content on the web to accomplish three
goals: to characterize the arrival of new content; to provide
algorithms for discovery that exploit this characterization;
and to measure the overhead of discovering this content for
various levels of freshness and coverage.

∗Yahoo! Research, 701 First Avenue, Sunnyvale, CA
94089. Email: {anirban, arpita, ravikumar, olston,
spandey, atomkins}@yahoo-inc.com
Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

Figure 1: Old pages linking to new pages.

1.1 Motivation
Search engines today have strong freshness requirements

at multiple timescales. Within minutes of breaking events,
users expect to visit a search engine to gain access to news,
blog posts, and other forms of content related to the event.
Freshness requirements for such information ranges from
minutes to hours. For less immediate content such as reviews
of a new product, users are disappointed if a review exists on
the web but not in the search engine index; freshness require-
ments here range from hours to days. And finally, obscure
content that meets an information need should make its way
to the index within days to weeks.

Despite these requirements, there are serious limitations
on the ability of the crawler to procure new content in a
timely manner. First, bandwidth remains limited, so down-
loading the entire web every day is not practical. But more
importantly, requests per second to an individual website is
also limited by politeness rules. Many sites are so large that
they cannot be crawled from start to finish within a week
under standard politeness assumptions. And many sites re-
port crawler traffic as a significant fraction of total traffic,
including multiple downloads of unchanged pages. Thus,
careful management of the limited accesses available to a
crawler is now mandatory.

Additionally, all crawlers must trade off recrawl of existing
pages against first crawls of unseen pages; an understanding
of the discoverability of new content allows an understanding
of the diminishing returns of increasingly aggressive discov-
ery.

Finally, an analysis of the discoverability of the web ex-
poses an evolutionary property of the graph that is not well
understood, namely, the mechanism by which new pages
are “linked in” to the graph by modifications to old pages.
Our lack of understanding of these matters raises concerns
about the effectiveness of graph generators and even the ef-
fectiveness of the crawling model as an approach to timely
discovery of new content going forward.

1.2 Problem discussion

There are two primary mechanisms by which new pages
arrive on the web. First, a website puts up a new page, and
links to this new page from an existing page. Second, an
entirely new website appears and is linked-to from an exist-
ing website. A third possible mechanism is that one website
puts up a new page without linking to it, and another web-
site provides a link to the new page—this situation is very
uncommon, and we do not study it.

The relative fractions of pages appearing as a result of
these two mechanisms depends on the elapsed time between
observations. As this window shrinks, we will discover new
sites at an earlier stage of their growth, and hence an in-
creasing fraction of pages will appear as new pages on old
sites. Even when the window is a full month, however, we
show that 85–95% of new pages appear on existing sites,
suggesting that the problem of analyzing known sites is of
paramount importance. We therefore study this problem in
greater detail.

Before proceeding, we must observe that no web crawler
may actually crawl the entire reachable web. Due to infi-
nite websites, spider traps, spam, and other exigencies of
the real web, crawlers instead apply a crawl policy to deter-
mine when the crawling of a site should be deemed sufficient.
Some sites are crawled exhaustively, while others are crawled
only partially. In this paper, we focus only on sites that are
to be crawled exhaustively, as the remaining sites have been
deemed lower priority in terms of absolute coverage.

Suppose the crawler has performed an initial complete
crawl of some site at time t. Now imagine that at time t+∆
the crawler must revisit the site and find all the new pages. If
it is the case that a small set of old pages collectively links to
all new pages, then the crawler can in principle discover new
pages very efficiently. For example, in Figure 1, recrawling
just page p1 leads to discovery of all new pages.

How well this idea can work on the real web is the subject
of this paper. In particular, we study the following aspects:

Basic feasibility of the approach (Section 3):

• Is it the case for real websites that most new pages can
be discovered via a small set of old pages?

Key characteristics that determine what crawling approaches
are likely to work well (Section 3):

• To what extent are links to new content redundant (as
in p1 → p5 and p3 → p5 in Figure 1)?

• Does the set of old pages that link to many new pages
tend to remain consistent over time?

Efficient crawl policies for content discovery (Section 4):

• What is a good choice of old pages to seed the discov-
ery process, given historical information and a crawl
budget?

• What fraction of the budget should be spent assessing
the usefulness of various old pages, versus exploiting
ones already known to be somewhat useful?

Our key findings are as follows. We show first that with
perfect foreknowledge about where to explore for links to
new content, it is possible to discover 50% of all new con-
tent with under 3% overhead, and 100% of new content with

28% overhead. But actual algorithms that do not have ac-
cess to perfect foreknowledge face a more difficult task: 26%
of new content is accessible only by recrawling a constant
fraction of the entire web. Of the remaining 74%, 80% of
this content may be crawled with overhead of about 130%:
1.3X the resources required to crawl the new content must
be dedicated to discovering the new content.

1.3 Related work
Numerous early web studies focused on properties of a

snapshot of the web graph [4, 2, 18, 17, 12]. More recently,
attention has turned to evolutionary properties of the cor-
pus. In this evolutionary model, researchers have consid-
ered the growth of the web [3], the rates of page and link
churn [14, 19, 8], the rates of duplicate evolution [13], and
the change rates of individual pages [3, 5, 14, 22].

Parallel to this line of work, there has been a signifi-
cant body of work on refreshing already-discovered content,
which has been studied in [6, 9, 21, 25, 10]. Already-discovered
pages are recrawled to keep the search engine local reposi-
tory fresh so that the search queries are not answered incor-
rectly due to stale information, while the discovery of new
pages is important for ensuring that as many relevant query
results are shown as possible. It is tempting to view our
problem as equivalent, with new outlinks taking the role of
new content on existing pages, but there is a critical distinc-
tion: in our problem, many pages can be recrawled, each of
which points to a new node, but the value depends on the
union rather than the sum. If the pages all point to the
same new content, there is very little value from a discov-
erability standpoint, but great value from the standpoint of
the freshness of the recrawled pages. To our knowledge, this
specific problem has not been studied previously.

Finally, there has been work in ordering the frontier of
a crawl [11, 7], in which various policies are studied from
the perspective of estimating the quality of a candidate for
first-time crawl. This work is orthogonal to ours; once new
pages have been discovered, it remains to prioritize them for
crawling.

2. PRELIMINARIES
A snapshot Gt of a given site at time t is a directed graph

(Vt, Et), where Vt is the set of nodes (pages) and Et is the set

of directed edges (hyperlinks). Let us define Xt
∆
= ∪t−1

j=1Vj

to be the set of old nodes at time t, and Yt
∆
= Vt \Xt be the

set of new nodes at time t. The old nodes Xt are pages that
appeared before time t and the new nodes Yt are pages that
appeared first at time t.

For convenience, we use the following representation for
the old and new nodes at any time t. Consider the bipartite
graph Ht = (Xt, Yt, Zt) consisting of the old nodes Xt, the
new nodes Yt, and the edge set Zt. An edge z = (x0, yk)
exists whenever yk ∈ Yt is reachable from x0, i.e., there is a
path from x0 to yk of the form x0, y1 ; yk where each yi

is a new node. In this case we say that each yi is covered
by x0. Figure 1 shows the motivation for this definition:
by crawling a page that reveals the start of a long chain
of new pages, we may now proceed to download the entire
chain of new content recursively with no additional discovery
overhead (as each page of the chain is new, and hence must
be crawled anyway).

For each x ∈ Xt, we denote by N(x) the set of new nodes

reachable from x, i.e., N(x) = {y | (x, y) ∈ Zt}. For a subset
S of Xt, we define N(S) = ∪x∈SN(x).

The problem of discovering new content is then the fol-
lowing: cover the new nodes in Yt using as few nodes from
Xt as possible. Section 4 describes our proposed algorithms
for this problem. These algorithms are restricted to infor-
mation that is realistically available at the time when a page
must be crawled; they do not have access to Ht, but depend-
ing on the model, they may have partial information about
Xt and statistical information about Ht based on partial
information about Ht−i.

In addition to the realistic algorithms of Section 4, we now
describe an algorithm called Greedy which has complete
information about Ht, and should be viewed as an optimistic
upper bound on the performance of any realistic algorithm.1

In Section 3, we study this upper bound in detail.

2.1 An upper bound: Algorithm Greedy

There are two natural unweighted versions of the problem
on Ht. The first is called the k-budgeted cover problem,
where we are given a budget k, and want to cover as many
nodes in Yt as possible using k nodes from Xt. The second is
called the ρ-partial cover problem, where we are given ρ ≤ 1
and the goal is to cover at least ρ|Yt| nodes in Yt using as
few nodes from Xt as possible.

Both problems are NP-hard [24]. While the maximization
problem of k-budgeted cover admits a (1−1/e)-approximation
algorithm, the minimization problem of ρ-partial cover can
be approximated to within a log |Xt| factor [16, 23]. Coin-
cidentally, the same greedy algorithm can be used for both
problems. For completeness, we present the greedy algo-
rithm below.

Algorithm Greedy (Xt, Yt, Zt)

Set Ct = ∅.
While “not done” do,

Find x ∈ Xt \ Ct that maximizes |N(x) \N(Ct)|;
break ties arbitrarily.

Set Ct = Ct ∪ {x}.
Return Ct.

For the k-budgeted cover problem, the predicate “not
done” is true as long as |Ct| ≤ k. For the ρ-partial cover
problem, this predicate is true as long as |N(Ct)| < ρ|Yt|.

Note that we have not addressed the issue of nodes disap-
pearing/dying between crawls. However, it is easy to adapt
our algorithms to this case, so for simplicity of exposition,
we assume that nodes do not disappear from the graph from
one timestep to the next.

2.2 Data
We consider two datasets, to address two distinct prob-

lems within our scope. First, we consider a sequence of
complete crawls of the Chilean web. This dataset allows
us to study inter-site linking, and particularly, the problem
of discovering entirely new websites. Second, we consider a
sequence of complete crawls of a number of websites. This
dataset by contrast allows us to study in detail the process

1This algorithm is not strictly speaking an upper bound, as
it makes approximations in order to solve an NP-hard prob-
lem; however, the information available to the algorithm
allows it to perform substantially better than any realistic
algorithm we have seen.

by which new pages on a site are incorporated into the exist-
ing graph of the site. We describe these two datasets below.

2.2.1 Chilean web dataset
We employ a new data set to study this problem, based

on the Chilean web. We have three snapshots of the Chilean
web, based on complete crawls performed monthly for three
months; the first snapshot had 7.40M nodes and 67.50M
edges and the third snapshot had 7.43M nodes and 70.66M
edges. Based on this data, we begin by observing that a site
that appears for the first time during the second or third
month contains on average 18.1 pages. Thus, the effort of
discovering such a site may be amortized across the 18+
pages that will be returned by crawling the site.

2.2.2 Site recrawl dataset
We consider a repeated crawl of 200 web sites over a period

of many weeks. This dataset was used in earlier work by
Ntoulas, Cho, and Olston; see [20] for more details about
the crawl and the principles used to select the web sites.
The authors of that work have continued to collect data, and
have generously allowed us to employ more recent snapshots
than those in their reported results.

Of the 200 web sites they crawl, we removed those sites
that contained fewer than 100 pages in any snapshot (i.e.,
the site did not have significant size) or more than 200,000
pages (which was a crawler-imposed upper bound on the
number of pages per site, introducing skew into the analysis
of new pages). This resulted in 77 sites. Of these sites, we
selected 42 that were well-represented at each snapshot, and
that did not show any gross anomalies.

The 42 websites in the results dataset were crawled repeat-
edly over a period of 23 weeks from 11/14/2004 to 6/12/2005
(the crawler did not execute during every week). The to-
tal number of pages at the first timestep was 640,489 and
223435 new pages appeared over this period roughly 40% of
new pages are directly linked to some old page.

For each of the web sites and for each snapshot, we first
parsed the crawl output, and extracted the outlinks and
redirect information. We omitted all off-site links and fo-
cused only on on-site links. We also discarded orphans —
nodes in Yt that are not covered by any node in Xt. Orphans
accounted for less than 5% of the new nodes in our dataset.
We then constructed the bipartite graph Ht defined above
for the purposes of analysis; recall that this step involves
examining paths from old nodes to new nodes.

3. MEASUREMENTS
In this section, we present a series of measurements on

both of our datasets. In addition to basic properties of the
data, we will study in detail the extent to which algorithm
Greedy is able to efficiently cover the new content.

We will begin with a series of experiments on the site re-
crawl dataset, studying the discovery of new pages on exist-
ing sites. Based on the results of this analysis, we will then
turn in Section 3.3 to an analysis of the Chilean dataset, in
which we will study the relative prominence of new pages
on existing sites, versus new pages on new sites.

3.1 Site recrawl dataset
Figure 2 plots the size of the cover versus the number of

nodes covered, for each site and each timestep. A point at
location (x, y) represents a cover of size x that covers y new

Figure 2: Cover size versus the number of nodes
covered.

nodes. The figure represents approximately 400 trajectories,
one for each site at each timestep, but many of these are
overlapping; the lower graph of the figure shows a breakout
of the smaller trajectories at larger scale.

The outlier trajectory in the top graph of Figure 2 is from
the site oreilly.com. It came about when a content man-
agement change caused over 2,000 catalog entries to intro-
duce a link to a new variant of the same page; the new
destination was discoverable from no other page on the site.
Thus, the limit of the anomalous trajectory is a line of slope
1, in which each recrawl event yields a single page of new
content.

The graph clearly shows the diminishing returns as each
cover grows. Further, an examination of the knee of the
curves shows that most covers efficiently capture 90% of the
total new nodes, but must work much harder to cover the
remaining 10%.

We present a detailed aggregation of these numbers in
Figure 3. We perform an experiment in which we employ
Greedy for a particular site at a particular time, but termi-
nate processing when either all new nodes have been covered,
or the current cover has reached a certain size; this corre-
sponds to the k-budgeted cover problem. In both panes of
the figure, the x axis represents the threshold k which is
the maximum size cover we will employ for any site/time
pair. The top pane of the figure shows two curves. The
higher curve, in green, is measured on the left axis; it shows
for each value of k the average number of new nodes cap-
tured by the cover. However, notice that for a fixed value
of k, each site/time pair might have a cover of k or smaller,
depending on whether a smaller cover was adequate to cap-
ture all the new nodes. We therefore also include the lower

curve, in red, which is measured on the right axis. It shows
for each value of k the overhead of the cover: the size of the
cover, divided by the number of new nodes captured by the
cover. Overhead numbers should be read as follows. If 100
new nodes may be captured by a cover of size 5, then an al-
gorithm ust perform five “wasted” fetches, in the sense that
they do not return new pages, in order to generate enough
information to fetch the 100 new pages. The overhead is
5%, and is a direct measure of the fraction of additinoal
fetches necessary to gather a given number of new pages.
As k grows large, the number of nodes covered tops out at
about 300 on average, which is a reflection of our dataset.
However, the overhead never exceeds 9%, indicating that
although the rightmost region of the curve returns 300 new
pages per cover, with k = 600, nonetheless the “average”
cover size is in fact only 9% of 300, or about 27.

We mention in passing that, while the x axis of the figure
has been truncated at 600 to focus on the region of inter-
est, the remainder of both curves are stable at 300 and 9%
respectively.

The top pane is therefore a measure of how efficiently cov-
ers truncated at a certain size can return new content, but
so far we have said nothing about what fraction of the total
new content has been returned. The bottom pane covers
this question. Once again, the x axis represents the thresh-
old k on the cover size, and the y axis now shows the overall
fraction of new nodes that would be covered, if all covers
were truncated at size k. Setting k = 200, we cover 97.3%
of all new content. We cover 90% of new content once k
reaches 83.

3.1.1 90% covers
Based on these observations, we note that it appears pos-

sible to cover 90% of new content relatively efficiency. We
therefore adopt this somewhat arbitrary threshold, and study
the nature of covers which capture at least 90% of the new
nodes for a give site/time pair. Figure 4 is a scatter plot
showing a detailed breakout of this information. A point at
(x, y) means that a particular site at a particular time had
a cover of size x that covered y new nodes.

As algorithm Greedy adds a page only when it results
in the discovery of at least one page of new content, there
are no points below the line y = x. The figure is promising
to the extent that there is a significant mass of points far
from the line. Note that the figure is shown in log-log scale,
and there are clearly numerous points in which a small cover
produces a large number of new nodes.

We may ask about the distribution of sizes of these 90%
covers. Figure 5 shows this distribution as a histogram,
showing the number of site/time pairs for which the 90%
cover has a certain absolute size. Small covers of five or
fewer nodes suffice to capture 90% of the new content of
most sites, but for a nontrivial number of sites, covers of
more than a hundred pages are required. No site in our
sample ever required a 90% cover of more than one thousand
pages.

3.2 Overhead
Figure 6 shows the results of this analysis. The x axis

shows what fraction of all new content must be covered,
ranging from 50% of the new content to 100% of the new
content. Let N be the number of new pages, xN be the
number of new pages which must be covered, and C(x) be

Figure 3: Threshold on max cover size. Top fig-
ure shows overhead and number of covered pages;
bottom figure shows fraction of new pages covered.

Figure 4: 90% cover statistics.

Figure 5: Histogram of 90% cover sizes, absolute
and relative

Figure 6: Global discovery of new pages on old sites.

the size of the cover (that is, the number of pages which
must be crawled in order to discover xN new pages). Then
we define the overhead of the algorithm as C(x)/(xN). This
is exactly the reciprocal of the efficiency measure defined
above, but will be more convenient for the analysis we now
perform. The overhead should be interpreted as follows: if
some number of new pages are to be fetched, how much
work must be done to discover these pages, over and above
the work that must be done to gather them once they are
known to the system. If the overhead is 5%, for instance,
this means that discovering the new content requires little
more work than simply gathering the new content. Figure 6
shows the overhead for various cover sizes. Recall that these
numbers are the results of a thought experiment in which
a crawler happens to pick a near-perfect set of pages to
crawl in order to find new content; they represent a goal we
would like to attain. The reader should be heartened that
the numbers look so promising, but should await the next
section to determine whether these numbers can be matched
by a real algorithm which must search for new content in a
more hit-or-miss fashion.

3.2.1 Old nodes with significant overlap
If no two old nodes link to the same new node then the

cover problems addressed by Alg-Greedy become trivial;
the problem is interesting only when there is overlap in the
set of new nodes covered by old nodes. In our data, most
pairs of pages (within a site) fall into one of two categories:

Figure 7: Overlap distribution.

either they link to almost the same set of new pages, or they
have almost no new pages in common.

The measure of overlap we use to quantify this statement
is the Jaccard coefficient: the Jaccard coefficient between
two pages i and j is

Jij =
|N(i) ∩N(j)|
|N(i) ∪N(j)| .

A Jaccard coefficient close to 1 means that i and j point
to a very similar set of pages, and a value close to 0 means
that they are almost non-overlapping. Figure 7 shows that
a significant fraction of pairs have Jaccard coefficient very
close to 0 or very close to 1. This has important algorithmic
implications for the cover problem, as we will see in Section
4.2.

3.3 New sites
In this section, we study the relative importance of dis-

covering new pages on old sites, versus new pages on new
sites. We have presented statistics showing the performance
of Algorithm Greedy on each individual site, aggregate in
various ways. We now ask how Algorithm Greedy might
perform across all sites at once, by operating on the union
of the bipartite graphs Ht corresponding to each individ-
ual site. When asked for a 90% cover, such an algorithm
may cover 90% of each site, or may cover many sites com-
pletely while covering others only superficially, based on the
relative gains of each crawl event. We observe in passing
that such an algorithm is simple to implement once Algo-
rithm Greedy has already run on each site: a greedy cover
of disjoint sets may be constructed simply by interleaving
the greedy covers of each set, in a greedy manner. That is,
each site may be viewed as a set of candidate pages, ordered
according to the greedy cover for that site. The algorithm
must choose the top remaining page from some site, and it
does so by selecting the one that covers the largest number
of uncovered resources.

We perform the following experiment on the three snap-
shots of the Chilean web. We begin by observing that a
site which appears for the first time during the second or
third month contains on average 18.1 pages. Thus, the ef-
fort of discovering such a site may be amortized across the
18+ pages which will be returned by crawling the site. Ta-
ble 1 considers each page that occurred for the first time in
the second or third month of the crawl, and checks to see

Snapshot new nodes new nodes Prob. of
on on new site, given

new sites old sites new node
1 → 2 452,461 2,404,045 16%
2 → 3 173,537 2,272,799 7%

Table 1: Fraction of new nodes appears on new sites
versus old sites in the Chilean web data set.

Figure 8: Chile site-level discovery.

whether the domain of the page occurred earlier. As the
results show, 16% of new pages in the second snapshot, and
7% of pages in the third snapshot, occur on sites that did
not appear during the previous snapshot. This suggests that
the vast majority of new content appears on existing sites,
rather than new sites.

Figure 8 then shows the number of existing pages which
must be crawled in order to discover new web sites. The
results here show that many more pages must be crawled
to discover new sites than to discover new pages on existing
sites, due to the propensity of webmasters to include useful
pages guiding us to new information (e.g., the “What’s new”
page). Depending on the fraction of new sites that must be
covered, each page fetch will yield between 1.5 and 3 new
sites. However, as we observed above, each of these sites
will return on average 18.1 pages, resulting in an overall
overhead of 3.7% even for 100% coverage. These results,
combined with the observation from Table 1 that most new
pages occur on old sites, convince us to focus the remainder
of our exploration on existing sites.

4. HISTORY-BASED ALGORITHMS
In the previous section, we studied the feasibility of using

a small set of existing pages to cover most of newly generated
content — i.e., given the bipartite graph Ht, we measured
whether there exists a small set of old pages with links to
most of the new content. Now we move to the algorithmic
question of choosing such a set of pages when we do not
know the entire bipartite graph Ht. We assume that we have
access to the old nodes Xt but not to Zt, the set of edges,
or to Yt, the set of new nodes. (In reality, we may only have
access to a subset of Xt since some nodes in Xt may not
have been discovered at t due to incomplete crawling before
t. We ignore this for now.)

In this section we explore algorithms that use historical
information, i.e., statistics from Ht−i, in order to discover
new content in Ht. There are two separate questions: how

to aggregate information from the various Ht−i to estimate
relevant statistics, and second and more open-ended, which
statistics lead to good covers?

To address this, we describe and evaluate three algorithms
which employ different statistics gathered from past obser-
vations to solve the k-budgeted cover problem. The first
algorithm, OD (OutDegree), crawls pages according to the
number of new nodes discovered historically when crawling
the page, i.e., based on the degrees of nodes in Xt−i. The
second algorithm CLIQ uses information about overlaps in
the set of new nodes discovered by each pair of pages in
addition to observed degree information. Rather than com-
puting and storing all pairwise information between existing
nodes, CLIQ groups existing nodes into clusters that have
produced the same set of pages in the past, according to
the gap observation of Section 3.2.1, and employs this in-
formation in order to choose a cover. The third algorithm
COV uses historical results of the algorithm Greedy, i.e.
it chooses to track nodes that were previously in the cover
constructed from full recrawls of the data.

In what follows, we define S? be the optimal solution to
the k-budgeted cover problem on Ht (Section 2). Let S
be the solution returned by an algorithm Alg. We define
ρ(Alg) as the ratio of the number of new nodes covered by
S to that covered by S?, i.e., ρ(Alg) = N(S)/N(S?). We
use N to denote the total number of new pages.

4.1 Algorithm based on outdegree
We consider a very basic algorithm first. Suppose that for

every old node i, we have an estimate of pi = |N(i)|/N , the
fraction of new nodes covered by i. A natural algorithm for
k-budgeted cover is the following: pick k old nodes with the
largest pi’s and crawl these nodes. We refer to this algorithm
as OD.

Lemma 1. Let p[j] denote the j-th largest of the pi’s. Then,

ρ(OD) ≥ p[1]

p[1]+
P2k−1

i=k+1 p[i]
.

Proof. Suppose there are N1 new pages obtained from
nodes with degrees p[2], ..., p[k] that are distinct from the
new pages obtained from p[1]. The number of new pages
found by the greedy algorithm is Np[1] + N1. The number
of newpages found by the optimum cannot be greater than
Np[1] + N1 + N

P2k
i=k+1 p[i] (the p[i] are decreasing). So

ρ(OD) ≥
Np[1] + N1

Np[1] + N1 + N
P2k−1

i=k+1 p[i]

≥
p[1]

p[1] +
P2k−1

i=k+1 p[i]

.

The above bound is tight. If the degree distribution of nodes
in Xt is a power law, the bound shows that this naive al-
gorithm will perform very well. However the presence of
mirrors can cause this fraction to be as small as 1/k. This,
together with the observations in Section 3.2.1, lead to the
next algorithm.

4.2 Algorithms based on overlap
Here we describe an algorithm for choosing a small cover

that exploits estimated overlap information. Let pi be as
above, and for a pair of old nodes i, j, let pij be the fraction
of new nodes that i and j both cover: pij = |N(i)∩N(j)|/N .
Section 3.2.1 showed that most pages overlap in either a
very large or a very small set of links. We state a lemma

showing that under an idealized form of this observation,
it is possible to uniquely partition pages into groups that
all link to almost the same set of new nodes. Let Jij =
|N(i)∩N(j)|/|N(i)∪N(j)| be the Jaccard coefficient of the
pair of old nodes i and j. Then:

Lemma 2. Let εb, εs ≤ 1/3. If for all pages i, j, we have
either Jij ≥ 1 − εb or Jij ≤ εs, then the set of old nodes
Xt can be partitioned into equivalence classes, where every
pair of old nodes i, j in an equivalence class has Jaccard
coefficient Jij ≥ (1− εb).

Proof. We will show that for such ε, if Jij ≥ 1 − εb,
Jjk ≥ 1− εb, then Jik cannot be less than εs.

From the assumptions, |N(i) \ N(j)| ≤ εb|N(i) ∪ N(j)|,
and similarly |N(k) \ N(j)| ≤ εb|N(k) ∪ N(j)|. So the
most number of elements not in common between i and k is
εb(|N(i) ∪N(j)|+ |N(j) ∪N(k)|), i.e.,

|N(i) ∩N(k)| ≥ |N(i) ∪N(k)| −
εb(|N(i) ∪N(j)|+ |N(j) ∪N(k)|)

⇒ Jik ≥ 1− εb
(|N(i) ∪N(j)|+ |N(j) ∪N(k)|

|N(i) ∪N(k)|

≥ 1− εb

„
|N(i) ∪N(j)|

|N(i)| +
|N(k) ∪N(j)|

|N(k)|

«
≥ 1− εb

„
1

1− εb
+

1

1− εb

«
,

which is strictly greater than εs for εb, εs ≤ 1/3. The last line
follows from |N(i)| ≥ |N(i) ∩N(j)| ≥ (1− εb)|N(i) ∪N(j),
and similarly for k. In summary, we showed that Jij ≥
(1− εb), Jjk ≥ (1− εb) ⇒ Jik > εs for εb, εs ≤ 1/3. By our
assumption, Jik is either greater equal (1− εb) or less equal
εs, so we have shown that Jik ≥ (1− εb), i.e., old nodes can
be partitioned into equivalence classes.

We analyze the performance of the following algorithm,
CLIQ. Let C1, . . . , C` be the equivalence classes as above
and let k′ = min(k, `). Let qi = maxj∈Ci pj be the degree
of the highest-degree node in the i-th equivalence class and
let ni be the node with this degree. We first sort C1, . . . , C`

in order of descending pi’s. The output S of the algorithm
is the set of ni’s corresponding to the k′ largest qi’s.

Theorem 1. ρ(CLIQ) ≥ 1−k′εs
1+kεb

.

Proof. First we lower bound the number of new nodes
obtained by CLIQ. Denote by Tj the number of new nodes
obtained by adding j to S. From n1 we get T1 = Nq1 new
nodes. Define qij = pninj = |N(ni) ∩ N(nj)|/N . From the

jth node added by CLIQ, the number of new nodes obtained
is Tj ≥ Nqj−

Pj−1
i=1 Nqij . Since ni and nj belong in different

classes, Jninj ≤ εs, so

qij ≤
Jninj |N(ni) ∪N(nj)|

N

≤ εs(|N(ni)|+ |N(nj)|)
N

= εs(qi + qj).

Substituting above, Tj ≥ Nqj − Nεs

Pj−1
i=1 (qi + qj). Sum-

ming over all j,

k′X
i=1

Ti ≥
k′X

i=1

Nqi −

X
j<i

Nεs(qi + qj)

!

≥
k′X

i=1

Nqi(1− k′εs).

Now we upper bound the number of newnodes covered
by the optimum. The optimum cannot choose more than
k nodes from a class Ci, and so it cannot get more than
(1 + kεb)qi newnodes from Ci: every new node added after
ni contributes no more than εNqi newnodes to N(Ci). Since
the cliques are ranked in order of decreasing degree, the qi’s
of the k′ cliques chosen by the optimum are upper bounded
by the k′ highest qis (chosen by CLIQ), and so optimum is

upper bounded by (1 + kε)N
Pk′

i=1 qi. So ρ(CLIQ) ≥ (1 −
k′εs)/(1 + kεb).

In reality, not all pairs of old nodes may satisfy the con-
dition in Lemma 2 with sufficiently small values of εb, εs,
in which case we do not obtain the equivalence classes in
Lemma 2. We use a modified version of the algorithm,
where we first group the old nodes into clusters recursively
defined as follows. We choose a value for the parameter εb,
and initialize with every node in its own cluster. We merge
the clusters so that an old node i belongs to a cluster C if
maxj∈C Jij ≥ 1− εb, i.e., it has high overlap with any other
node in the cluster. (Note that this partitioning into clus-
ters is well-defined.) We then run CLIQ using these clusters
instead of equivalence classes.

4.3 Algorithm based on greedy cover
Finally, we describe an algorithm COV that exploits pre-

viously observed cover information. Let S be the set of old
nodes returned by the Greedy algorithm for the k-budgeted
cover on Ht′ where t′ is the index of the most recent com-
plete recrawl. The algorithm COV uses this set S of size k
as the cover till the next recrawl. This algorithm has the fol-
lowing disadvantages over CLIQ : a cover cannot be defined
unless the site is completely crawled, whereas pairwise over-
lap information can still be gathered from partial recrawls.
Also, it is not easy to ‘average’ cover information from multi-
ple recrawls but overlap information can be averaged across
recrawls.

4.4 Aggregating past observations
There are two aspects to the problem of aggregating past

information: the frequency ∆ of the recrawl (ı.e., full re-
crawls every ∆ timesteps), and how to aggregate informa-
tion obtained from past recrawls. Given a recrawl frequency
∆, we aggregate degree statistics, i.e., the pi, using exponen-
tial weighting with parameter α, i.e., our estimate of pi at

time t is pt
i =

P
t′ αt−t′pt′

i , where t′ ranges over the time
indices when a full recrawl was performed. We refer to OD
with this method of estimating pi as OD-WIN. The partic-
ular instance of OD-WIN with the recrawl frequency ∆ = 1
is called OD-ALL. We refer to the algorithm with arbi-
trary ∆, but pt

i as measured from the most recent recrawl,
as OD-1.

To approximate the statistics for CLIQ, we do the follow-
ing. To the set of all clusters from the most recent recrawl,
we add one cluster for every old node in Xt that ever linked

to a new node in any past recrawl. The qi for these sin-
gleton clusters is the estimate pt

i as computed above. We
apply CLIQ to this set of clusters with the corresponding
parameters. We will refer to this algorithm as CLIQ-WIN.
As above, we refer to the version of the algorithm with pt

i

measured from the most recent recrawl as CLIQ-1.

4.5 Upper bounds on performance of histori-
cal algorithms

We begin by constructing an upper bound as follows. At
time t, we recrawl all pages that have linked to at least
one new node in the past. Any new node which cannot be
discovered by this technique will be very difficult to find; in
fact, it is hard to imagine finding such nodes without simply
exploring the entire site.

We then perform an experiment to explore the decay in
discovery as we use increasingly remote information, as fol-
lows. We imagine a periodic full recrawl of a site every w
timesteps, and at each week we make use only of pages which
linked to a new node during some past periodic recrawl;
thus, in the worst case, if w = 4 we make use of information
which is three timesteps old. The following table shows the
results:

Alg Full Periodic,w = 2 Periodic, w = 4
Percent 74% 64% 59%

Thus, it is theoretically possible to discover 74% of new
pages with some level of efficiency better than crawling the
entire web, but as the freshness of our information decays,
the fraction of new content we can realistically expect to
discover also drops. In the following section, we will study
how close to these upper bounds our algorithms come, as a
function of the amount of effort expended.

4.6 Analysis of historical algorithms

Some care is required in our evaluation methodology for
this section. We compare a number of algorithms which may
have access to differing numbers of recrawl candidates, so we
may see an algorithm which performs very well when asked
to produce a cover of 80%, but which is unable to produce
a cover of 90%. We adopt the following methodology:

We fix a budget k, which is the maximum number of re-
crawls that may be performed at a particular site. We eval-
uate each algorithm at each time, and ask it to cover as
large a set of newnodes as possible, using no more than k
old nodes. We then measure for each algorithm the average
cover size produced (which may be less than k), the average
efficiency (computed as total number of covered nodes over
sum of sizes of all covers), and the average coverage (mea-
sured as total number of covered nodes on all sites at all
timesteps divided by total number of new nodes on all sites
and all time steps). We repeat these measurements for all
values of k, so that we can, for instance, compare covers of
a particular average depth, or a particular level of coverage.

We performed an experiment to compare all our historical
algorithms against an approximation to optimal, in the form
of Algorithm Greedy. For all versions of CLIQ, we used
εb = 0.8. We evaluated various values for the exponential
decay parameter α, and found that α = 0.8 and α = 1
perform well. We adopt α = 1 henceforth.

The results are shown in Table 2. Here are some conclu-
sions that might be drawn from the data.

(1) Upper bound on historical algorithms: Algo-

rithm OD-ALL with infinite budget will eventually crawl
every page that has historically produced an outlink to new
content. Disturbingly, even this aggressive approach is suf-
ficient to cover only 74% of the new content. This suggests
that much new content during any given week is extremely
difficult to discover.

(2) Extent of historical information: Algorithms
OD-WIN and CLIQ-WIN, averaged over recrawl frequen-
cies ranging from 2 to 6, capture 69% of the new content.
Algorithm OD-1, which has access only to the information
from the most recent recrawl, is able to capture only 44%
of the new content—the set of old nodes considered for any
time step is the smallest for OD-1. Thus, the entire col-
lection of pages which referenced new content during the
previous week is not adequate to discover new content dur-
ing the current week, and in fact captures only 55% of the
content that can be discovered using pages that have histor-
ically linked to new content. Purely recent statistics are not
sufficient to discover new content effectively.

(3) Comparison between different statistics: The
algorithms CLIQ-WIN and OD-WIN perform similarly to
each other in both efficiency and coverage, while the COV
algorithm provides better efficiency, but with less coverage.
We observe that incorporating aggregated past information
significantly improves the efficiency of OD, but has smaller
impact on CLIQ-1. Recall that the primary advantage of
the CLIQ-1/CLIQ-WIN family is that they make more
efficient use of collections of pages, all of which reference
the same new content. The impact of aggregated historical
statistics is sufficient to make this overlap almost irrelevant
in terms of both efficiency and coverage, and therefore it is
enough to track degree statistics over time.

Based on these observations, we move to an evaluation of
realistic candidates for discovery algorithms. Figure 9 plots
coverage as a function of average depth (which is equiva-
lent to average cover size) based on statistical information
created during the previous timestep (and earlier for algo-
rithms which aggregate historical information). There are
two conclusions. First, COV performs very well up to 32%
coverage, then is unable to cover any more new content.
Second, Algorithm CLIQ and algorithm OL perform very
similarly, and have the best coverage in the limit.

Figure 10 shows the same information when historical
data is available based only on monthly recrawls. The scal-
ing of the x axis allows the efficiency of the algorithms to
be compared, but does not show that total coverage asymp-
totes at 59% rather than 69% when more recent information
is available.

Our conclusion is the following. For highly efficient dis-
covery of a smaller fraction of new content, COV performs
exceptionally well. But for discovery of as much new con-
tent as is realistically possible, algorithm OD-WIN performs
nearly as well as alternatives and is particularly simple to
implement.

5. FUTURE WORK
All the previous algorithms assume periodic complete re-

crawls to aid discovery of new content but do not account
for the associated cost. Ideally we would like to allocate the
crawler budget more efficiently to simultaneously exploit al-
ready known high yield pages as well as explore other pos-
sible nodes with unknown yield.

Given a limited crawler budget, we model the tradeoff be-

Budget Depth Efficiency Coverage
CLIQ-WIN

1 0.00 6.77 8%
10 4.34 2.01 19%
100 37.09 0.84 37%
1000 218.34 0.65 52%
10000 647.63 0.64 69%

COV
1 0.00 7.46 9%
10 2.91 2.70 23%
100 9.36 1.72 37%
1000 11.80 1.72 37%
10000 13.40 1.72 37%

OD-WIN
1 0.00 6.79 8%
10 4.35 1.93 18%
100 37.30 0.83 35%
1000 218.07 0.66 53%
10000 649.17 0.65 69%

OD− 1
1 0.00 7.42 9%
10 3.65 2.21 21%
100 21.82 0.94 28%
1000 67.49 0.91 43%
10000 181.77 0.91 44%

Optimal
1 0.00 45.02 56%
10 3.03 7.82 81%
100 9.65 3.79 95%
1000 11.96 3.74 98%
10000 13.56 3.74 100%

OD-ALL-1
1 0.00 12.83 16%
10 4.49 2.36 24%
100 40.09 0.82 36%
1000 249.05 0.62 55%
10000 870.83 0.61 74%

Table 2: Analysis of covers produced by historical
algorithms.

Figure 9: Coverage as a function of average cover
size, recrawl frequency 1.

Figure 10: Coverage as a function of average cover
size, recrawl frequency 4.

tween crawling nodes with known high yield (exploitation),
and nodes with unknown yield to discover other high yield
nodes (exploration) as an instance of the multi-armed ban-
dit problem [15, 1], which is the following: the bandit has n
arms, and each arm is associated with a fixed payoff proba-
bility that is unknown to the policy. At every timestep each
of the n arms generates unit reward with the corresponding
payoff probability. The bandit policy can activate k arms
at each timestep. On activating an arm, the policy collects
the reward generated by that arm in that timestep (which is
either 0 or 1), and can simultaneously update its estimate of
the payoff probability of that arm. The aim is to maximize
the total expected payoff of the policy over time.

Note that designing a reward function for a bandit policy
is nontrivial in this setting, since the total reward of a set
of k arms can be less than the sum of the rewards from
each arm, unlike the usual setting. However, based on the
performance of OD-WIN, we design the bandit policy to
converge to the set of k arms with the highest (aggregated)
outdegrees. In our case the arrival of each new node defines
a timestep. Each existing node is an arm of the bandit
with payoff probability pi, the mean fraction of new nodes it
covers. Unlike the conventional bandit formulation, k arms
are not activated for each new node arrival, but rather in
batches corresponding to snapshots.

Various bandit policies [1, 15] can be used with the above
formulation. Early experiments indicate that the bandit
policies can lead up to discovery of 64% coverage of new
content, with efficiency comparable to OD-WIN. We hope
to include detailed experiments in a full version.

Acknowledgments. We are very grateful to our colleagues
who have provided us with valuable data to perform this
study. Thanks in particular to Ricardo Baeza-Yates, Carlos
Castillo, and Rodrigo Scheihing of Yahoo! Research Barcelona
for providing the Chilean web data, and to Junghoo Cho of
UCLA for providing the site recrawl data.

6. REFERENCES
[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time

analysis of the multiarmed bandit problem. Machine
Learning, 47(2/3):235–256, 2002.

[2] A.-L. Barabasi and R. Albert. Emergence of scaling in
random networks. Science, 286:509–512, 1999.

[3] B. E. Brewington and G. Cybenko. How dynamic is
the web? In Proc. 9th WWW Conference, 2000.

[4] A. Broder, R. Kumar, F. Maghoul, P. Raghavan,
S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.
Graph structure in the web. In Proc. 9th WWW
Conference, 2000.

[5] J. Cho and H. Garcia-Molina. The evolution of the
web and implications for an incremental crawler. In
Proc. 26th VLDB Conference, 2000.

[6] J. Cho and H. Garcia-Molina. Synchronizing a
database to improve freshness. In Proc. ACM
SIGMOD, 2000.

[7] J. Cho, H. Garcia-Molina, and L. Page. Efficient
crawling through url ordering. Comput. Netw. ISDN
Syst., 30(1-7):161–172, 1998.

[8] F. Douglis, A. Feldmann, and B. Krishnamurthy. Rate
of change and other metrics: a live study of the world
wide web. In Proc. of the USENIX Symposium on
Internet Technologies and Systems, 1997.

[9] J. E. Coffman, Z. Liu, and R. R. Weber. Optimal
robot scheduling. Journal of Scheduling, 1(1), 1998.

[10] J. Edwards, K. McCurley, and J. Tomlin. An adaptive
model for optimizing performance of an incremental
web crawler. In WWW ’01: Proceedings of the 10th
international conference on World Wide Web, pages
106–113, New York, NY, USA, 2001. ACM Press.

[11] N. Eiron, K. S. McCurley, and J. A. Tomlin. Ranking
the web frontier. In WWW ’04: Proceedings of the
13th international conference on World Wide Web,
pages 309–318, New York, NY, USA, 2004. ACM
Press.

[12] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the internet topology. In
Proc. ACM SIGCOMM, pages 251–262, 1999.

[13] D. Fetterly, M. Manasse, and M. Najork. the evolution
of clusters of near-duplicate web pages. In 1st Latin
American Web Congress, Nov, 2003.

[14] D. Fetterly, M. Manasse, M. Najork, and J. L.
Wiener. A large-scale study of the evolution of web
pages. In Proc. 12th WWW Conference, 2003.

[15] J. Gittins. Bandit Processes and Dynamic Allocation
Indices. John Wiley, 1989.

[16] M. Kearns. The Computational Complexity of
Machine Learning. MIT Press, Cambridge, 1990.

[17] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Trawling the web for emerging
cyber-communities. WWW8 / Computer Networks,
31:1481–1493, 1999.

[18] M. Mitzenmacher. A brief history of lognormal and
power law distributions. Internet Math., 1(2):226–251,
2004.

[19] A. Ntoulas, J. Cho, and C. Olston. What’s new on the
web? the evolution of the web from a search engine
perspective. In Proc. 13th WWW Conference, 2004.

[20] A. Ntoulas, J. Cho, and C. Olston. What’s new on the
web?: the evolution of the web from a search engine
perspective. In WWW ’04: Proceedings of the 13th
international conference on World Wide Web, pages
1–12, New York, NY, USA, 2004. ACM Press.

[21] S. Pandey and C. Olston. User-centric web crawling.
In WWW ’05: Proceedings of the 14th international

conference on World Wide Web, pages 401–411, New
York, NY, USA, 2005. ACM Press.

[22] J. Pitkow and P. Pirolli. Life, death, and lawfulness on
the electronic frontier. In Proc. SIGCHI, 1997.

[23] P. Slavik. Approximation algorithms for set cover and
related problems. PhD thesis, SUNY at Buffalo, 1998.

[24] V. V. Vazirani. Approximation Algorithms. Springer,
Aug 1, 2001.

[25] J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman,
and L. Ozsen. Optimal crawling strategies for web
search engines. In Proc. 11th WWW Conference, 2002.

