
RAY TRACING FOR CURVES PRIMITIVE

Koji Nakamaru
maru@on.cs.keio.ac.jp

Yoshio Ohno
ohno@on.cs.keio.ac.jp

Ohno Lab, Graduate School of Computer Science,
Faculty of Science and Technology, Keio University

3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 Japan

ABSTRACT

The Curves primitive defined in RenderMan is useful for modelling and rendering ribbonlike objects.
This paper gives a simple framework for ray-curve intersection tests in ray tracing, and provides concrete
details for one form of the primitive. The form is especially important for fine objects such as hair and fur.

Keywords: ray tracing, curve, renderman, hair, fur

1 INTRODUCTION

The RenderMan Interface specification is the de facto
standard in high-end computer graphics. The re-
cent specification defines a usefulCurves primitive,
which provides users a way to define ribbonlike ob-
jects naturally [Apoda00]. Although its general form
is handled as connected patches, the most interesting
form is the one always facing the camera. This form
is a good way to simulate thin tubes such as hair, and
RenderMan-compliant commercial renderers are able
to render large numbers of such curves efficiently.1

For ray tracing, though there are many algorithms for
testing the intersection of a ray and a variety of prim-
itives, an algorithm for theCurves or similar prim-
itive is not known well. Possible solutions include
(1) replacement with other types of primitives such
as a generalized cylinder [Wijk84] and (2) tessella-
tion into tiny polygons. Compared with such off-
hand solutions, however, handling the primitive di-
rectly reduces both the CPU time and the memory
space, and is also seamlessly adapted to non-ray trac-
ing renderers, because models and shaders can be
shared without tweaking. The two types of renderers
are often combined for achieving the best efficiency
[Apoda00], so that reducing the difference between
them is useful. Furthermore, ray tracing for such

1In the case of PhotoRealistic RenderMan, it is perhaps based
on a highly optimized dicing algorithm for REYES [Cook87] by
utilizing the special property of this form of the primitive. Actu-
ally, the specification seems to be designed ‘reversely’ from this
special form.

lightweight, pseudo-geometry itself is an interesting
topic (see [Schau00], for example).

In this paper, we give a simple framework for ray-
curve intersection tests, and provide concrete details
for the above special form of theCurves primitive.
In ray tracing, that form of the primitive is redefined
as ribbons facing each ray. The resulting algorithm is
simple and easy to implement. This simplicity also
leads to several other applications, though we have
not investigated them deeply. We will briefly discuss
them later.

The rest of this paper is organized as follows. Sec-
tion 2 describes the algorithm, first the framework
and then the details. Section3 shows results, includ-
ing some timings. We discuss several points and con-
clude in Section4.

2 ALGORITHM

In this section, we first give the framework for ray-
curve intersection tests. Based on the framework, we
then describe several details that are required for im-
plementing the whole algorithm.

2.1 Framework

The framework is very simple. It consists of pro-
jection and recursive subdivision, as in many ray-
object intersection tests for curved surfaces [Kajiy82,

mailto:maru@on.cs.keio.ac.jp
mailto:ohno@on.cs.keio.ac.jp

X

Y

0 X

Y

0

Figure 1:A curve after one subdivision. If the
bounding box of aribbon – the bounding box
inflated by considering the width of the ribbon
– does not overlap0 (left), the bounding box
of a curve does not overlap the small square
centered at0 (right).

Nishi90]. We first project the curve onto a two di-
mensional(x, y) coordinate system through an ortho-
graphic projection along the ray. After this projec-
tion, the ray originates at the coordinate system ori-
gin 0 and goes along thez-axis. The projection can
be considered as a product of a translation and a rota-
tion, and is defined by



1 0 0 0
0 1 0 0
0 0 1 0
−ox −oy −oz 1







lz/d −lxly/d lx 0
0 d ly 0

−lx/d −lylz/d lz 0
0 0 0 1




where(lx, ly, lz) is the normalized direction vector
of the ray,(ox, oy, oz) is the origin of the ray, and

d =
√

lx
2 + lz

2. The rotation matrix should be re-
placed with the one that rotates±π/2 around thex-
axis if d is zero, where the rotation direction depends
on the sign ofly. For a rational B́ezier curve, the pro-
jection described in [Nishi90] is also a good choice
because it converts the rational curve into the non-
rational one and therefore the cost of the latter recur-
sive subdivision is reduced.

The next step is to determine whether the ribbon con-
structed from the projected curve overlaps0. For
this condition, the curve must overlap a small square
centered at0, where the square is in the (maximum)
width of the ribbon (Fig.1). We isolate curve seg-
ments by utilizing this square in recursive subdivi-
sion; if the bounding box of a curve segment does
not overlap the square, the ribbon for the curve seg-
ment does not overlap0. We thus avoid inflating the
bounding box of a curve, which is otherwise required
for each curve segment in recursion.

When the maximum recursion depth is reached, each
curve segment is approximated by a line segment, and
we determine the parameter valuew along the line at
which the line has a shortest distance from0. This
value is used for determining the parameter valuev
along the curve. We then compute the point on the

curve – not on the line – atv, compare its distance
from 0 with the half width of the ribbon, and update
the intersection information if necessary. This pro-
cess finally yields the nearest intersection point and
the correspondingv.

The above framework has several advantages. First,
it does not rely on any specific type of curve, so that
adapting it to a new curve is easy. This generality
is similar to that of REYES [Cook87]. Second, it
handles a curve in the 2D plane instead of a patch
in the 3D space, thus reducing many computational
costs. Furthermore, its implementation is simple and
runs fast. In fact, we have tested it in combination
with several other techniques, such as Bézier clip-
ping for bands [Nishi92, Seder90], the nearest-point
solver [Schne90], and forward differencing. Surpris-
ingly, the simplest implementation ran 1.5–2.0 times
as fast as these more complex ones.

2.2 Details

Although the implementation may appear to be
straightforward, several details have not been dis-
cussed yet. In this section, we show concrete details
for a Bézier curve. Many types of curves can be con-
verted into (rational) B́ezier curves, so that the details
described here may be applied to them directly. Some
of the underlying ideas could also be applied to other
types of curves.

Maximum Recursion Depth It is generally more
efficient to determine the maximum recursion depth
in advance, than to only rely on costly flatness tests.
The key point is the determination of the reasonable
depth. We adopt Wang’s method [Wang84], which
determines the depthr0 where the maximum dis-
tance error is less than someε. For control points
(xi, yi)(i = 0, · · · , n), r0 is determined as follows:2

L0 = max
0≤i≤n−2

(|xi − 2xi+1 + xi+2| ,
|yi − 2yi+1 + yi+2|),

r0 = log4

√
2n(n− 1)L0

8ε
.

Wang’s method was originally developed for finding
the intersection of two B́ezier curves, but such high
precision is not required here. We currently take anε
equal to1/20 of the width of the ribbon, and obtain
reasonable results.

2Wang’s paper is difficult to find, but the formula can be derived
easily by combining the discussion in Wallis’ tutorial on forward
differencing [Walli90] and the second order derivative of a Bézier
curve, which is written with the iterated forward difference opera-
tor ∆2 [Farin90].

Q

Figure 2: The conflict region of two adjacent
segments. The pointQ should belong to the
region of the right segment only, but it also be-
longs to the left one.

conflict desirable

Figure 3: Artifacts caused by the conflict be-
tween adjacent segments. The stripe indicates
parameter regions along the curve.

Parameter Value When the maximum recursion
depth is reached, each curve segment whose control
points are(x0, y0), · · · , (xn, yn), is approximated by
a line segment whose end points are(x0, y0) and
(xn, yn). The desired parameter valuew on the line
segment is determined by

w = −x0(xn − x0) + y0(yn − y0)
(xn − x0)2 + (yn − y0)2

,

where we skip the segment if the denominator is zero
and also adjust the values outside[0, 1] by clamping
them. The correspondingv is then determined by

v = v0(1− w) + vnw,

wherev0 andvn corresponds to(x0, y0) and(xn, yn)
respectively. This linear approximation may intro-
duce an error in the direction along the curve, but the
error reduces asε is reduced, so that it has not mat-
tered in our experience.3 Moreover, because the re-
cursion depth does not increase rapidly asε is reduced
and the most part of the curve segment is culled at a
very small recursion depth, we may also use a conser-
vativeε without worrying about computation time.

The above procedure, however, may still produce an
image with undesirable artifacts, because intersection
may be found for both ribbons constructed from two

3If ε is small enough, the error along the curve is bound by
max(|a|)h2/2, wherea is the second order derivative andh is
the parameter step. Consequently, it follows that the error is pro-
portional toε. See Wallis’ tutorial [Walli90], especially Eq. 9 on
page 600.

P0

P3

dP0/3

dP3/3

Q

P0 P3

dP0/3

dP3/3

−dP3/3Q

Figure 4: Hard inflection problem. The point
Q is classified as valid in general (left). It
is, however, invalid if there is hard inflection
(right).

adjacent segments (Fig.2, Fig. 3-conflict). To avoid
this conflict, we separate adjacent ribbons by defin-
ing the valid region of each segment. First, tangent
vectorsdP0 anddPn at end pointsP0 andPn are
determined. For a B́ezier curve segment, these vec-
tors are easily determined from its control points. For
any pointQ, the valid region of one segment is then
defined where the following predicate is satisfied:

dP0 · (Q−P0) ≥ 0 and dPn · (Pn −Q) ≥ 0.

This means that two adjacent segments are separated
by the line perpendicular to the tangent vector at the
shared end point. Note that the predicate is further re-
duced, because only the caseQ = 0 has to be consid-
ered. Note also that the predicate requires only signs
of inner products; a tangent vector of correct length
is not required.

We must also handle hard inflection carefully (Fig.4).
If there is inflection, the above predicate does not
hold and a crack may occur. To deal with this case,
we reverse each tangent vectordP∗ if

dP∗ · (Pn −P0) < 0.

It is also good to ensure that each curve has no in-
flection point, by subdividing the curve at extreme
points. For a B́ezier curve of low degree, this can
be done easily. Note also that Akleman discussed a
similar problem in [Aklem98].

By applying the above techniques, we finally achieve
a desirable image (Fig.3-desirable). The pseudocode
for Bézier curves is shown in Fig.5.

Distance Tolerance In a ray tracer, some small dis-
tance tolerance from a ray origin is used for avoiding
numerical imprecision. The tolerance for theCurves
primitive should be defined by considering its width,
because the primitive always faces a ray. We cur-
rently use the tolerance that has length twice the
primitive’s width, and it works well (Fig.6). Pearce’s
method [Pearc91], which skips a self-shadowing test
by assigning the identifier of a shadow ray to the
primitive’s mailbox, is also useful, because generally
the primitive is very thin and self-shadowing does not
affect images much.

Other Tips A ray often passes through many
curves, so that it is good to cache the projection ma-
trix that must be calculated only once for each ray. It
is also good to implement the algorithm using single-
precision arithmetic, because the algorithm is numer-
ically stable. Although the effectiveness of these
techniques depends on the hardware environment and
the scene, we have experienced 10–30% reductions
of total CPU time.

3 RESULTS

We have run our implementation under Linux on a
Pentium II (450MHz) PC. All images were generated
in 512× 512 pixels. We used a single regular sample
per pixel for Fig.6, and3 × 3 jittered samples per
pixel for Fig.7.

Fig. 6 shows three images and timings for compar-
ing our implementation with other public implemen-
tations, although the types of geometry differ from
each other. These images were generated by three
ray tracers: ours, ZENO (version 1.0),4 and MegaPov
(version 0.7).5 For the latter two ray tracers, the
geometry was defined as a generalized cylinder, for
which ZENO applies Hart’s sphere-tracing [Hart96]
and MegaPov applies Wijk’s method [Wijk84]. Note
that these codes differ from each other, and many
conditions – including the types of geometry – are
different. Our intention here is to show how the
lightweightCurves primitive is realized through our
algorithm, by comparing it with other primitives that
may be used for modelling hair, etc. Note also that
our rendering images always show smooth curves:
the polygonal approximation might seem to be suf-
ficient and fast, but it is not clear how we can deter-
mine an appropriate tessellation rate in ray tracing.
For the image generated by our method, we enabled
self-shadowing and did not apply the ‘other tips’ dis-
cussed at the last paragraph of Section2.2, so that the
comparison makes sense.

Timings in this figure show that our implementation
was much faster than others. MegaPov was faster
than ZENO, though the image rendered by MegaPov
shows some ‘surface acne’ that is seemingly due to
numerical errors.

Fig. 7 shows more complex examples, including
shadows, reflection, refraction, and the primitives of
varying width. We utilized uniform spatial subdivi-
sion and disabled self-shadowing for those examples.
Note that smooth shapes are always achieved. This is
one of benefits of handling the primitive directly.

4http://implicit.eecs.wsu.edu/sjenkins/
5http://nathan.kopp.com/patched.htm

float _width1;
float _width2;

bool BezierCurve::intersect(
Ray r,
float *t)

{
_width1 = c.width / 2;
_width2 = _width1 * _width1;
Transformation tr = r.projection();
BezierCurve c = tr.transform(*this);
int depth = c.maxdepth();
return converge(depth, c, 0, 1, t);

}

bool BezierCurve::converge(
int depth, BezierCurve c, float v0, float vn,
float *t)

{
Rectangle b = c.bbox();
if (b.min.z >= *t || b.max.z <= kEpsilon

|| b.min.x >= _width1 || b.max.x <= -_width1
|| b.min.y >= _width1 || b.max.y <= -_width1) {

/// the bounding box does not overlap the square
/// centered at O.

return false;
} else if (depth == 0) {

/// the maximum recursion depth is reached.

Vector dir = c.p[c.n] - c.p[0];

// check if dP0.(Q-P0)>=0 and dPn.(Pn-Q)>=0.
// dP* is reversed if necessary.
Vector dp0 = c.dp(0);
if (dot(dir, dp0) < 0)

dp0 *= -1;
if (dot(dp0, -c.p[0]) < 0)

return false;
Vector dpn = c.dp(1);
if (dot(dir, dpn) < 0)

dpn *= -1;
if (dot(dpn, c.p[n]) < 0)

return false;

// compute w on the line segment.
float w = dir.x * dir.x + dir.y * dir.y;
if (w == 0)

return false;
w = -(c.p[0].x * dir.x + c.p[0].y * dir.y) / w;
w = clamp(w, 0, 1);

// compute v on the curve segment.
float v = v0 * (1 - w) + vn * w;

// compare x-y distances.
Vector p = c.evaluate(v);
if (p.x * p.x + p.y * p.y >= _width2

|| q.z <= kEpsilon)
return false;

// compare z distances.
if (*t < p.z)

return false;

// we found a new intersection.
*t = p.z;
return true;

} else {
/// split the curve into two curves and process
/// them.

depth--;
float vm = (v0 + vn) / 2;
BezierCurve cl, cr;
c.split(&cl, &cr);
return

converge(depth, cl, v0, vm, t)
|| converge(depth, cr, vm, vn, t);

}
}

Figure 5:Pseudocode for B́ezier curves.

http://implicit.eecs.wsu.edu/sjenkins/
http://nathan.kopp.com/patched.htm

4 CONCLUSIONS

We have given a simple framework and details for
ray-curve intersection tests in ray tracing. The algo-
rithm is easy to implement and runs fast. We carefully
avoid expensive operations such as square root opera-
tions in most parts, resulting in an efficient algorithm.

In this paper, the primitive always faces a ray, but
the framework is not restricted to it. It can be used
for rapidly determining the parameter region along
a curve, where more accurate tests are then invoked.
Dynamic creation of geometry that corresponds to the
parameter region will enable us to render twisted and
displaced ribbons, and, moreover, to render many tiny
objects instanced along a curve. These are interesting
topics for the future.

ACKNOWLEDGEMENT

We thank the WSCG reviewers for their helpful com-
ments on this work.

REFERENCES

[Aklem98] Ergun Akleman. Implicit surface paint-
ing. In Implicit Surfaces ’98, 1998. Confer-
ence Proceedings.

[Apoda00] Anthony A. Apodaca and Larry Gritz.
Advanced RenderMan. Morgan Kaufmann
Publishers, 340 Pine Street, Sixth Floor, San
Francisco, CA 94104-3205, 2000.

[Cook87] Robert L. Cook, Loren Carpenter, and Ed-
win Catmull. The reyes image rendering ar-
chitecture.Computer Graphics (Proceedings
of SIGGRAPH 87), pages 95–102, July 1987.
Held in Anaheim, California.

[Farin90] Gerald Farin. Curves and Surfaces for
Computer Aided Geometric Design. Aca-
demic Press, 1990.

[Hart96] John C. Hart. Sphere tracing: a geo-
metric method for the antialiased ray tracing
of implicit surfaces. The Visual Computer,
12(9):527–545, 1996. ISSN 0178-2789.

[Kajiy82] James T. Kajiya. Ray tracing parametric
patches.Computer Graphics (SIGGRAPH ’82
Proceedings), 16(3):245–254, July 1982.

[Nishi90] Tomoyuki Nishita, Thomas W. Sederberg,
and Masanori Kakimoto. Ray tracing trimmed
rational surface patches.Computer Graphics
(SIGGRAPH ’90 Proceedings), 24(4):337–
345, August 1990.

[Nishi92] T. Nishita, S. Takita, and E. Nakamae.
Hidden curve elimination of trimmed surfaces
using bezier clipping. InVisual Comput-
ing (Proceedings of CG International ’92).
Springer-Verlag, 1992.

[Pearc91] Andrew Pearce. Avoiding incorrect
shadow intersections for ray tracing. In James
Arvo, editor, Graphics Gems II, pages 275–
276. Academic Press, San Diego, 1991.

[Schau00] G. Schaufler and H. W. Jensen. Ray
tracing point sampled geometry. InEleventh
Eurographics Workshop on Rendering, pages
319–328, Brno, Czech Republic, June 2000.

[Schne90] Philip J. Schneider. Solving the nearest-
point-on-curve problem. In Andrew Glassner,
editor,Graphics Gems, pages 607–611. Aca-
demic Press, San Diego, 1990.

[Seder90] T. Sederberg and T. Nishita. Curve in-
tersection using B́ezier clipping. Computer
Aided Design, 22(9):538–549, 1990.

[Walli90] Bob Wallis. Tutorial on forward differ-
encing. In Andrew Glassner, editor,Graphics
Gems, pages 594–603. Academic Press, San
Diego, 1990.

[Wang84] G. Wang. The subdivision method for
finding the intersection between two bézier
curves or surfaces. Technical report, Zhejiang
University Journal, 1984.

[Wijk84] Jarke J. van Wijk. Ray tracing objects de-
fined by sweeping a sphere. InEurograph-
ics ’84, pages 73–82. Elsevier Science Pub-
lishers, Amsterdam, North-Holland, Septem-
ber 1984. reprinted in Computers and Graph-
ics, Vol 9. No 3, 1985, pp. 283-290.

Ours: 3.38 CPU sec.

ZENO: 47.31 CPU sec.

MegaPov: 20.71 CPU sec.

Figure 6:Comparison with other public ray tracers.

Lawn: 10,000 curves, 10.3 CPU min.

Grass: 5,000 curves, 7.5 CPU min.

Tribble: 100,000 curves, 18.9 CPU min.

Figure 7:More complex examples.

	1 INTRODUCTION
	2 ALGORITHM
	2.1 Framework
	2.2 Details

	3 RESULTS
	4 CONCLUSIONS

