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ABSTRACT

The design space for large, multipath datacenter networks is
large and complex, and no one design fits all purposes. Net-
work architects must trade off many criteria to design cost-
effective, reliable, and maintainable networks, and typically
cannot explore much of the design space. We present Con-
dor, our approach to enabling a rapid, efficient design cycle.
Condor allows architects to express their requirements as con-
straints via a Topology Description Language (TDL), rather
than having to directly specify network structures. Condor
then uses constraint-based synthesis to rapidly generate can-
didate topologies, which can be analyzed against multiple
criteria. We show that TDL supports concise descriptions
of topologies such as fat-trees, BCube, and DCell; that we
can generate known and novel variants of fat-trees with sim-
ple changes to a TDL file; and that we can synthesize large
topologies in tens of seconds. We also show that Condor
supports the daunting task of designing multi-phase network
expansions that can be carried out on live networks.

CCS Concepts

*Networks — Topology analysis and generation; Physical
topologies; Data center networks;
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1. INTRODUCTION

During the design of a datacenter topology, a network ar-
chitect must balance operational goals with technical, physi-
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cal and economic constraints. An ideal network would be re-
silient to any failure, fulfill every application’s requirements,
and remain under budget. Unfortunately, the underlying con-
straints are fundamentally at odds with one another. No single
network topology design is optimal for all use cases [2]], due
(among other things) to differences in scale and workloads,
and changes in the cost and performance of components (such
as switch silicon and opto-electronics).

Hence, architects must understand and make tradeoffs be-
tween the cost and availability of technologies on the market-
place, the complexity of wiring, limits on physical failure do-
mains, and the fundamental limitations of routing algorithms.
Today, balancing these tradeoffs is more art than science. Ar-
chitects continually go back to the drawing board to adapt
and refine existing topologies, or to design new topologies
from scratch.

Today, the process of designing topologies is decidedly
manual: a network architect must invent a set of candidate
topologies, and then try to identify the best. An architect typi-
cally begins by evaluating the utility and feasibility of topolo-
gies described in literature or already deployed in production.
This involves quantifying a topology’s bisection bandwidth,
resiliency to failure, cost, complexity, scalability, and other
metrics. An architect then evaluates minor variations of the
topology, including changes to connectivity, infrastructure,
and scale. This tedious process of modification and evalu-
ation severely limits the number of topologies that can be
explored, leading to heavy reliance on intuition. It is our
belief that this has caused architects to overlook superior
topologies, such as F10 [25]], for many years.

In this paper, we describe Condor, a pipeline that facilitates
the rapid generation and evaluation of candidate topologies,
enabling an architect to aggressively explore the topology
design space. In Condor, architects express topology designs
through a declarative language, which drives a constraint-
based generation system. They can then evaluate the utility
of multiple design options for an expected workload, using
Condor’s analysis framework. This framework facilitates the
evaluation and tuning of a topology design.

Condor has several objectives. We want to make it easier
for network architects to explore a complex design space,
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thus making it easier to discover novel approaches (e.g., the
novel "stripings" we describe in §7) or to rapidly try out
new intuitions. We also want to make it easier to express,
analyze, and refine specific topologies, while understanding
the impact of design choices on tradeoffs between metrics
such as bandwidth, fault tolerance, and routing convergence.
Our approach is especially valuable for designers of large-
scale data-center networks, because of the complexity that
arises at larger scales, but it should also be useful to many
organizations with medium-scale networks.
We make these contributions:

A declarative language for expressing network topology
requirements and goals: Instead of asking architects to de-
sign topologies by hand or to implement special-purpose
topology-generation software, Condor allows an architect to
express requirements and goals using a concise, understand-
able, declarative Topology Description Language (TDL, §3).
Architects use TDL to express high-level properties, rather
than specifying low-level wiring.

A constraint-based synthesizer for generating candidate
topologies: We implemented a topology synthesizer, using an
off-the-shelf constraint solver, to generate specific topologies
that comply with TDL descriptions (§6).

Support for network expansion: Operators of large net-
works typically do not deploy an entire network infrastructure
at once, but instead expand their networks in increments. De-
signing networks to be expandable and designing the phases
of an expansion are both challenging problems. Condor is
designed to help architects navigate these challenges, both
through metrics that evaluate the “expandability” of a net-
work and through TDL and synthesizer support for describ-
ing expandable networks and planning the expansion phases
—including the problem of expanding a “live” network, while
it continues to carry traffic (§9).

2. MOTIVATION

Ideally, a network architect would have a tool that converts
a set of requirements and a list of available components into
the best possible network design.

Such a tool does not exist. Instead, architects must use an
iterative process, generating design options based on their ex-
perience and intuition, then analyzing these options against a
set of metrics, and refining their designs until they are satis-
fied. The design space, however, is immense, and architects
cannot explore much of it in finite time. We therefore seek
a way to speed up this iterative process, while avoiding the
exploration of unpromising options.

People have developed tools that assist with this explo-
ration. Mudigonda et al. [28] designed tools to find good
cost vs. bandwidth tradeoffs for HyperX topologies [1] and
for Extended Generalized Fat Trees (EGFTs) [29]. However,
these tools are not general: they created different algorithms
for HyperX and EGFTs; the algorithms required complex
heuristics to reduce the search space; and they analyzed a
limited set of metrics (cost, bisection bandwidth, and hop-
count). Also, their compute time for even a relatively modest
network (8K servers) starts to grow rapidly. Solnushkin [34]]
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Figure 1: Condor’s design iteration loop
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presents an algorithm for automated design of 2-layer fat-
trees, which improves in some ways on Mudigonda et al. [28]],
but is limited to one kind of tree, and has unknown scaling
properties.

Dieter and Dietz [11]] described the Cluster Design Rules
(CDR) system, which finds an optimal HPC cluster design
given a set of requirements. It chooses among a number of
network designs (originally not including fat-trees, although
this capability was added later [|10]), but it does not directly
allow specification of network properties, including reliabil-
ity, and it appears to have hard-coded strategies for network
topologies. We could not discover its scalability.

Thus, the current state of the art leads to a relatively long
cycle time for iterations that explore novel areas of the design
space: someone has to write and debug complex, design-
specific, procedural code.

We design the Condor pipeline to radically decrease the
cycle time for this iterative process and to avoid the need
to explore poor tradeoffs. As shown in Figure [T} the archi-
tect starts with an intuition about a fabric design, expresses
that intuition in a high-level Topology Description Language
(TDL, §5), invokes a topology synthesizer to generate a set of
candidate topologies (§6), and runs these candidates through
a suite of topology-analysis functions (§8)), to choose the best
option.

The architect may have to iterate several times, developing
better intuition on each cycle, but Condor does not require
anyone to write new topology-specific procedural code, and
(as we show in §@) Condor’s synthesizer runs in minutes
or less. Therefore, the architect can iterate rapidly, while
optimizing for a combination of many metrics at once.

2.1 The Need for Lifecycle Management

Large datacenter networks often grow to accommodate
increasing workloads and evolve to incorporate new tech-
nologies. The owner of such a network needs to manage its
lifecycle, including operations that reconfigure the topology,
such as expansions and switch upgrades.

Network operators may need to perform these operations
on live networks, without reducing capacity below the net-
work’s defined Service Level Objective (SLO) during any
operation. It can be difficult to meet this goal, especially
given a background rate of component failures [[13]], the risks
inherent in making any changes, and the need to split a major
update operation into smaller stages, so as to maintain SLO
compliance.

Condor’s pipeline addresses two specific aspects of life-
cycle management: designing a topology that facilitates fu-
ture expansions and upgrades, and choosing how to split a
network-wide expansion into a set of smaller, SLO-compliant



stages. We postpone discussion of these aspects until §9] so
as to avoid complicating our initial description of Condor.

3. TERMINOLOGY

We introduce some terms that we will use in this paper:

Topology Description Language (TDL): A human-
readable language that enables architects to declaratively ex-
press the high-level properties of a topology’s design.

Model: A concrete specification of a topology, including
physical objects (e.g., switches, links, racks), abstract objects
(e.g., link aggregation groups, pods, power domains), and
relationships (e.g., “pod P contains switches Sy, S», ..., S,”
or “switch S3 contains linecards LCy and LC,”). Condor’s
Synthesizer converts TDL to models, which can then be
evaluated and potentially deployed by network operators.

Striping: The pattern of links inter-connecting compo-
nents in a topology. In a multi-path tree, the striping deter-
mines how uplinks from components at layer L; are spread
across switches at layer L;. [40]]. For recursive topologies,
the striping determines how links are distributed between
groups of components.

Drain: The administrative removal of a link or component
from service. Draining a component drains all child compo-
nents (e.g., draining a rack drains all switches in that rack).

Failure Domain: The set of components that can fail si-
multaneously. Power Domain: The set of components that
could fail due to a fault in one power-delivery component.

4. FABRIC DESIGN FACTORS

Prior work has exposed a vast design space, including fat-
trees [3]], F10 [25]], Quasi fat-trees [43], Aspen trees [40],
Jellyfish [33]], and many others. Ideally, an architect could
simply pick a candidate type from this library, based on an
understanding of each design’s relative strengths and weak-
nesses, then choose parameters to support a specific use case.

This still leaves architects with many degrees of freedom.
First, they may need to modify one of the canonical designs to
reduce costs or to meet other requirements — for example, they
can create over-subscribed fat-trees[l] Second,the architect
may have to choose a striping out of a large possible space.

In order to choose between the many available options, an
architect must consider many constraints and objectives that
apply to datacenter networks. In this section, we discuss the
most important of these.

Capital, installation, and energy costs: Architects must
consider how much it costs to build a network; “bandwidth
at any cost” is not a prudent business model. Prior work [11}
28,3134 has covered cost-optimization; we omit further
discussion of such costs for reasons of space.

Bandwidth and latency objectives: The efficiency of
many applications is dependent on low-loss and low-latency
communication with applications and services located on
other machines. Architects must ensure that sufficient inter-
connection bandwidth is available to minimize the potential

ISome people reserve the term “fat-tree” for non-blocking
fabrics [2]]; we use the term in its looser sense.

for congestion and minimize the path length between ma-
chines when possible. However, acceptable bounds on both
loss and latency depend heavily on the application workload;
two different workloads may vary radically in terms of their
tolerance for both loss and latency.

Conceptual complexity: Even if a design is technologi-
cally feasible and cost-effective, operators may object to sup-
porting it. For instance, Walraed-Sullivan et al. noted [39]
that network operators were unwilling to work with random
rack-level topologies, such as Jellyfish [33]], because it would
have been too hard to maintain a human-readable map of
the network. Some fat-tree designs also create conceptual
complexity for operators and installers; two stripings that are
isomorphic may still differ in how easy they are to visualize.

Reliability: While power, cooling, and other critical data-
center infrastructure are often N + 1-redundant, it is seldom
cost-effective to build N + 1-redundant networks. Instead,
architects design topologies that gracefully degrade when
faced with inevitable component failures. Some prior work
has defined reliability in terms of the absence of a parti-
tion [8}9,[39]], but an architect may not only want to avoid
a partition, but to maintain a given SLO (such as “75% of
designed bandwidth”) under N component failures.

Some designs, such as F10 [25], are inherently more re-
silient than others. Alternatively, an architect may choose to
add spare capacity to a design, to increase reliability. These
choices have costs, so an architect must use a specific failure
model, such as MTBF and MTTR for various components,
to understand if a design is sufficiently fault-tolerant.

Routing convergence time: Some designs manage routing
with distributed routing protocols [4}/7] (e.g., OSPF/BGP);
others use centralized SDN controllers [[32]. For all such
mechanisms, the time for the network to converge to correct
routing (loop-free and black-hole-free) depends on the under-
lying topology. In particular, the topology design determines
the number of devices that routing-related information needs
to be distributed to, and/or the number of hops this informa-
tion must propagate. We discuss both metrics in §8]

Expandability: As we discussed in §2.1] network owners
often need to expand a fabric after installation, sometimes
more than once — and may need to do this while the network
carries traffic at or near its SLO.

Architects can design fabrics expandable in cost-effective
increments [4] that minimize (as much as possible) opera-
tional costs while maximizing the chances of maintaining
SLOs, even in the face of unplanned component failures dur-
ing the expansion operation. One may also need to create
designs that represent intermediate steps in an expansion, if
a single-step expansion would inherently violate an SLO.

Other issues, including physical constraints and compati-
bility with routing protocols, may also apply; space does not
permit us to cover these.

5. TOPOLOGY DESCRIPTION

An architect expresses a network design using Condor’s
Topology Description Language (TDL). TDL is a declarative
language that is embedded in an object-oriented language,



such as Python or C++, as an Embedded Domain-Specific
Language. TDL is “declarative” in the sense that it is not
used to procedurally define a concrete network topology.
Instead, architects use TDL to express a topology’s structural
building blocks and the relationships between them (§5.1),
along with potential connectivity (§5.2.1), and constraints
on connectivity (§5.2.2). Condor’s synthesizer (§6]) converts
TDL into a set of candidate models (§E]), each of which
represents a concrete topology that satisfies the constraints
declared in TDL. Thus, Condor allows an architect to focus
on defining the characteristics of the desired topology, rather
than on writing procedural code to explore the design space.

TDL is most similar to NED [38]], a language incorpo-
rated into the OMNeT++ [37] network simulation frame-
work. However, an architect uses NED to describe a con-
crete topology, and must procedurally define the connectivity
among building blocks.

A given TDL description specifies a (possibly empty) set
of candidates, rather than exactly one, because there is no a
priorireason to assume that exactly one topology satisfies the
chosen constraints. We expect an architect will explore the
design space by adding and removing constraints, and then
applying the analysis suite (§8)) to decide which, if any, of the
candidates meets their requirements. This iterative process is
required because we do not know how to express all of an
architect’s high-level objectives, such as SLO compliance,
as constraints on connectivity. While we expect architects to
examine the models (via a visualization tool) to gain insight
into the candidates, they never directly edit these models. If
they need to make changes, they must modify the building
blocks, constraints, and other details in the TDL description,
and synthesize new candidates. Separating a topology’s de-
scription from the procedural code required for generating a
model makes it easier to capture and understand an architect’s
intent, dramatically reducing the potential for errors.

TDL can be spread across multiple files, known as a TDL
file-set, which in our current system consists of one or more
Python modules. The use of multiple files supports mod-
ularity and reuse. In addition, TDL makes it easy to re-use
common aspects of network designs: not just building blocks,
but especially the essential aspects of a “species” of related
fabrics. That is, an architect can start with a generic species
(e.g, a fat-tree built from 48-port switches) and then include
additional constraints to create a concrete “individual” net-
work. We designed the TDL to support a wide range of
topology species, including tree [3}125]], Quasi fat-tree [43],
recursive [15}/16], some flattened-butterfly topologies [22],
Quartz [26], Jellyfish [33]], and others.

We show how TDL can be used to express a fat-tree topol-
ogy [3]] in Figure[2] We will refer to this example throughout
our discussion of TDL constructs.

5.1 Describing Building Blocks

An architect begins by describing a topology’s common
building blocks, each representing a physical component,
such as a switch, patch panel, or rack, or a logical component,
such as a “pod” in a fat-tree topology [3[]. The architect can
also describe parent-child (“‘contains”) relationships between
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# reusable 10GbE switch building block
class SwitchlOGbE extends TDLSwitchBlock:
function Switchl@GbE(num_ports, name):
port = new TDLPortBlock(TENGBPS)

Contains(port, num_ports)

# parameterizable FatTree building block
class FatTree extends TDLBuildingBlock:
function FatTree(num_pods):
# equations from Alfares et al. 2008
num_ports = num_pods
num_spines = pow(num_pods / 2, 2)
num_sw_per_pod_tier = num_pods / 2

# spine, agg, & ToR switches

spine = new SwitchlOGbE(num_ports, "spine")
agg = new SwitchlOGbE(num_ports, "agg")

tor = new SwitchlOGbE(num_ports, "tor")

# a pod contains agg and ToR switches
pod = new TDLBuildingBlock("pod")

pod.Contains(agg, num_sw_per_pod_tier)
pod.Contains(tor, num_sw_per_pod_tier)

# a fat-tree contains spines and pods
Contains(spine, num_spines)
Contains(pod, num_pods)

# pairs of components eligible for connection
pod_connector = pod.Connects(agg, tor)
s_connector = Connects(spine, agg)

# constraints on the Connector objects
# in each pod, an agg connects to every ToR
pod_connector.ConnectPairsWithXLinks (agg, tor, 1)

# every spine connects to every pod
s_connector.ConnectPairsWithXLinks (spine, pod, 1)

Figure 2: TDL pseudocode describing a fat-tree topology

# Base class for all TDL blocks
class TDLBuildingBlock:
function TDLBuildingBlock(name):

fuhk%ion Contains(bb_obj, num_of):
# Records parent-child relationship

function Connects(lhs_bb_obj, rhs_bb_obj):
# Records and returns new TDLConnector obj

# Specialized TDL classes

## L2/L3 Device

class TDLSwitchBlock extends TDLBuildingBlock
## L2/L3 Device Port

class TDLPortBlock extends TDLBuildingBlock

Figure 3: Pseudocode describing TDL building block classes

building blocks. These blocks and the relationships between
them form an abstract tree, with one block designated as the
root upon instantiation.

Figure [3] sketches the classes used to describe building
blocks in TDL, including specialized classes used to distin-
guish physical devices (like switches and ports) involved in
connectivity. Building blocks can be described by instantiat-
ing an instance of one of these classes. In addition, because
TDL is embedded in an object-oriented language, architects
can generate a library of reusable, parameterizable building
block classes by declaring subclasses. These subclasses can
be then be reused and shared among topology descriptions.

Building blocks are a natural abstraction for topology de-
scription. For instance, a homogeneous fat-tree network con-
structs spine (called “core” in [3]]), pod, aggregation, and
top-of-rack (ToR) logical building blocks, all from one phys-
ical switch type.

Our corresponding fat-tree example (Figure[2) begins with
the declaration of a parameterizable building block class,




Switch10GbE. This building block contains a variable num-
ber of ports, and is instantiated to describe spine, aggregation,
and ToR switches in the FatTree building block class. During
instantiation, a name describes the purpose of each switch
block instance.

The parameterizable FatTree building block class starts
at line 8. An instance of this class serves as the root of the
abstract tree, and contains spine and pod building blocks. The
pod building block (lines 21 - 23) in turn contains aggregation
and ToR switch building blocks (instantiated on lines 17 -
18). Each switch building block object in the FatTree block
is instantiated from the Switch10GbE building block class.

This hierarchical model also works for describing recursive
topologies, such as DCell [16], a topology that recursively
uses two physical building blocks (switches and servers) and
a logical building block for each level of aggregation. In a
DCell topology, level DCelly contains a switch and multiple
endhosts, while a DCell;~( contains multiple DCell;_s.

In addition to describing hierarchy, the architect can record
meta-information, such as the failure properties (Mean Time
Between Failures, Mean Time to Recovery) of a physical
device (used in §8.4).

5.1.1 Grouping by Rule

TDL supports rules to express groups of components, in
cases where they cannot easily be described with a “Con-
tains” relationship. For instance, after describing a fat-tree’s
physical and logical network components, an architect can
use rules to describe how each physical component is as-
signed to a rack, to a failure domain, or to an arbitrary group.
As with connectivity constraints, architects can quickly mod-
ify grouping rules to try different assignment approaches or
to handle variations between physical facilities. We use rules
to generate groups in §7] when describing F10 with TDL.

5.2 Describing Connectivity

Given a set of building blocks, the architect describes how
they should be connected, by defining candidate connections
with connectivity pairs, and then using constraints together
with tiebreakers to eliminate potential connections.

5.2.1 Defining Connectivity Pairs

Connectivity pairs express pairs of components and/or
groups that are eligible to be connected. A connectivity pair
consists of left-hand and right-hand side (LHS and RHS)
building block objects, and is expressed by calling “Con-
nects” on a “scope” building block. The scope building block
must “Contain” both of the building blocks in the connec-
tivity pair. During synthesis, for each scope component in-
stantiated from the scope building block, the set of candidate
connections is equal to the Cartesian product of the compo-
nent’s successors that were instantiated from the LHS and
RHS building blocks, respectively.

For instance, in lines 30 and 31 of our fat-tree example
(Figure[2), the architect defines two connectivity pairs, each
specifying a pair of building blocks. Abstractly:

1. In every pod, connect aggregation & ToR switches

2. Inevery fat-tree, connect spine & aggregation switches

el
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class TDLConnector:

# constraints on connectivity of objects
# derived from a specified building block
function ConnectXLinks(bb_obj, x_links)
function ConnectAtMostXLinks(...)

#.éonstraints on pairwise connectivity
function ConnectPairsWithXLinks(bb_obj_1, bb_obj_2, x_links)
function ConnectPairsWithAtLeastXLinks(...)

# support for custom constraints
function AddConstraint(constraint_obj)

Figure 4: Partial set of TDL constraints

The In every part defines the scope of candidate connections.
The first connectivity pair, for example, ensures that a ToR
switch can only be connected to an aggregation switch in the
same pod. Thus, for each pod, the set of candidate connec-
tions is the Cartesian product of the pod’s aggregation and
ToR switches. Similarly, the second connectivity pair permits
connections between spine and aggregation switches in the
same fat-tree.

For some topologies, such as flattened butterfly [22] and
recursive topologies, some connectivity pairs have the same
building blocks as the LHS and RHS. For example, for a
DCell network, the connectivity pairs are:

1. In every DCell; where i > 0, connect all DCell;_;s.

2. Inevery DCell; where i =0, connect hosts and switches.

Connectivity pairs can be declared at different levels of
the hierarchy. In DCell, the pairs could be defined between
hosts, instead of between DCell;_;s, which would enable an
architect to express constraints at finer granularities. How-
ever, it also increases the number of pairings produced by
the Cartesian product, expanding the solution space that the
synthesizer must navigate. We would need this level of gran-
ularity to generate topologies that exactly match those in the
DCell paper [16], but not to meet the paper’s DCell specifi-
cation, as discussed in §5.3}

5.2.2 Constraints and Tiebreakers

After defining candidate connections, the architect speci-
fies constraints on connectivity. Without such constraints, the
synthesizer will simply make arbitrary connections between
eligible components until connections are no longer possible
(e.g., no more ports, etc.). This, for example, could leave a
single ToR switch connected to a single aggregation switch,
creating a single point of failure or a disconnected network.
Constraints and tiebreakers allow the architect to guide the
synthesis process to avoid bad choices.

Constraints: Constraints can be expressed on the building
blocks referenced within a connectivity pair or any of their
predecessors, and can be specified on individual building
blocks, or on pairs or groups of building blocks. Constraints
are associated with a TDLConnector object that is returned
when a connectivity pair is declared, and constrain the set
of candidate connections in the connectivity pair’s scope.
Figure {] shows a partial set of TDL constraints.

Constraints applied to an individual building block can set
the minimum, maximum, or exact number of connections for
every component instantiated from that building block. Every
component starts with a default constraint, to ensure that the




component never has more connections than available ports.
Constraints propagate downwards; e.g., if a switch containing
linecards cannot have more than N connections, then the sum
of its linecards’ connections can not exceed N.

Constraints applied to a pair of building blocks bound the
number of connections for every pair of associated compo-
nents, or between a single component of the LHS descriptor
and all components of the RHS descriptor.

An architect’s choice of pair-wise constraints is the most
important tool for balancing the many tradeoffs in topology
design, and hence represents the architect’s primary design
insights. In particular, an architect can use pair-wise connec-
tivity constraints to achieve fault-tolerance through diversity.

In lines 35 and 38 of our fat-tree example (Figure [2), we
use pair-wise constraints to describe a fat-tree’s connectivity:

1. Every aggregation switch must connect to every ToR[7]

2. Every spine switch must connect to every pod.

By default, a solution must satisfy the boolean AND of
all per-component and pair-wise constraints. However, TDL
supports explicit ORing of constraints (OR operations can
be recursive), which is especially useful for pair-wise con-
straints: e.g., a component pair must have either X connec-
tions or 0.

Tiebreakers: Condor’s synthesizer (§6) uses a constraint
solver to find candidate topologies that meet the constraints
in a TDL description. The constraint solver iterates serially
through the candidate connections when finding things to
connect. Sometimes, but not always, the order of this iteration
is key to finding a solution efficiently, or affects a property
that matters to the architect, or both (see §9.4).

An architect can include an ordered set of one or more
tiebreakers, written as callback functions, to control this or-
dering. (We include a default tiebreaker to maximize human-
readability of the generated connectivity.)

Late-bound constraints: An architect may wish to apply
constraints whose numeric parameters vary based on deci-
sions made during synthesis. Late-bound constraints (LBCs)
are pre-defined in TDL as alternatives to architect-written
procedures to derive such constraints, and are compiled into
min/max pair-wise constraints during synthesis. The only
LBC currently defined is “diversity.” This LBC spreads con-
nectivity across as many pairs as possible, and ensures the
number of connections between pairs is equal +1.

5.2.3 Custom and group constraints

Custom constraints: The synthesizer’s solver supports more
complex constraints than described so far. Since TDL is em-
bedded in an object-oriented language, architects can write
custom constraints that interact with the solver by subclass-
ing the Constraint class and then defining their constraint.
For instance, one could define an oversubscription ratio con-
straint for a tree, bounding the ratio between the number of
incoming links from a lower stage and the number of outgo-

2Constraints are applied to the set of candidate connections
generated during synthesis for each scope; thus, this con-
straint only requires connections between aggregation and
ToR switches in the same pod.

ing links towards an upper stage. We show in §7/how we use
custom constraints to express designs such as F10 [25].

Constraints on groups: Connectivity constraints can refer
to groups (§5.1.1)), so that (e.g.) one can require that every
aggregation switch in a fat-tree connects to spine switches in
at least two power domains.

As another example, suppose one wants to reserve ports
1-4 on each ToR for connecting to aggregation switches
(perhaps to simplify wiring). This could be expressed by
adding a new rule to define groups of port objects based on
port number, then adding connectivity constraints dictating
where these groups can be used.

5.3 Examples of TDL’s Concision

We believe (but cannot prove) that TDL’s concise descrip-
tions will lead to better designs and fewer errors. To support
this, we counted lines of code for TDL descriptions of sev-
eral networks. As shown in Figure 2] TDL can express all
of the fat-tree designs in Al-Fares ez al. [3]] in under 30 non-
comment lines. TDL can express BCube networks in 32 lines
and Facebook’s fabric [4] in 33 lines. To express DCell-like
networks | we need only change 2 lines from BCube’s de-
scription, and add 10 more.

6. NETWORK SYNTHESIS

Condor’s synthesizer converts a TDL file-set into a model
for a network topology that complies with the TDL specifica-
tion. A model represents both the parent-child relationships
between components (the hierarchy graph, §6.1) and the
connectivity between components (the connectivity graph,
§6.2}§6.3). Synthesis of connectivity involves solving three
problems: formulating synthesis as a constraint satisfaction
problem [36] (§6.2); allowing an architect to influence the
results via tiebreakers (§6.2.1); and optimizing the synthe-
sizer’s performance to support a rapid design cycle (§6.3).

The synthesizer may fail to generate a model, either be-
cause the constraints in the TDL description cannot be satis-
fied or because finding a suitable result exceeds a timeout. In
such cases, the architect may have to try again with different
constraints or tiebreakers. If more than one model would sat-
isfy the constraints, the synthesizer generates only one; the
architect can generate additional candidate models by adding,
removing, or changing the tiebreakers (§6.2.1).

6.1 Synthesizing the Hierarchy Graph

The synthesizer constructs a hierarchy graph, beginning by
converting the root building block instance into the graph’s
root “component,” and then recursively converting contained
building blocks (expressed with the “Contains” relationship
in TDL) into successor components. Each component repre-
sents a concrete incarnation of a building block. For instance,
in our fat-tree example (Figure [2) the synthesizer generates

31t would take more lines of TDL and more solver memory to
synthesize the exact striping defined in the DCell paper. The
striping we produce meets all of the specifications defined in
the paper, and only requires a trivial adjustment to DCell’s
path lookup algorithm.



a component for the root building block (FatTree). Then,
since the root building block contains pod and spine build-
ing blocks, the synthesizer instantiates one or more pod and
spine components. This recursion continues, resulting in the
subsequent instantiation of aggregation, ToR, and port com-
ponents.

After the synthesizer instantiates a component, it adds a
reference from the component back to the building block
that it was derived from, and adds a directed edge in the
hierarchy graph from the parent component to the child com-
ponent (i.e., each pod will have a directed edge to each of
its ToR switches). Once the synthesizer has instantiated all
components, it generates groups based on the grouping rules
defined in the TDL (§5.1.1). The synthesizer adds directed
edges from each group object to the components it contains.

6.2 Synthesizing Connectivity

Most of the work of synthesis is to find appropriate con-
nectivity between components in the hierarchy graph. The
synthesizer generates connectivity by processing the connec-
tivity pairs associated with components in the graph. Compo-
nents are processed in reverse of the order in which they were
instantiated. Thus, connectivity generation begins at the low-
est non-leaf level or stage in the hierarchy graph (e.g., at the
aggregation and ToR components in our fat-tree example) [

For each component, the synthesizer identifies the associ-
ated building block and determines if the building block ref-
erences connector objects (generated by the use of the “Con-
nects” construct in TDL). Each connector object is processed
independently during synthesis. The synthesizer generates a
set of candidate connections and then applies constraints and
tiebreakers to choose the connections to add. The chosen
connections are then recorded as edges in the connectivity
graph, and the process repeats for the next connector and for
subsequent components.

Scope: For each component with a connectivity pair, the
synthesizer will only consider connections within the com-
ponent’s scope, defined as the component’s successors in the
hierarchy graph. Thus, when processing the connectivity pair
associated with a pod in our fat-tree example (Figure [2), the
synthesizer will only consider connections between the ToR
and aggregation switches within that pod.

Generating candidate connections: For each connector,
the synthesizer creates two lists of components in the hierar-
chy model. Each list contains the in-scope components that
correspond to one of the two building blocks referenced in the
connector’s connectivity pair. The Cartesian product of these
two lists (after removing any self-connections) represents
all possible candidate connections between the components
within them. For instance, when the synthesizer processes a
pod component in our fat-tree example, it will generate a list
of aggregation and ToR switches that are successors of the
pod in the hierarchy graph. Every pairing of an aggregation
and ToR switch will be considered a candidate connection.

“4In tree networks, this approach ensures, without the need for
additional constraints, that sufficient ports remain available
for connectivity at higher levels.

Finding the right connections: Out of the set of candidate
connections, it is likely that only a proper subset can be estab-
lished without violating constraints in the TDL description
(although in some cases, constraints may prevent establish-
ment of any candidate connections). We treat the problem
of determining which connections should be made as a con-
straint satisfaction problem (CSP) [36]. CSPs consist of a set
of decision variables, each assigned an integer domain, and
a set of constraints on a collection of one or more decision
variables. Our implementation uses the open-source or-tools
constraint solver [[14]], but other solvers could be used.

Generating decision variables: For every candidate con-
nection, the synthesizer generates an integer variable to rep-
resent the number of links that could be established in the
current scope for that candidate. This variable has a domain
of 0...MinPairPorts, where MinPairPorts is the minimum,
over the two components in the candidate, of the number of
successor ports still available for connection, given that some
of these components’ ports may have already been used.

Following the generation of such an integer variable, the
synthesizer stores the variable in a data structure that sup-
ports the lookup of candidate connectivity associated with
any component, or between any pair of components. This
structure also allows retrieval of any variable associated with
a component’s predecessor, or pair of predecessors[| The
synthesizer uses this structure to set up constraints.

Constraining decision variables: Next, the synthesizer
applies constraints, converting late-bound constraints to nu-
merical constraints based on the model’s state.

TDL enables architects to describe constraints on the con-
nectivity of components derived from a building block, or
between pairs of components derived from a pair of building
blocks. However, these high-level constraints cannot be pro-
cessed directly by the underlying constraint solver. Instead,
the synthesizer must convert these high-level constraints into
integer expressions, and then compose constraints from these
integer expressions, combined with boolean and relational
operators. The synthesizer then provides these constraints to
the solver to guide the generation of connectivity.

Custom architect-defined constraint classes (§5.2.3) have
a similar workflow. These custom TDL constraints, imple-
mented as callbacks, retrieve the variables associated with
one or more components and/or component pairs, then gener-
ate and return a set of CSP constraints, which the synthesizer
passes to the solver.

6.2.1 Navigating the Solution Space

Following the generation of decision variables and the
application of constraints, a solution is requested from the
constraint solver. The solver operates by choosing a variable
from a set of unbound decision variables and assigning it
a value within its domain. The solver stops once it has as-
signed a value to all variables or determines that a solution
is infeasible.

>This association is important when processing constraints,
as a candidate connection between components C; and C; is
also a candidate connection between their predecessors.



Tiebreakers: At the beginning of each decision, the solver
must chose a decision variable to operate on next, from a set
of unbound variables. By default, the relative rank of these
decision variables is equal, and thus unbound variables are
processed in the order they were instantiated. The order of
this iteration determines which valid solution is returned[9|
and is sometimes key to efficient synthesis (see §9.4).

Architect-defined tiebreakers (§5.2.2), implemented as
callbacks, impose a rank ordering on the set of unbound
decision variables. When the solver needs to choose the next
variable to operate on, it updates the rank of decision vari-
ables by serially invoking these callbacks (if any).

6.2.2 Processing the Solver’s Output

If the solver finds a solution for a scope, it binds each inte-
ger variable instantiated for that scope to a single value within
its domain, which represents the number of links connecting
a pair of components. For each such link, the synthesizer allo-
cates an available successor por{’|from each of the connected
components and generates a new link object to represent the
connection between these ports. These link objects, taken to-
gether, form the connectivity graph. When two components
are connected via multiple links, we also add an aggregated
logical link to the graph, which simplifies later analysis (§8).

The solver may fail to find a solution for one of several
reasons: the constraints are unsatisfiable, or the solver has
run longer than a user-specified timeout, or the solver has
had to backtrack more than a user-specified number of times.
Depending on the reason for failure, the architect might need
to change the constraints or improve the tiebreakers in order
for the solver to find a solution.

6.3 Efficient Synthesis

Avoiding backtracking during synthesis: Constraint
solvers search for a solution by selecting an unbound vari-
able and assigning the variable a value in its domain. Each
assignment constrains the solution space and, depending on
constraints, may reduce the domains of unbound variables
(potentially to the point of forcing an assignment).

Constraint solvers are general purpose tools and are obliv-
ious to our problem domain. Without guidance, a constraint
solver may assign values to variables in a manner that con-
stricts the search space to the point that the solver cannot find
a valid solution, even when solution is possible. For instance,
the or-tools constraint solver used by Condor will (by default)
assign a variable the minimum value in its domain, thus set-
ting the number of connections between every pair as 0. This
naive approach will almost certainly lead to backtracking, a
state where the constraint solver detects that a solution is in-
feasible (given previous assignments) and reverts one or more
of its previous decisions. By default, a constraint solver will

®Because an architect expresses connectivity declaratively
with pairs and constraints, rather than by procedurally speci-
fying connections between individual components, the con-
straint solver could return any one of multiple valid solutions.
7If a building block has multiple types of successor port (e.g.,
10Gb and 40Gb ports), the architect must specify a choice,
in TDL, as an attribute of the relevant connectivity pair.

branch and backtrack until it finds a solution or has explored
the entire search space; both backtracking and full search can
be costly (see §0.4]for an example where exploring the entire
search space is infeasible).

To facilitate a rapid design loop, the synthesizer allows the
user to set limits on the number of branching and backtracking
operations, and on the maximum time allowed for exploring
the solution space. We have also designed heuristics that re-
duce the potential for backtracking, including (among others,
not described due to space constraints):

Greedy connection assignment: We use a “greedy” heuris-
tic to tell the solver to assign as many connections as possible,
at each step, to each integer variable; this tends to minimize
backtracking. Being greedy also allows the solver to spread
connections across a smaller set of components, which is
critical when synthesizing expandable topologies (§9).

Efficiently synthesizing recursive topologies: The syn-
thesizer must allocate an integer variable for every candidate
connection, so synthesis of large, direct-connect topologies
could require millions or even billions of such variables. For
instance, synthesizing a DCell; [16] network with N=4, de-
scribed with host-to-host connectivity, would require over
half a billion variables. Memory limits often make solving
this size of constraint problem infeasible, and, even if suf-
ficient memory is available, solving a CSP with millions of
variables can take a long time. Instead, we leverage the re-
cursive nature of these topologies to reduce the number of
decision variables required.

For example, in §5.2.1] we defined the connectivity of a
DCell topology at the granularity of DCell building blocks
(“In every DCell; where i > 1, connect DCell;_;s”), instead
of at the granularity of individual server building blocks. For
many recursive topologies, including DCell, it is possible to
describe the topology at this level of granularity, as long as
links generated between “DCells” are balanced evenly across
the end hosts within the group; TDL can express this balance.

6.4 Synthesizer Performance

Table |1| shows synthesizer CPU and memory costs for a
variety of networks. We use the NetworkX graph library [17]]
for storing all graph structures as adjacency lists. NetworkX
is written in Python and could probably be replaced with
something much faster and more memory-efficient. Our cur-
rent implementation of the rest of the synthesizer is also in
Python, which adds some overhead; we plan to implement
a new version in C++. However, the current performance is
already fast enough for most purposes, and we see approxi-
mately linear CPU and memory scaling (vs. the number of
end hosts) within a family of topologies.

7. THE POWER OF TDL:
TO F10 AND BEYOND!

In this section, we show that the TDL allows an architect
to rapidly discover novel stripings in a fat-tree [3|] topology.
The traditional fat-tree striping, shown in Figure [5 can
be expressed as: the Nth aggregation switch in every pod
connects to the same spine switches, and every spine switch



Switch Link #ofend | CPU Mem.
Topology count count hosts | secst (GB)
DCell, n=16,k=2 4641 148512 74256 75 259
DCell, n=24 k=2 15025 721200 360600 | 346 125
BCube, n=16,k=3 || 16384 262144 65536 | 116 4.0
BCube, n=24k=3 || 55296 1327104 331766 | 597 20.9
FatTree*, 16 pods 320 2048 1024 2 0.069
FatTree, 40 pods 2000 32000 16000 16 0.60
FatTree, 64 pods 5120 131072 65536 61 24
FatTree, 80 pods 8000 256000 128000 | 117 4.8
Facebook Fabrict 5184 36864 221184 57 2.5

* all fat-trees are 3-stage ino trials here needed backtracking
T assuming this uses 96 pods, 96-port switches, 4 uplinks/ToR

Table 1: Synthesizer performance for various examples

connects to every pod once. Given this striping, if aggregation
switch N in pod X fails, none of the Nth aggregation switches
in any other pod can reach pod X. As discussed in §8.3] such
a failure results in packet loss until the network’s routing has
reconverged.

Describing F10: In F10, Liu et. al [25]] reduce the impact
of an aggregation switch failure on the connectivity between
two groups of pods. With F10, pods are connected to spine
switches using either of two different stripings (A or B), as
shown in Figure[5] The use of two stripings ensures that the
Nth aggregation switch in a pod with striping A is able to
direct traffic to a destination in a pod with striping B through
multiple disjoint (shortest) paths[f]

Although the F10 authors described the construction of the
A and B stripings arithmetically, we use the following con-
straint to describe their construction: Where agga and aggp
are aggregation switches in pods with A and B stripings, re-
spectively, every pair of aggregation switches (agga,aggp)
can connect to each other via at most one spine switch. This
constraint ensures that an aggregation switch in a pod with
striping A connects to as many different aggregation switches
in a pod with striping B as possible.

Using TDL, we can express a fat-tree with A and B strip-
ings by adding constraints to a traditional fat-tree:

1. We define rules to split pods equally into two groups,

A and B (§5.1.1).

2. We define a custom constraint to prohibit any pair of ag-
gregation switches (a, b) (with a € A and b € B) from
from having more than one spine switch in common.

With TDL, we express the difference between fat-trees and
F10in 29 lines (including 18 lines for the custom constraint),
much less code than a procedural Python program to model
a variable-size AB fat-tree (about 150 lines).

Beyond F10: With TDL, we were able to compartmen-
talize F10-specific constraints from the basic fat-tree con-
straints. In this section, we discuss how this modularity led
to new insights.

Once we understood how F10’s AB stripings could be
expressed with TDL, we wondered if we could further reduce
the impact of an aggregation switch failure by adding an
additional striping. By modifying the TDL grouping rule

8The number of disjoint paths increases with topology size.
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Figure 6: Connectivity with A, B, and C stripings

to split pods into three groups (A, B, C) and applying our
F10-inspired constraint to all pairs of groups, we generated
the ABC topology shown in Figure [f] Like F10’s A and B
stripings, every aggregation switch in a pod with striping S
has 2+ disjoint paths to a pod with a striping other than S.8
However, using three stripings increases the probability of
any pair of pods having a different striping to 66%.

After generating the ABC stripings, we investigated the
bounds on the number of stripings we could create. Using
the same TDL, we synthesized larger fat-tree topologies (5+
pods), varying the number of groups that P pods are divided
into between 1 and P. Our F10-inspired constraint requires
that each group has a distinct striping (e.g., splitting pods
into three distinct groups requires three distinct stripings: A,
B, and C).

From this experiment, we determined that the number of
possible stripings grows sub-linearly with the number of
pods. For instance, we can generate up to 4 stripings (A,
B, C, and D) for a 6-pod fat-tree, and up to 6 stripings for a
10-pod fat-tree[7]

We extracted the following intuition from our analysis of
the generated stripings and constraints:

e Our constraint specifies that any pair of aggregation
switches from pods with different stripings may connect
to at most one spine switch in common.

e Let SpineSet; and SpineSet; be the sets of spine
switches connected to aggregation switches agg;
and agg;, respectively. From our constraint, for any
agg; and agg; in pods with different stripings,
SpineSet; N SpineSet; < 1.

e By construction, NumUplinksPerAgg and NumAg-
gsPerPod are equal in a fat-tree [3[], and their product
is equal to NumSpines. Thus, for any agg; and agg; in
different stripings, SpineSet; N SpineSet; = 1.

o Let AggSet; be a set of aggregation switches
from pods with different stripings connected to
spine; (|AggSet;| = NumStripings). Given our con-
straints, VY agg;, aggx € AggSet;, st. i * k,
SpineSet; N SpineSet, = {spine;}, meaning each agg;
needs a disjoint SpineSet; \ {spine;}. The maximum
number of disjoint SpineSet; \ {spine;} (and thus the
maximum value of NumStripings) is equal to (Num-

These stripings are available at http://nsl.cs.usc.edu/condor.
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Spines minus spine;) divided by (NumUplinksPerAgg
minus the uplink to spine;).
From these, we can define an upper bound on the number
of stripings possible for a fat-tree of a given size:
NumSpines — 1

NumStripings < 1
HINSITIpINES = NumUplinksPerAgg — 1 M

Our experimental results coincide with this upper bound
(e.g., we were able to generate up to 6 stripings in a 10-pod
fat-tree). However, it becomes computationally difficult to
synthesize the maximum number of stripings in larger topolo-
gies; Condor’s synthesizer cannot generate 12 stripings, the
upper bound for a 22-pod fat-tree, within 30 minutes. When
we investigated how to improve performance, we determined
that our F10-inspired constraint generates Balanced Incom-
plete Block Designs [19,42] (BIBDs). Efficient synthesis of
BIBDs is a known problem [27]], and the exact conditions
required for their existence are not known [18]].

However, in larger topologies where synthesis is more dif-
ficult, we can trade improved synthesizer performance for
fault-tolerance. Our F10-inspired constraint provides maxi-
mum fault-tolerance, by ensuring that every pair of aggre-
gation switches in pods with different stripings can commu-
nicate through the spine layer[T% Depending on the level of
fault-tolerance required, our constraint can be adjusted to
allow aggregation switches in different pods to connect to
between 1 and NumUplinksPerAgg — 1 spine switches in
common, which respectively varies fault-tolerance between
NumUplinksPerAgg and 2 disjoint paths. As the level of fault-
tolerance guaranteed by the constraint is reduced, the size of
the corresponding solution space is increased, and synthesis
performance is dramatically improved.

8. TOPOLOGY ANALYSIS

Once a TDL file-set has been synthesized into a model, an
architect can analyze the model against various metrics, such
as those described in §4] We would like these analyses to be
both accurate (to avoid misleading the designer) and fast (to
enable rapid iterations).

Some metrics, such as cost, are easily calculated. However,
a topology’s utility depends largely on its ability to maintain
SLO compliance, determined by how traffic patterns interact
with the topology throughout its lifecycle. These interactions
can either be calculated precisely through detailed simula-
tion, which is quite hard to scale to large datacenter networks,
or through faster but approximate algorithms.

For example, we cannot accurately quantify the “band-
width” of a topology for a given traffic matrix indepen-
dent from how routing protocols, transport protocols, switch
queueing mechanisms, and traffic engineering interact. The
likelihood of failed and “drained” components and links adds
more complexity.

Papers about datacenter networks typically fall back
on proxy metrics, such as bisection bandwidth and hop-
count [8}|15}/16,28311|33]]. These metrics can be relatively

10E.g. in a 22-pod fat-tree, an aggregation switch with striping
S has 11 disjoint paths to a pod with a striping other than S.

easy to compute but do not reflect the full complexity of the
problem [20]], and they ignore the reality that most networks
are never operated under worst-case traffic matrices. Also,
“[flinding the exact value of the bisection width has proven
to be challenging for some specific networks” [5]]. Network
owners learn, through hard-won operational experience, that
other proxy metrics are better predictors of SLO compliance.

Yet without a means to quantify a topology’s bandwidth,
we cannot develop good metrics for concepts such as reli-
ability or expandability, since these are best described as a
network’s ability to maintain its bandwidth SLO in the face of
random link failures or planned drains. (Some prior work has
used the probability of a topology becoming partitioned as an
indicator of fault-tolerance [8,9139]], but this generally is not
sufficient to predict compliance with a minimum-bandwidth
SLO.) Therefore, we use an approximate bandwidth metric
(§8.1) to illustrate how changes in the TDL for a network (or
its expansion plan) affect several metrics of interest.

We do not claim to have solved the problem of quantifying
a topology’s bandwidth; our metrics have many limitations.
We believe that our metrics provide real value to network
architects and hope that they motivate further research.

8.1 Approximate Bandwidth Metric

Our approximate bandwidth metric (ABM) evaluates a
topology’s ability to support an architect-defined traffic ma-
trix. (We do not assume a worst-case traffic matrix, because
many networks are unlikely to be operated under such condi-
tions. Architects often maintain spare or protected capacity
and employ intelligent scheduling techniques to improve job
locality [21123/30,41]].) The ABM can be used to compare an
application’s predicted throughput against a set of candidate
topologies (e.g., tree topologies with varying levels of over-
subscription) and to evaluate application throughput when a
topology is in a degraded state (§8.2).

An architect uses historical and (projected) future de-
mands to generate one or more pair-wise traffic matrices
of offered loads between components (e.g., host-to-host or
ToR-to-ToR) For each traffic matrix, the metric estimates
the throughput of each flow, assuming fair sharing of over-
loaded links. We estimate throughput by propagating flow
demands through the network and proportionally reducing
each flow’s demands at each saturated link. We reduce this to
an aggregate scalar: the sum of achieved flow rates divided
by the sum of offered loads. (Other aggregates are possible.)

In a multipath network, we must split flows as they propa-
gate through each junction point. For the results later in this
paper, we treat flows as fluid™| and split them at each junc-
tion between all shortest-path next-hops. By default, flows
are split equally among next-hops, but we also support di-
viding flows based on the number of physical links to each
next-hop (comparable to ECMP). We can extend this met-
ric to approximate WCMP [44] or architect-specified routing
functions, but we omit these details for space reasons.

Matrices can be weighted to produce an aggregate score.

12We assume flows defined in traffic matrices represent an ag-
gregate of application flows, and thus are fluid and splittable.



Limitations: The ABM only supports tree topologies.
In addition, to reduce computation time, we perform two
rounds of flow propagation: (1) upwards propagation from
ToRs towards higher tiers of the tree and (2) downwards
propagation from higher tiers towards ToRs. As a result, our
metric only determines a lower bound on the throughput of
each flow in the traffic matrix and only works for strict up-
down routing. It cannot handle (for example) F10, which uses
ToR bouncing to route around failures [25]].

8.2 Simplified Reliability Metric

Architects need to know the probability that a candidate
topology will maintain its bandwidth SLO, given a failure
model including the Mean Time Between Failures (MTBF)
and Mean Time to Repair (MTTR) for each component.

TDL allows specification of MTBF and MTTR for building
blocks. We use these values to compute an SLO metric, using
Markov Chain Monte Carlo (MCMC) simulation [35]]. For
each MCMC iteration, we apply the ABM to the topology,
treating currently-failed components (and their successors)
as missing, and record the bandwidth achieved for each flow.

After a user-specified number of iterations, we compute the
fraction of flows that complied with a user-specified SLO.
The SLO is stated as a pair of values: a target throughput
and a minimum fraction of iterations during which a flow
must meet or exceed that target (e.g., “a flow achieves 4Gbps
99.9% of the time”).

Limitations: Our simplified reliability metric does not
attempt to account for short-term capacity and packet loss
that may occur during convergence (§8.3).

8.3 Routing Convergence Metric

When components fail in large networks, it may take
some time for the routing system to re-converge. Global re-
convergence following a single link or switch failure can
require 10s of seconds in a large network, during which time
some flows will experience 100% packet loss [40]].

Topologies can differ in how rapidly routing can converge.
For instance, the stripings described in Aspen Trees [40],
F10 [25]], and can lower or eliminate convergence time
in tree topologies after certain failures, by increasing the
probability that a switch can handle a failure locally.

We quantify how quickly a topology’s routing can converge
by calculating two proxy metrics: the number of switching
components that routing-related information needs to be dis-
tributed to and the number of hops this information must
propagate. We calculate these metrics in two phases.

In the first phase, for every switching component C, we
determine how the failure of any other component affects
C’s ability to route traffic to destinations (hosts or other net-
works), subject to the routing algorithm in use (such as strict
up-down routing). If C has N paths towards destination D, we
compose N sets of “path components,” Pc p.1, ..., Pc,p,N,
with each set Pc p, ; containing all of the components on path
i between C and destination D. The intersection of these sets
yields a set of components that appears on all N paths. The
failure of any component in this set or any of their predeces-
sors will prevent C from routing traffic to destination D. We

store this intersection of Routing Resiliency Limiters (RRLs)
for every (C, D) pair.

In the second phase, we identify which failures a compo-
nent C can react to. For each destination D, component C
can react to the failure of any path component F as long as
F ¢ RRLs(C, D), by making a routing decision. We record
each such F as a component whose failure C can react to.

Finally, we compute two metrics: first, the number of com-
ponents (Cs) that can react when any component F fails;
this is useful for SDN networks, as it counts the number of
switches needing updates. Second, the maximum distance
between C and F over all such pairs; this “routing-info ra-
dius” (RIR) can be used to estimate the routing convergence
time for distributed routing protocols as it approximates how
far F’s failure must propagate.

Limitations: Our routing convergence metric does not
quantify the amount of time required for convergence.
Walraed-Sullivan et al. [40]] used an alternate approach, sim-
ulating specific routing protocols to estimate convergence
time. However, they found their approach hard to scale, and
it is not easily generalized.

8.4 Illustration of Tradeoff Analysis

We illustrate how using Condor’s metrics, and rapid spec-
ification and synthesis of alternate topologies, allows an ar-
chitect to explore tradeoffs, in this case between throughput
degradation and convergence delay (RIR) following a failure.

For this example, we use a small 3-stage Clos built from
32 x 10 GbE switches, supporting 3072 hosts at 3:1 oversub-
scription. To reduce wiring complexity, we co-locate spine
and aggregation switch nodes as linecards across 4 physical
chassis, using backplane wiring to connect linecards.

Each of the ToRs has 2 uplinks to each of the 4 chassis.
We compare two options for striping these uplinks:

Diversity-optimized (DO): Each ToR uplink connects to as
many chassis linecards as possible (i.e., 2) at each chassis.
For (DO), the failure of a single ToR uplink triggers routing
table updates across a combined total of 15 ToR and spine
switch nodes (RIR=2, because the impact of a link-failure
propagates to aggregation and spine switches).

Convergence-time optimized (CO): Connect each ToR’s
uplinks to just one linecard per chassis. For (CO), assuming
ECMP, the failure of a single ToR uplink does not trigger
any routing table updates (R/R=0). However, the failure of
a single linecard would cause each connected ToR to lose
25% of its uplink bandwidth.

Is (CO)’s faster convergence time worth its lower through-
put in the case of a linecard failure? To decide, an architect
would need to evaluate the SLO-compliance metric for one
or more traffic matrices[53]

For our evaluation, we use a uniform all-to-all traffic ma-
trix of ToR-to-ToR flows. We set MTBF=150,000hrs and
MTTR=24hrs for ToRs, linecards, and physical links. For

3The relative weights of SLO compliance and routing con-
vergence is a business judgment outside our scope.



SLO throughput = 100% 99% 95%

SLO percentile = 99 1995 || 99199.5 ([ 99 | 99.5
Diversity-optimized 0852 0852 0852
Convergence-optimized || 100 | 100 || 04 | 94 0| 1.7

Cell values = % of flows experiencing SLO violations
(lower is better)
Table 2: Comparing options (DO) vs. (CO)
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Figure 7: Changes to striping during fat-tree expansion (2 to 4 pods)

simplicity, we assume MTBF=co for other components[™|
We ran 10 iterations of MCMC for each striping option,
which took 45 minutes on 200 non-dedicated cores using
non-optimized Python code. It would be much faster in C++.
(10 iterations is probably enough for high confidence, but
we have not yet implemented a confidence metric.) For each
option, over all iterations, we count how many flows are SLO
compliant. An example SLO could be “achieve 95% of ideal
throughput for 99.9% of the samples.”

Table E] shows that, for our simplified example, the frac-
tion of ToR-to-ToR flows experiencing SLO violation varies
widely. Option (DO) usually ties or beats (CO) — but not
always. Condor thus exposes an architect to complex conse-
quences of relatively simple design choices.

9. ENABLING ONLINE EXPANSIONS

Owners of large datacenters build them to handle years
of future growth, initially deploying a small fraction of total
server and network capacity because installing all network
capacity at once is too expensive. Condor helps architects de-
sign topologies that support efficient, incremental expansion,
and it also helps plan expansion operations.

While one could perform expansions offline by temporarily
removing some or all of the workload, this approach results
in costly downtime. We can perform expansions online if
we can preserve the network’s SLO during all phases of
an expansion operation. Online expansion is tricky because,
for many topologies, including trees and Jellyfish, expansion
often requires moving (and thus draining) existing links. For
instance, adding a new pod to a tree also requires adding
one or more spines (overbuilding spines is too costly), which
in turn requires redistributing links so that each pod has the
same number of connections to each spine (see Figure[7).

The naive solution of re-wiring at small increments (e.g.,
port-by-port) might preserve SLOs but is not cost-effective,
leaves the network in a vulnerable state for too long, and in-
creases operational complexity. Instead, architects must de-

“The MTBF/MTTR values are illustrative but plausible.
They lead to network-wide rates of a link failure/~73hrs and
a switch failure/~669hrs, since links outnumber switches by
2048:224.

compose an expansion into multiple stages, during which a
set of ports is drained, re-wired, and un-drained. These stages
must be designed so as to maintain the network’s SLO during
and after each stage, in the presence of expected failure rates.
Condor helps architects design these expansion stages.

9.1 Expansions: Practical Considerations

Patch Panels: Architects can use patch panels to reduce
the operational complexity of expansions by allowing all
re-wiring to happen in one place. For example, one can pre-
install cabling from all of a fat-tree’s aggregation and spine
switches to the back of the patch panels, and then make or
modify inter-switch connections via the front of the panels5|
(Some topologies, e.g., Jellyfish [33]], do not support expan-
sion via patch panels.) Condor’s TDL and synthesizer can
support patch panels and constraints on their wiring (§9.2).

For operational stability (humans working on patch panels
can accidentally dislodge or unplug nearby cables), we prefer
to design an expansion stage to drain an entire patch panel
(or rack of panels), re-wire those ports, test the links, and
then un-drain before moving to the next stage.

Constraints on Increments: During the lifetime of a tree
topology that evolves by cost-effective expansions, it might
be impossible to ensure that each aggregation switch has
the same number of links to each spine. For example, in a
five-pod tree topology, some pod-spine pairs would have p
links, and some would have p + 1, for some p. Using ECMP
on such unbalanced networks would lead to packet loss at
spine switches, which forces operators to drain otherwise-
working links to restore balance. An architect must decide,
during network design, whether to adopt something other
than ECMP (such as WCMP [44])), tolerate these link drains,
or accept larger (and costlier) expansion increments. Condor
helps architects evaluate the potential impact of unbalanced
connectivity, to ensure that expansion increments maintain
SLO compliance.

Other constraints besides imbalance apply to choosing ex-
pansion increments for other topologies. For instance, DCell
[16]] and BCube [|15]] become less fault-tolerant at certain in-
crements. Condor supports ways to identify and avoid these
issues, which for space reasons we do not discuss.

9.2 Describing Expansions with TDL

We designed TDL and the synthesizer to ensure that an
architect does not need to write separate files for each in-
crement of expansion. Instead, an architect describes an
incrementally-expandable topology as it would exist follow-
ing the final increment, including building blocks, relation-
ships, connectivity pairs, and constraints. For instance, an
architect could design a tree topology with an upper limit
of 64 spine switches and 64 pods, with each pod containing
32 aggregation and 32 ToR switches, and then designate the
pod as the unit of expansion. The architect can declare, in
TDL, the rate at which the topology will expand (“2 pods™).
Then, during synthesis of each increment of 2 pods, only

13To reduce complexity, an operator may disallow connections
between front-side ports on two different panels.



the minimum number of spines required to meet the defined
connectivity constraints will be instantiated.

We add a new building block class (TDLCouplerBlock) to
support descriptions of patch panel ports and other passive
connectors. In addition, we extend TDL’s connectivity-pairs
concept to support describing connectivity via patch panels
and other passive devices (which are useful for purposes be-
sides expansion [39]]). First, an architect defines connectivity
pairs that generate the connectivity from endpoints (such as
spine and aggregation switches) to patch panels, express-
ing these pairs using building blocks and associating them
with constraints, as in §5} The architect then adds an addi-
tional connectivity pair for each set of building blocks to be
connected via the patch panels, referring to the patch-panel
building block via an extra attribute. By defining constraints
on this connectivity pair, the architect can constrain the num-
ber of connections between endpoints across all intermediary
patch panels and/or across each individual patch panel [ The
architect may also include constraints on the physical patch
connections (e.g., that patch panel ports must be wired in
pairs, to reduce the number of individual cables).

Late-bound constraints (§5.2.2) enable TDL to capture that
the bounds on the number of pair-wise connections between
spine and aggregation switches will vary as the network ex-
pands.

While we focus here on expanding tree topologies, the TDL
and synthesizer can expand other non-random topologies.

9.3 Synthesis for Expansions

Synthesizing connectivity between patch-panel ports
presents a challenge, due to the number of candidate connec-
tions. Recall (from §6.2) that this number, and thus the num-
ber of solver decision variables, is the size of the Cartesian
product of the sets of components eligible for connection. If
we constrain our use of patch panels to prevent patches that
cross between panels, and we divide the ports on any panel
equally between two types of components (e.g., aggregation
and spine switches), and we use a decision variable for each
port-pair, then, for N-port panels, we would need (N/2)? de-
cision variables. A network using 192 256-port panels needs
3.14x10° variables, requiring lots of RAM and CPU.

To avoid this overhead, our synthesizer uses one decision
variable for each port connecting to one of the two com-
ponent types, rather than one per pair of ports, reducing the
number per panel from (N/2)? to N /2. Assume we assign de-
cision variables to ports connecting to aggregation switches.
The synthesizer then assigns a unique index to each instance
of the other component type (spine switches, in this case).
It then sets the domain of the decision variables to include
the range of this index, as well as O (indicating a port not
used for patching). (Here, tiebreakers also allow architects
to apply a rank-ordering to the set of values in each deci-
sion variable’s domain, as the previously-described “greedy”
heuristic (§6.3) no longer applies.) To ensure an injective
mapping, the synthesizer adds a constraint: for each panel P

16Constraints can also be defined on predecessors (racks).
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Figure 8: Throughput vs. state number

and each spine switch S;, the number of integer variables set
to i is no more than the number of links between S; and P.

9.4 Does Condor Help with Expansions?

Does Condor help architects design expandable networks
and expansions? We argue that it can, based on experiments
with an example topology. We define an expandable network
as one that meets its SLOs at all points in its lifecycle, includ-
ing initial and expanded increments, and during expansions.

For this example, we used TDL to model a four-stage fat-
tree using 256-port spine switch blocks and 512-port stage-3
aggregation switch blocks (these blocks are composed of
smaller switches). Each pod is composed of ToRs, along
with stage-2 and stage-3 aggregation switches. We use 256-
port patch panels, grouped into racks containing 8 panels
each, to support the reconfiguration of the striping between
the stage-3 aggregation switches and spine switches during
expansions. Our design oversubscribes ToR uplinks by 3:1,
and the maximal network supports 49,152 end hosts, in 16
pods of 3072 hosts, connected by 64 spine switch blocks. The
smallest possible increment of expansion is two pods.

Using TDL, we defined two versions of this network:

Unoptimized (U): includes constraints that establish bal-
anced, symmetrical connectivity between all components
in the maximal configuration. It does not include any con-
straints that specifically attempt to provide load balance for
smaller configurations or during expansion stages.

Optimized for lifecycle throughput (O): Version U, plus
a tiebreaker that prefers connecting to spine switches that
have fewer connections, a heuristic hypothesized to ease
expansion.

We expanded in units of 2 pods. For each expansion (2 to
16 pods), we synthesized a model using both versions. We
assumed that operators split each expansion into 16 stages,
each re-wiring 1 patch-panel rack. The network can be in (7 *
16 %2) + 1 = 225 states, counting the drained and undrained
states for each of the 16 stages for each of the 8 increments.

We evaluated each network, at each state in its lifecycle,
using our approximate bandwidth metric (§8.1)), and config-
ured it to divide flows at each junction as ECMP would.

We simplified the process of analyzing each stage of ex-
pansion by not performing “compensating drains” (drain-
ing additional links), a process used to maintain the “equal-
ity assumption” that ECMP depends on. (ECMP assumes



that all paths to the destination have equal bandwidth capac-
ity [44])). Intermediate phases during an expansion operation
can violate this assumption as drained links and rewiring cre-
ate imbalance. For example, the first aggregation switch in
pods 1 and 2 (aggi,p1, and aggy, »» respectively) may both
connect to spine switches spine; and spine;. By default,
aggi,p1 and aggy, p2 may both have 20 Gbps capacity to both
spines, but during an expansion aggi,,> may only have 10
Gbps of capacity to spine; because of a drained link. With
ECMP, agg p1 will send traffic to aggi p> through both
spines equally, potentially resulting in packet loss at spine;.
To avoid this, operators can drain a link (referred to as a “com-
pensating drain”) between aggi, ,1 and spine; to equalize the
capacity between each aggregation switch and spine,. This
simplification in modeling introduces some error, but (we
believe) not consistently in one direction.

Figure [§] plots the percent of ideal throughput achieved
(using the approximate bandwidth metric) vs. state number.
An operator typically wants to maintain a target fraction of
ideal throughput, such as the 75% line on the graph. Figure[§]
shows that version O’s capacity dips during some expansion
stages but never below 86%, so O is “expandable” with re-
spect to the 75% target. We synthesized all 225 states in about
20 min (and this is easily parallelized). Without Condor, it
would be much harder to validate O’s expandability.

Figure|8[shows two problems for version U. First, between
2 and 4 pods, we cannot perform expansion without drop-
ping to 37.5% of capacity (well below the target). Without
Condor’s help, this would have been hard to spot.

Second, the missing tiebreaker in U caused the solver to
backtrack for most other configurations; it cannot efficiently
find a solution to the (p, p+ 1) problem described in §9.1]be-
fore our 10-hour timeout. (It did solve the 8-pod and 16-pod
states.) We know, from operational experience, that such so-
lutions exist, but we do not know how to construct a tiebreaker
that would allow efficient synthesis of U (as opposed to sim-
ply generating O). Existing research discusses heuristics for
avoiding backtracking in CSP (e.g., [6L/12]), but we have not
yet figured out how best to apply such techniques.

9.5 Prior Work on Expansions

Jellyfish [33]] was designed to support incremental expan-
sion, but the authors did not discuss the operational complex-
ity of re-cabling large-scale networks, and it may be hard to
design online expansions for large Jellyfish networks.

DCell [16] and BCube [15]] support expansions, subject to
constraints described in those papers. Condor gives architects
a tool to quickly find expansions that meet those constraints.

Curtis et. al described algorithms for expanding Clos net-
works [9]] and unstructured topologies [8]]. Neither paper dis-
cussed how to optimize a design for future expansion or
how to support online expansions. Liu et. al described zUp-
date [24], a technique for coordinating the control and data
planes to support non-disruptive online updates, including
topology changes, but did not discuss the problem of topol-
ogy design for expansions. Solnushkin [[34], in presenting his
algorithm for automated design of 2-layer fat-trees, discusses

how to reserve switch ports for future expansion, but does
not consider on-line expansion or more general topologies.

10. CONCLUSIONS

Designing a datacenter network requires balancing a range
of goals and constraints, but no existing tool allows a net-
work architect to easily explore tradeoffs across candidate
topologies. In this paper, we presented Condor, our approach
to supporting rapid exploration of the design space. Con-
dor facilitates straightforward specification and exploration
of designs with different tradeoffs, compared across a range
of metrics. Condor’s declarative, constraint-based Topology
Description Language enables concise and easily modifiable
descriptions of datacenter networks that Condor transforms
into constraint-satisfaction problems to support rapid synthe-
sis. We demonstrated that combining the power of TDL with
Condor’s analysis suite leads to new insights and helps ar-
chitects navigate complex tradeoffs. Finally, we showed how
Condor can support efficient expansions of traffic-carrying
networks while preserving Service-Level Objectives. Over-
all, we believe Condor supports a much faster design cycle.

Acknowledgements

We thank Google colleagues for their insights and feedback,
including Abdul Kabbani, Arjun Singh, Blaz Zupan, Chi-Yao
Hong, David Zats, Eiichi Tanda, Fabien Viger, Guillermo
Maturana, Joon Ong, Junlan Zhou, Leon Poutievski, Moray
Mclaren, Google’s Operations Research Team, Roy Alcala,
Rui Wang, Vijoy Pandey, Wendy Zhao, and, especially, Matt
Beaumont-Gay and KK Yap. We also thank Christopher
Hodsdon, Tom Anderson and Vincent Liu, our shepherd
Aditya Akella, and the SIGCOMM reviewers.

11. REFERENCES

[1] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S.
Schreiber. HyperX: Topology, Routing, and Packaging of
Efficient Large-scale Networks. In SC, page 41, 2009.

[2] A. Akella, T. Benson, B. Chandrasekaran, C. Huang,

B. Maggs, and D. Maltz. A Universal Approach to Data
Center Network Design. In ICDCN, 2015.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture. In
SIGCOMM, pages 63-74, 2008.

[4] A. Andreyev. Introducing data center fabric, the
next-generation Facebook data center network.
http://bit.ly/1zq5nsF, 2014.

[5] J. Arjona Aroca and A. Fernandez Anta. Bisection
(Band)Width of Product Networks with Application to
Data Centers. IEEE TPDS, 25(3):570-580, March 2014.

[6] C. Bessiére, A. Chmeiss, and L. Sais.
Neighborhood-Based Variable Ordering Heuristics for the
Constraint Satisfaction Problem. In T. Walsh, editor,
Principles and Practice of Constraint Programming — CP
2001, volume 2239 of Lecture Notes in Computer Science,
pages 565-569. Springer Berlin Heidelberg, 2001.

[7] Cisco Systems. Cisco’s Massively Scalable Data Center.
http://bit.ly/1relWo8.


http://bit.ly/1zq5nsF
http://bit.ly/1relWo8

[8] A.R. Curtis, T. Carpenter, M. Elsheikh, A. Lépez-Ortiz,
and S. Keshav. REWIRE: An Optimization-based
Framework for Unstructured Data Center Network
Design. In INFOCOM, pages 1116-1124. IEEE, 2012.

[9] A.R. Curtis, S. Keshav, and A. Lopez-Ortiz. LEGUP:
Using Heterogeneity to Reduce the Cost of Data Center
Network Upgrades. In CoNEXT, pages 14:1-14:12, 2010.

[10] B. Dieter and H. Dietz. A Web-Based Tool for Optimized
Cluster Design. http://bit.ly/1fyovAl 2007.

[11] W.R. Dieter and H. G. Dietz. Automatic Exploration and
Characterization of the Cluster Design Space. Tech. Rep.
TR-ECE-2005-04-25-01, ECE Dept, U. Kentucky, 2005.

[12] D. Frost and R. Dechter. Look-ahead value ordering for
constraint satisfaction problems. In IJCAI, pages
572-578, 1995.

[13] P. Gill, N. Jain, and N. Nagappan. Understanding Network
Failures in Data Centers: Measurement, Analysis, and
Implications. In SIGCOMM, pages 350-361, 2011.

[14] Google, Inc. or-tools: the Google Operations Research
Suite. https://code.google.com/p/or-tools/.

[15] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. BCube: A High Performance,
Server-centric Network Architecture for Modular Data
Centers. In SIGCOMM, pages 63-74, 2009.

[16] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu.
DCell: A Scalable and Fault-tolerant Network Structure
for Data Centers. In SIGCOMM, pages 75-86, 2008.

[17] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring
Network Structure, Dynamics, and Function using
NetworkX. In SciPy, pages 11-15, Aug. 2008.

[18] H. Hanani. The existence and construction of balanced
incomplete block designs. The Annals of Mathematical
Statistics, pages 361-386, 1961.

[19] H. Hanani. Balanced incomplete block designs and
related designs. Discrete Mathematics, 11(3), 1975.

[20] S. A.Jyothi, A. Singla, B. Godfrey, and A. Kolla.
Measuring and Understanding Throughput of Network
Topologies. arXiv preprint 1402.2531, 2014.

[21] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and
R. Chaiken. The Nature of Data Center Traffic:
Measurements & Analysis. In IMC, pages 202-208, 2009.

[22] J. Kim, W. J. Dally, and D. Abts. Flattened Butterfly: A
Cost-efficient Topology for High-radix Networks. In
ISCA, pages 126-137, 2007.

[23] M. Li, D. Subhraveti, A. R. Butt, A. Khasymski, and
P. Sarkar. CAM: A Topology Aware Minimum Cost Flow
Based Resource Manager for MapReduce Applications in
the Cloud. In HPDC, pages 211-222. ACM, 2012.

[24] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer,
and D. Maltz. zUpdate: Updating Data Center Networks
with Zero Loss. In SIGCOMM, pages 411-422, 2013.

[25] V. Liu, D. Halperin, A. Krishnamurthy, and T. E.
Anderson. F10: A Fault-Tolerant Engineered Network. In
NSDI, pages 399-412, 2013.

[26] Y. J. Liu, P. X. Gao, B. Wong, and S. Keshav. Quartz: A
New Design Element for Low-Latency DCNs. In
SIGCOMM, pages 283-294, 2014.

[27] B. Mandal. Linear integer programming approach to
construction of balanced incomplete block designs.
Communications in Statistics-Simulation and
Computation, 44(6):1405-1411, 2015.

[28] J. Mudigonda, P. Yalagandula, and J. C. Mogul. Taming
the Flying Cable Monster: A Topology Design and
Optimization Framework for Data-Center Networks. In
USENIX Annual Technical Conference, 2011.

[29] S.R. Ohring, M. Ibel, S. K. Das, and M. J. Kumar. On
Generalized Fat Trees. In Parallel Processing
Symposium, pages 37-44. IEEE, 1995.

[30] B. Palanisamy, A. Singh, L. Liu, and B. Jain. Purlieus:
Locality-aware Resource Allocation for MapReduce in a
Cloud. In SC, pages 58:1-58:11. ACM, 2011.

[31] L. Popa, S. Ratnasamy, G. Iannaccone, A. Krishnamurthy,
and I. Stoica. A Cost Comparison of Datacenter Network
Architectures. In CoNEXT, pages 16:1-16:12, 2010.

[32] A. Singh, J. Ong, A. Agarwal, G. Anderson,

A. Armistead, R. Bannon, S. Boving, G. Desai,

B. Felderman, P. Germano, A. Kanagala, J. Provost,

J. Simmons, E. Tanda, J. Wanderer, U. Hoelzle, S. Stuart,
and A. Vahdat. Jupiter Rising: A Decade of Clos
Topologies and Centralized Control in Google’s
Datacenter Network. In SIGCOMM, 2015.

[33] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey.
Jellyfish: Networking Data Centers Randomly. In NSDI,
pages 225-238, 2012.

[34] K. S. Solnushkin. Automated Design of Two-Layer
Fat-Tree Networks. arXiv preprint 1301.6179, 2013.

[35] Z. Taylor and S. Ranganathan. Designing High
Availability Systems: DFSS and Classical Reliability
Techniques with Practical Real Life Examples. John
Wiley & Sons, 2013.

[36] E. Tsang. Foundations of Constraint Satisfaction, volume
289. Academic Press, London, 1993.

[37] A. Varga et al. The OMNeT++ discrete event simulation
system. In ESM2001, 2001.

[38] A. Varga and G. Pongor. Flexible topology description
language for simulation programs. In ESS97, 1997.

[39] M. Walraed-Sullivan, J. Padhye, and D. A. Maltz. Theia:
Simple and Cheap Networking for Ultra-Dense Data
Centers. In HotNets, page 26. ACM, 2014.

[40] M. Walraed-Sullivan, A. Vahdat, and K. Marzullo. Aspen
Trees: Balancing Data Center Fault Tolerance, Scalability
and Cost. In CoNEXT, pages 85-96, 2013.

[41] X. Wen, K. Chen, Y. Chen, Y. Liu, Y. Xia, and C. Hu.
VirtualKnotter: Online Virtual Machine Shuffling for
Congestion Resolving in Virtualized Datacenter. In
ICDCS, pages 12-21. IEEE, June 2012.

[42] F. Yates. Incomplete randomized blocks. Annals of
Eugenics, 7(2):121-140, 1936.

[43] E.Zahavi, 1. Keslassy, and A. Kolodny. Quasi Fat Trees
for HPC Clouds and Their Fault-Resilient Closed-Form
Routing. In Hot Interconnects, pages 41-48. IEEE, 2014.

[44] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski,
A. Singh, and A. Vahdat. WCMP: Weighted Cost
Multipathing for Improved Fairness in Data Centers. In
EuroSys, page 5, 2014.


http://bit.ly/1fyovAl
https://code.google.com/p/or-tools/

	Introduction
	Motivation
	The Need for Lifecycle Management

	Terminology
	Fabric design factors
	Topology Description
	Describing Building Blocks
	Grouping by Rule

	Describing Connectivity
	Defining Connectivity Pairs
	Constraints and Tiebreakers
	Custom and group constraints

	Examples of TDL's Concision

	Network synthesis
	Synthesizing the Hierarchy Graph
	Synthesizing Connectivity
	Navigating the Solution Space
	Processing the Solver's Output

	Efficient Synthesis
	Synthesizer Performance

	The power of TDL:To F10 and beyond!
	Topology Analysis
	Approximate Bandwidth Metric
	Simplified Reliability Metric
	Routing Convergence Metric
	Illustration of Tradeoff Analysis

	Enabling online expansions
	Expansions: Practical Considerations
	Describing Expansions with TDL
	Synthesis for Expansions
	Does Condor Help with Expansions?
	Prior Work on Expansions

	Conclusions
	References

