
BwE: Flexible, Hierarchical Bandwidth Allocation for
WAN Distributed Computing

Alok Kumar Sushant Jain Uday Naik Anand Raghuraman
Nikhil Kasinadhuni Enrique Cauich Zermeno C. Stephen Gunn Jing Ai

Björn Carlin Mihai Amarandei-Stavila Mathieu Robin Aspi Siganporia
Stephen Stuart Amin Vahdat

Google Inc.
bwe-sigcomm@google.com

ABSTRACT
WAN bandwidth remains a constrained resource that is eco-
nomically infeasible to substantially overprovision. Hence,
it is important to allocate capacity according to service pri-
ority and based on the incremental value of additional allo-
cation. For example, it may be the highest priority for one
service to receive 10Gb/s of bandwidth but upon reaching
such an allocation, incremental priority may drop sharply
favoring allocation to other services. Motivated by the ob-
servation that individual �ows with ûxed priority may not
be the ideal basis for bandwidth allocation, we present the
design and implementation of Bandwidth Enforcer (BwE),
a global, hierarchical bandwidth allocation infrastructure.
BwE supports: i) service-level bandwidth allocation follow-
ing prioritized bandwidth functions where a service can rep-
resent an arbitrary collection of �ows, ii) independent alloca-
tion and delegation policies according to user-deûned hier-
archy, all accounting for a global view of bandwidth and fail-
ure conditions, iii) multi-path forwarding common in traõc-
engineered networks, and iv) a central administrative point
to override (perhaps faulty) policy during exceptional con-
ditions. BwE has delivered more service-eõcient bandwidth
utilization and simpler management in production for mul-
tiple years.

CCS Concepts
•Networks→ Network resources allocation; Network man-
agement;

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).

SIGCOMM ’15 August 17-21, 2015, London, United Kingdom
© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3542-3/15/08.

DOI: http://dx.doi.org/10.1145/2785956.2787478

Keywords
Bandwidth Allocation; Wide-Area Networks; So�ware-
Deûned Network; Max-Min Fair

1. INTRODUCTION
TCP-based bandwidth allocation to individual �ows con-

tending for bandwidth on bottleneck links has served the In-
ternet well for decades. However, this model of bandwidth
allocation assumes all �ows are of equal priority and that all
�ows beneût equally from any incremental share of available
bandwidth. It implicitly assumes a client-server communi-
cation model where a TCP �ow captures the communication
needs of an application communicating across the Internet.

his paper re-examines bandwidth allocation for an im-
portant, emerging trend, distributed computing running
across dedicated private WANs in support of cloud comput-
ing and service providers. housands of simultaneous such
applications run across multiple global data centers, with
thousands of processes in each data center, each potentially
maintaining thousands of individual active connections to
remote servers. WAN traõc engineeringmeans that site-pair
communication follows diòerent network paths, each with
diòerent bottlenecks. Individual services have vastly diòer-
ent bandwidth, latency, and loss requirements.

We present a newWAN bandwidth allocation mechanism
supporting distributed computing and data transfer. BwE
provides work-conserving bandwidth allocation, hierarchi-
cal fairness with �exible policy among competing services,
and Service Level Objective (SLO) targets that independently
account for bandwidth, latency, and loss.
BwE’s key insight is that routers are the wrong place tomap

policy designs about bandwidth allocation onto per-packet
behavior. Routers cannot support the scale and complex-
ity of the necessary mappings, o�en because the semantics
of these mappings cannot be captured in individual packets.
Instead, following the End-to-End Argument[28], we push
all such mapping to the source host machines. Hosts rate
limit their outgoing traõc and mark packets using the DSCP
ûeld. Routers use the DSCP marking to determine which

http://dx.doi.org/10.1145/2785956.2787478

path to use for a packet and which packets to drop when
congested. We use global knowledge of network topology
and link utilization as input to a hierarchy of bandwidth en-
forcers, ranging from a global enforcer down to enforcers on
each host. Bandwidth allocations and packet marking pol-
icy �ows down the hierarchy while measures of demand �ow
up, starting with end hosts. he architecture allows us to de-
couple the aggregate bandwidth allocated to a �ow from the
handling of the �ow at the routers.
BwE allocates bandwidth to competing applications based

on �exible policy conûgured by bandwidth functions cap-
turing application priority and incremental utility from ad-
ditional bandwidth in diòerent bandwidth regions. BwE
supports hierarchical bandwidth allocation and delegation
among services while simultaneously accounting for multi-
path WAN communication. BwE is the principal bandwidth
allocation mechanism for one of the largest private WANs
and has run in production formultiple years across hundreds
of thousands of end points. he systems contributions of our
work include:

● Leveraging concepts from So�ware Deûned Network-
ing, we build a uniûed, hierarchical control plane for
bandwidth management extending to all end hosts. In
particular, hosts report per-user and per-task demands
to the control plane and rate shape a subset of �ows.

● We integrate BwE into existing WAN traõc engineer-
ing (TE) [17, 11, 12] mechanisms including MPLS Auto-
Bandwidth [22] and a custom SDN infrastructure. BwE
takes WAN pathing decisions made by a TE service
and re-allocates the available site-to-site capacity, split
across multiple paths, among competing applications.
At the same time, we beneût from the reverse integra-
tion: using BwEmeasures of prioritized application de-
mand as input to TE pathing algorithms (Section 5.3.1).

● We implement hierarchicalmax-min fair bandwidth al-
location to �exibly-deûned FlowGroups contending for
resources across multiple paths and at diòerent levels of
network abstraction. he bandwidth allocation mech-
anism is both work-conserving and �exible enough to
implement a range of network sharing policies.

In sum, BwE delivers a number of compelling advantages.
First, it provides isolation among competing services, deliv-
ering plentiful capacity in the common case while maintain-
ing required capacity under failure and maintenance scenar-
ios. Capacity available to one service is largely independent of
the behavior of other services. Second, administrators have a
single point for specifying allocation policy. While pathing,
RTT, and capacity can shi� substantially, BwE continues to
allocate bandwidth according to policy. Finally, BwE enables
theWAN to run at higher levels of utilization. By tightly inte-
grating loss-insensitive ûle transfer protocols running at low
priority with BwE, we run many of our WAN links at 90%
utilization.

Figure 1: WAN Network Model.

2. BACKGROUND
We begin by describing our WAN environment and high-

light the challenges we faced with existing bandwidth alloca-
tion mechanisms. housands of individual applications and
services run across dozens of wide area sites each containing
multiple clusters. Hostmachineswithin a cluster share a com-
mon LAN. Figure 1 shows an example WAN with sites S1, S2
and S3; C1

1 and C2
1 are clusters within site S1.

We host a combination of interactive web services, e.g.
search and web mail, streaming video, batch-style data pro-
cessing, e.g., MapReduce [13], and large-scale data transfer
services, e.g., index copy from one site to another. Cluster
management so�ware maps services to hosts independently;
we cannot leverage IP address aggregation/preûx to identify
a service. However, we can install control so�ware on hosts
and leverage a control protocol running outside of routers.

We started with traditional mechanisms for bandwidth al-
location such as TCP, QoS andMPLS tunnels. However these
proved inadequate for a variety of reasons:

● Granularity and Scale: Our network and service capac-
ity planners need to reason with bandwidth allocations
at diòerent aggregation levels. For example, a prod-
uct groupmay need a speciûedminimum of site-to-site
bandwidth across all services within the product area.
In other cases, individual users or services may require
a bandwidth guarantee between a speciûc pair of clus-
ters. We need to scale bandwidthmanagement to thou-
sands of individual services, and product groups across
dozens of sites each containing multiple clusters. We
need a way to classify and aggregate individual �ows
into arbitrary groups based on conûgured policy. TCP
fairness is at a 5-tuple �ow granularity. On a congested
link, an application gets bandwidth proportional to the
number of active �ows it sends across the links. Our
services require guaranteed bandwidth allocation inde-
pendent of the number of active TCP�ows. RouterQoS
andMPLS tunnels do not scale to the number of service
classes we must support and they do not provide suõ-
cient �exibility in allocation policy (see below).

● Multipath Forwarding: For eõciency, wide area packet
forwarding follows multiple paths through the net-
work, possibly with each path of varying capac-
ity. Routers hash individual service �ows to one of
the available paths based on packet header content.

Any bandwidth allocation from one site to another
must simultaneously account for multiple source/des-
tination paths whereas existing bandwidth allocation
mechanisms—TCP, router QoS, MPLS tunnels—focus
on diòerent granularity (�ows, links, single paths re-
spectively).

● Flexible and Hierarchical Allocation Policy: We found
simple weighted bandwidth allocation to be inade-
quate. For example, we may want to give a high pri-
ority user a weight of 10.0 until it has been allocated 1
Gb/s, a weight of 1.0 until it is allocated 2 Gb/s and a
weight of 0.1 for all bandwidth beyond that. Further,
bandwidth allocation should be hierarchical such that
bandwidth allocated to a single product group can be
subdivided to multiple users, which in turn may be hi-
erarchically allocated to applications, individual hosts
and ûnally �ows. Diòerent allocation policies should
be available at each level of the hierarchy.

● Delegation or Attribution: Applications increasingly
leverage computation and communication from a vari-
ety of infrastructure services. Consider the case where
a service writes data to a storage service, which in
turn replicates the content to multiple WAN sites for
availability. Since the storage service acts on behalf of
thousands of other services, its bandwidth should be
charged to the originating user. Bandwidth delegation
provides diòerential treatment across users sharing a
service, avoids head of line blocking across traõc for
diòerent users, and ensures that the same policies are
applied across the network for a user’s traõc.

We designed BwE to address the challenges and require-
ments described above around the principle that bandwidth
allocation should be extended all the way to end hosts. While
historically we have looked to routers with increasingly so-
phisticated ASICs and control protocols forWANbandwidth
allocation, we argue that this design point has resulted sim-
ply from lack of control over end hosts on the part of net-
work service providers. Assuming such access is available, we
ûnd that the following functionality can be supported with
a hierarchical control infrastructure extending to end hosts:
i) mapping WAN communication back to thousands of �ow
groups, ii) �exibly sub-dividing aggregate bandwidth alloca-
tions back to individual �ows, iii) accounting for delegation
of resource charging from one service to another, and iv) ex-
pressing and enforcing �exible max-min bandwidth sharing
policies. On the contrary, existing routers must inherently
leverage limited information available only in packet headers
to map packets to one of a small number of service classes or
tunnels.
Figure 2 shows an instance of very high loss in multiple

QoS classes during a capacity reduction on our network. TCP
congestion control was not eòective and the loss remained
high until we turned on admission control on hosts.

Figure 2: Reduction in TCP packet loss a�er BwE was de-
ployed. Y-axis denotes packet loss in percentage. Diòerent
lines correspond to diòerent QoS classes (BE1 denoting best
eòort, and AF1/AF2 denoting higher QoS classes.)

3. ABSTRACTIONS AND CONCEPTS

3.1 Traffic Aggregates or FlowGroups
Individual services or users run jobs consisting of multiple

tasks. Each task may contain multiple Linux processes and
runs in a Linux container that provides resource accounting,
isolation and information about user_name, job_name and
task_name. Wemodiûed the Linux networking stack tomark
the per-packet socket buòer structure to uniquely identify the
originating container running the task. his allows BwE to
distinguish between traõc from diòerent tasks running on
the same host machine.
BwE further classiûes task traõc based ondestination clus-

ter address. Optionally, tasks use setsockopt() to indicate
other classiûcation information, e.g. for bandwidth delega-
tion. Delegation allows a task belonging to a shared infras-
tructure service to attribute its bandwidth to the user whose
request caused it to generate traõc. For example, a copy ser-
vice can delegate bandwidth charges for a speciûc ûle transfer
to the user requesting the transfer.
For scalability, baseline TCP regulates bandwidth for most

application �ows. BwEdynamically selects the subset of �ows
accounting for most of the demand to enforce. Using TCP
as the baseline also provides a convenient fallback for band-
width allocation in the face of a BwE system failure.
BwE allocates bandwidth among FlowGroups at various

granularities, deûned below.

● Task FlowGroup or task-fg: <delegating_service,
user_name, job_name, task_name, source_cluster,
destination_cluster>. his FlowGroup is the ûnest unit
of bandwidth measurement and enforcement.

● Job FlowGroup or job-fg: Bandwidth usage across all
task-fgs belonging to the same job is aggregated into
a job-fg: <delegating_service, user_name, job_name,
source_cluster, destination_cluster>.

● User FlowGroup or user-fg: Bandwidth usage across
all job-fgs belonging to the same user is aggre-
gated into a user-fg: <delegating_service, user_name,
source_cluster, destination_cluster>.

● Cluster FlowGroup or cluster-fg: Bandwidth usage
across all user-fg belonging to same user_aggregate
and belonging to same cluster-pair is combined
into a cluster-fg: <user_aggregate, source_cluster,

destination_cluster>. he user_aggregate corresponds
to an arbitrary grouping of users, typically by business
group or product. his mapping is deûned in BwE con-
ûguration (Section 3.2).

● Site FlowGroup or site-fg: Bandwidth usage for cluster-
fgs belonging to the same site-pair is combined into a
site-fg: <user_aggregate, source_site, destination_site>.

BwE creates a set of trees of FlowGroups with parent-child
relationships startingwith site-fg at the root to cluster-fg, user-
fg, job-fg and eventually task-fg at the leaf. Wemeasure band-
width usage at task-fg granularity in the host and aggregate
to the site-fg level. BwE estimates demand (Section 6.1) for
each FlowGroup based on its historical usage. BwE allocates
bandwidth to site-fgs, which is redistributed down to task-fgs
and enforced in the host kernel. Beyond rate limiting, the hi-
erarchy can also be used to perform other actions on a �ow
group such as DSCP remarking. All measurements and rate
limiting are done on packet transmit.
BwE policies are deûned at site-fg and user-fg level. Mea-

surement and enforcement happen at task-fg level. Other lev-
els are required to scale the system by enabling distributed
execution of BwE across multiple machines in Google data-
centers.

3.2 Bandwidth Sharing Policies

3.2.1 Requirements
Our WAN (Figure 1) is divided in two levels, the inter-

site network and the inter-cluster network. he links in the
inter-site network (l7, l8 and l9 in the ûgure) are the most
expensive. Aggregated demands on these links are easier
to predict. Hence, our WAN is provisioned at the inter-
site network. Product groups (user_aggregates) create band-
width requirements for each site-pair. For a site-pair, de-
pending on the network capacity and its business priority,
each user_aggregate gets approved bandwidth at several allo-
cation levels. Allocation levels are in strict priority order, ex,
Guaranteed allocation level should be fully satisûed before al-
locating to Best-Eòort allocation level. Allocated bandwidth
of a user_aggregate for a site-pair is further divided to all its
member users.
Even though provisioning and sharing of the inter-site net-

work is the most important, several links not in the inter-site
network may also get congested and there is a need to share
their bandwidth fairly during congestion. We assign weights
to the users that are used to subdivide their user_aggregate’s
allocated bandwidth in the inter-cluster network. To allow
more ûne grained control, we allow weights to change based
on allocated bandwidth as well as to be overridden to a non-
default value for some cluster-pairs.

3.2.2 Configuration
Network administrators conûgure BwE sharing policies

through centralized conûguration. BwE conûguration spec-
iûes a ûxed number of strict priority allocation levels, e.g.,
there may be two levels corresponding to Guaranteed and
Best-Eòort traõc.

(a) f g1
Allocation Weight Bandwidth
Level (Gbps)
Guaranteed 0 0

Best-Effort 20 10
5 ∞

(b) f g2
Allocation Weight Bandwidth
Level (Gbps)
Guaranteed 10 10
Best-Effort 10 ∞

Table 1: BwE Conûguration Example.

 0

 5

 10

 15

 20

 25

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

B
a
n
d

w
id

th
 (

G
b

p
s)

Fair Share

(a) f g1

 0

 5

 10

 15

 20

 25

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

B
a
n
d

w
id

th
 (

G
b

p
s)

Fair Share

(b) f g2

Figure 3: Example Bandwidth Functions.

he BwE conûguration maps users to user_aggregates.
Mapping from user-fg to site-fg can be derived from this. he
BwE conûguration policies describe how site-fgs share the
network and also describe how user-fgs within a site-fg share
bandwidth allocated to the site-fg. For all FlowGroups in a
level of hierarchy, the BwE conûguration deûnes: 1) band-
width for each allocation level and 2) within each allocation
level, weight of the FlowGroup that can change based on allo-
cated bandwidth. An example of a BwE conûguration for the
relative priority for two FlowGroups, f g1 and f g2 is shown
in Table 1.

3.2.3 Bandwidth Functions
heconûgured sharing policies are represented inside BwE

as bandwidth functions1. A bandwidth function [17] speciûes
the bandwidth allocation to a FlowGroup as a function of
its relative priority on an arbitrary, dimensionless measure of
available fair share capacity, whichwe call fair share. fair share
is an abstract measure and is only used for internal computa-
tion by the allocation algorithm. Based on the conûg, every
site-fg and user-fg is assigned a piece-wise linear monotonic
bandwidth function (e.g. Figure 3). It is capped at the dynamic
estimated demand (Section 6.1) of the FlowGroup. hey can
also be aggregated to create bandwidth functions at the higher
levels (Section 3.2.4).

he fair share dimension can be partitioned into regions
(corresponding to allocation levels in the BwE conûgura-
tion) of strict priority. Within each region, the slope2 of a
FlowGroup’s bandwidth function deûnes its relative priority
or weight. Once the bandwidth reaches the maximum ap-
proved for the FlowGroup in a region, the bandwidth function
�attens (0 slope) until the start of the next region. Once the
1Bandwidth functions are similar to utility functions [8, 6]
except that these are derived from static conûgured pol-
icy (Section 3.2) indicating network fair share rather than
application-speciûed utility as a function of allocated band-
width.
2Slope can be a multiple of weight as long as the same multi-
ple is used for all FlowGroups.

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

0
.0

2
.5

5
.0

7
.5

1
0

.0

1
2

.5

1
5

.0

1
7

.5

2
0

.0

2
2

.5

2
5

.0

2
7

.5

3
0

.0

3
2

.5

3
5

.0

3
7

.5

4
0

.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
A

llo
ca

te
d
 B

a
n
d
w

id
th

 (
G

b
p
s)

Fa
ir

 S
h
a
re

Link Available Bandwidth (Gbps)

fg1(left)
fg2(left)

fair share(right)

Figure 4: Bandwidth Sharing on a Bottleneck Link.

bandwidth function reaches the FlowGroup’s estimated de-
mand, it becomes �at from that point for all the following
regions.
Figure 3 shows example bandwidth functions for two Flow-

Groups, f g1 and f g2, based on BwE conûguration as deûned
in Table 1. here are two regions of fair share: Guaranteed (0-
2) and Best-Eòort (2-∞). he endpoints for each region are
system-level constants deûned in BwE conûguration. BwE’s
estimated demand of f g1 is 15Gbps and hence, its bandwidth
function �attens past that point. Similarly, f g2’s estimated de-
mand is 20Gbps.

We present a scenario where f g1 and f g2 are sharing one
constrained link in the network. he goal of the BwE algo-
rithm is to allocate the bandwidth of the constrained link
such the following constraints are satisûed: 1) f g1 and f g2 get
maximumpossible but equal fair share, and 2) sumof their al-
located bandwidth corresponding to the allocated fair share
is less than or equal to the available bandwidth of the link.
Figure 4 shows the output of the BwE allocation algorithm
(Section 5.3) with varying link’s available bandwidth shown
on the x-axis. he allocated fair share to the FlowGroups is
shown on the right y-axis and the corresponding bandwidth
allocated to the FlowGroups is shown on the le� y-axis. Note
that the constraints above are always satisûed at each snap-
shot of link’s available bandwidth. One can verify using this
graph that the prioritization as deûned by Table 1 is respected.

One of BwE’s principal responsibilities is to dynamically
determine the level of contention for a particular resource
(bandwidth) and to then assign the resource to all compet-
ing FlowGroups based on current contention. Higher val-
ues of fair share indicate lower levels of resource contention
and correspondingly higher levels of bandwidth that can po-
tentially be assigned to a FlowGroup. Actual consumption
is capped by current FlowGroup estimated demand, making
the allocation work-conserving (do not waste any available
bandwidth if there is demand).

he objective of BwE is the max-min fair [6] allocation of
fair share to competing site-fgs and then the max-min fair
allocation of fair share to user-fgs within a site-fg. For each
user-fg, maximize the utilization of the allocated bandwidth
to the user-fg by subdividing it to the lower levels of hierar-

Figure 5: BwE Architecture.

chy (job-fgs and task-fgs) equally (no weights) based on their
estimated demands.

3.2.4 Bandwidth Function Aggregation
Bandwidth Functions can be aggregated from one Flow-

Group level to another higher level. We require such aggre-
gation when input conûguration deûnes a bandwidth func-
tion at a ûner granularity, but the BwE algorithm runs over
coarser granularity FlowGroups. For example, BwE’s input
conûguration provides bandwidth function at user-fg level,
while BwE (Section 5.1) runs across cluster-fgs. In this case,
we aggregate user-fgs bandwidth functions to create a cluster-
fg bandwidth function. We create aggregated bandwidth func-
tions for a FlowGroup by adding bandwidth value for each
value of fair share for all its children.

4. SYSTEM DESIGN
BwE consists of a hierarchy of components that aggregate

network usage statistics and enforce bandwidth allocations.
BwE obtains topology and other network state from a net-
work model server and bandwidth sharing policies from an
administrator-speciûed conûguration. Figure 5 shows the
functional components in BwE.

4.1 Host Enforcer
At the lowest level of the BwE hierarchy, the Host Enforcer

runs as a user space daemon on end hosts. Every ûve sec-
onds, it reports bandwidth usage of local application’s tasks-
fgs to the Job Enforcer. In response, it receives bandwidth
allocations for its task-fgs from the Job Enforcer. he Host
Enforcer collects measurements and enforces bandwidth al-
locations using the HTB (Hierarchical Token Bucket) queu-
ing discipline in Linux.

4.2 Job Enforcer
Job Enforcers aggregate usages from task-fgs to job-fgs and

report job-fgs’ usages every 10 seconds to the Cluster En-
forcer. In response, the Job Enforcer receives job-fgs’ band-
width allocations from theCluster Enforcer. he JobEnforcer
ensures that for each job-fg, bandwidth usage does not ex-

ceed its assigned allocation. To do so, it redistributes the as-
signed job-fg allocation among the constituent task-fgs using
the WaterFill algorithm (Section 5.4).

4.3 Cluster Enforcer
heCluster Enforcermanages two levels of FlowGroup ag-

gregation - user-fgs to job-fgs and cluster-fgs to user-fgs. It
aggregates usages from job-fgs to user-fgs and computes user-
fgs’ bandwidth functions based on input from a conûguration
ûle. It aggregates the user-fgs’ bandwidth functions (capped
at their estimated demand) to cluster-fg bandwidth functions
(Section 3.2.4), reporting them every 15 seconds to the Global
Enforcer. In response, the Cluster Enforcer receives cluster-
fgs’ bandwidth allocations, which it redistributes among user-
fgs and subsequently to job-fgs (Section 5.4).

4.4 Network Model Server
he Network Model Server builds the abstract network

model for BwE. Network information is collected by stan-
dard monitoring mechanisms (such as SNMP). Freshness is
critical since paths change dynamically. BwE targets getting
an update every 30 seconds. he consistency of the model is
veriûed using independent mechanisms such as traceroute.

4.5 Global Enforcer
he Global Enforcer sits at the top of the Bandwidth En-

forcer hierarchy. It divides available bandwidth capacity on
the network between diòerent clusters. he Global Enforcer
takes the following inputs: i) bandwidth functions from the
Cluster Enforcers summarizing priority across all users at
cluster-fg level, ii) global conûguration describing the shar-
ing policies at site-fg level, and iii) network topology, link ca-
pacity, link utilization and drop statistics from the network
model server. A small fraction of �ows going over a link may
not be under BwE control. To handle this, for every link we
also compute dark bandwidth. his is the amount of traõc
going over the linkwhich BwE is unaware of. hismay be due
to packet header overhead (particularly tunneling in network
routers) or various failure conditions where BwE has incom-
plete information. Dark bandwidth is the smoothed value of
(actual link usage - BwE reported link usage), and link al-
locatable capacity is (link capacity - dark bandwidth). BwE
reported link usage is computed by taking the set of �ows
(and their current usage) reported to the Global Enforcer by
Cluster Enforcers, and mapping them to the paths and links
for those �ows. Given these inputs, the Global Enforcer runs
hierarchicalMPFA (Section 5.3) to compute cluster-fgs’ band-
width allocations and sends these allocations to Cluster En-
forcers.

5. BWE ALLOCATION ALGORITHM
One of the challenges we faced was deûning the optimiza-

tion objective for bandwidth allocation to individual �ows.
First, we did not wish to allocate bandwidth among compet-
ing 5-tuple �ows but rather to competing FlowGroups. Sec-
ond, services do not compete for bandwidth at a single bottle-
neck link because services communicate from multiple clus-

ters to multiple other clusters, with each cluster pair utilizing
multiple paths. Hence, the bandwidth allocationmust simul-
taneously account for multiple potential bottlenecks.

Here, we present an adaptation of the traditional max-min
fairness objective for FlowGroups sharing a bottleneck link
to multipath cluster-to-cluster communication. We designed
a centralizedMultiPath Fair Allocation (MPFA) algorithm to
determine global max-min fairness. We present a simpler
version of the problem with a single layer of FlowGroups
(Section 5.2) and then extend it to multiple layers of Flow-
Groups with diòerent network abstractions in hierarchical
MPFA (Section 5.5).

5.1 Inputs and Outputs
Inputs to the BwE algorithm are task-fgs’ demands, band-

width functions of user-fgs and site-fgs and network paths for
cluster-fgs and site-fgs. We aggregate task-fgs’ demands all the
way up to site-fgs and aggregate user-fgs’ bandwidth functions
to cluster-fgs’ bandwidth functions (Section 3.2.4). We run
global hierarchicalMPFA (Section 5.5) on site-fgs and cluster-
fgs that results in cluster-fgs’ allocations. hen, we distribute
cluster-fgs’ allocations to task-fgs (Section 5.4), which are en-
forced at the hosts.

5.2 MPFA Problem
Inputs for MPFA are:

1. Set of n FlowGroups, F = { f i , ∀i ∣ 1 ≤ i ≤ n} where
FlowGroups are deûned in Section 3.1. Each f i has an
associated bandwidth function (Section 3.2.3), B f i . B f i
maps fair share to bandwidth for f i . If f i is allocated fair
share of s, then it should be allocated bandwidth equal
to B f i (s).

2. Set of m links, L = {lk , ∀k ∣ 1 ≤ k ≤ m}. Each link lk
has an associated allocatable capacity c lk .

3. Set of n f i paths for each f i . Each path, p f ij , has an as-
sociated weight, w f i

j , where 1 ≤ j ≤ n f i and for each
f i , ∑1≤ j≤n f i

w f i
j = 1. Each path, p f ij , is a set of links, i.e,

p f ij ⊆ L.

We deûne the fraction of f i that traverse lk as FR(f i , lk).
his is calculated as the sum of weights,w f i

j , for all paths, p
f i
j ,

for the FlowGroup, f i , such that lk ∈ p f ij .
FR(f i , lk) = ∑

1≤ j≤n f i ∣lk∈p
f i
j

w f i
j

he output of MPFA is the max-min fair share alloca-
tion s f i to each FlowGroup, f i , such that ascending sorted
(s f1 , s f2 , . . . , s fn) is maximized in lexicographical order. Such
maximization is subject to the constraint of satisfying capac-
ity constraints for all links, lk .

∑
∀ f i

FR(f i , lk) × B f i (s f i) ≤ c lk

5.3 MPFA Algorithm
heMPFA algorithm (Algorithm 1) can be described in the

following high-level steps:

Figure 6: MPFA Example.

1. For each link, lk , calculate the link’s bandwidth func-
tion, B lk , by aggregating bandwidth functions of all
non-frozen3 FlowGroups, f i , in appropriate fractions,
FR(f i , lk). B lk maps fair share, s, to allocation on the
link lk when all FlowGroups traversing lk are allocated
the fair share of s.

2. Find the bottleneck fair share, sblk , for each remaining
(not bottlenecked yet) link, lk , by ûnding the fair share
corresponding to its capacity, c lk in the link’s bandwidth
function, B lk . Since bandwidth function is a piece-wise
linearmonotonic function, ûnding fair share for a given
capacity can be achieved by a binary search of the in-
teresting points (points where the slope of the function
changes).

3. he link, lb , with the minimum bottleneck fair share,
smin is the next bottleneck. If the minimum bottleneck
fair share equals∞, then terminate.

4. Mark the link, lb , as a bottleneck link. Freeze all Flow-
Groups, f i , with non-zero fraction, FR(f i , lb), on lb .
Frozen FlowGroups are not considered to ûnd further
bottleneck links. Subtract frozen FlowGroups’ band-
width functions beyond the bottleneck fair share,smin

from all remaining links.

5. If any link is not a bottleneck, continue to step 2.

Figure 6 shows an example of the allocation algorithmwith
three links, l1, l2 and l3, with capacity 13, 13 and 4 respectively.
Assume all bandwidth numbers are in Gbps for this exam-
ple. here are three FlowGroups: 1) f1 takes two paths (l2 and
l1 → l3) with weights 0.75 and 0.25 respectively, 2) f2 takes
one path (l2), and 3) f3 taking one path (l1). All FlowGroups
have demand of 18. Assume f1, f2 and f3 have weights of 1, 2
and 3 respectively, corresponding bandwidth functions of the
FlowGroups are: B f1(s) = min(18, s), B f2(s) = min(18, 2s)
and B f3(s) = min(18, 3s).
Based on that paths, fraction of FlowGroups(f i) travers-

ing Links(lk) are: FR(f1 , l1) = 0.25, FR(f1 , l2) = 0.75,
FR(f1 , l3) = 0.25, FR(f2 , l2) = 1 and FR(f3 , l1) = 1.
We calculate bandwidth function for links as:

B l1(s) = (
0.25(min(18, s))
+min(18, 3s)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

3.25s ∶ 0 ≤ s < 6
0.25s + 18 ∶ 6 ≤ s < 18
22.5 ∶ s ≥ 18

3A frozen FlowGroup is a FlowGroup that is already bottle-
necked at a link and does not participate in the MPFA algo-
rithm run any further.

Input:
FlowGroups, F ∶ { f i ,∀i ∣ 1 ≤ i ≤ n};
Links, L ∶ {lk ,∀k ∣ 1 ≤ k ≤ m};
Allocatable capacities for ∀lk : {c lk ,∀k ∣ 1 ≤ k ≤ m};
bandwidth function for f i : B f i ;
// ∀ f i ,∀lk, Fraction of f i traversing link, lk
Function, FR(f i , lk) : Output is a fraction ≤ 1;

Output:
Allocated fair share for ∀ f i :{s f i ,∀i ∣ 1 ≤ i ≤ n};

Bottleneck Links , Lb ← ∅;
Frozen FlowGroups, F f ← ∅;
foreach f i do s f i ←∞;
// Calculate bandwidth function for each lk
foreach lk do ∀s, B lk (s) ← ∑∀ f i FR(f i , lk) × B f i (s) ;
while (∃lk ∣ lk ∉ Lb) ∧ (∃ f i ∣ f i ∉ F f) do

Bottleneck link, lb ← nul l ;
Min Bottleneck fair share, smin ←∞;
foreach lk ∉ Lb do

Find sblk ∣ c lk = B lk (s
b
lk);

if sblk < smin then smin ← sblk ; lb ← lk ;

if lb ≠ nul l then Add lb to Lb ;
else break;
// Freeze f i taking the bottleneck link, lb
foreach f i ∣ FR(f i , lb) > 0 ∧ f i ∉ F f do

Add f i to F f ; s f i ← smin ;
// Remove allocated bandwidth from B f i
∀s, B f i (s) ← max(0, B f i (s) − B f i (smin));
// Subtract B f i from B lk for all its links

foreach lk ∣ FR(f i , lk) > 0 ∧ lk ∉ Lb do
∀s, B lk (s) ← B lk (s) − FR(f i , lk) × B f i (s);

Algorithm 1:MPFA Algorithm

B l2(s) = (
0.75(min(18, s))
+min(18, 2s)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2.75s ∶ 0 ≤ s < 9
0.75s + 18 ∶ 9 ≤ s < 18
31.5 ∶ s ≥ 18

B l3(s) = 0.25(min(18, s)) = { 0.25s ∶ 0 ≤ s < 18
4.5 ∶ s ≥ 18

Next, we ûnd bottleneck fair share, sblk for each link, lk ,
such that B lk(sblk) = c lk . his results in sbl1 = 4, sbl2 ≈ 4.72,
sbl3 = 16. his makes l1 the bottleneck link and freezes both
f1 and f3 at fair share of 4. l1 will not further participate in
MPFA. Since f1 is frozen at fair share of 4, B l2 and B l3 need to
be updated to not account for B f1 beyond fair share of 4. he
updated functions are:

B l2(s) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2.75s ∶ 0 ≤ s < 4
2s + 3 ∶ 4 ≤ s < 9
21 ∶ s ≥ 9

B l3(s) = {
0.25s ∶ 0 ≤ s < 4
1 ∶ s ≥ 4

We recalculate sbl2 and sbl3 based on the new values for B l2

and B l3 . his results in sbl2 = 5 and sbl3 = ∞. l2 is the next bot-
tleneck with fair share of 5. f2 is now frozen at the fair share of

5. Since all FlowGroups are frozen, MPFA terminates. he û-
nal allocation to (f1, f2, f3) in fair share is (4, 5, 4), translating
to (4Gbps, 10Gbps, 12Gbps) using the corresponding band-
width functions. his allocation ûlls bottleneck links, l1 and l2
completely and fair share allocation (4, 5, 4) is max-min fair
with the given pathing constraints. No FlowGroup’s alloca-
tion can be increased without penalizing other FlowGroups
with lower or equal fair share.

5.3.1 Interaction with Traffic Engineering (TE)
he BwE algorithm takes paths and their weights as input.

A separate system, TE [17, 11, 12], is responsible for ûnding
optimal pathing that improves BwE allocation. Both BwE
and TE are trying to optimize network throughput in a fair
way and input �ows are known in advance. However, the
key diòerence is that in BwE problem formulation, paths and
their weights are input constraints, where-as for TE [17, 11,
12], paths and their weights are output. In our network, we
treat TE and BwE as independent problems.

TE has more degrees of freedom and hence can achieve
higher fairness. In the above example, the ûnal allocation
can be more max-min fair if f1 only uses the path l2. In this
case,MPFAwill allocate fair share to �ow groups ≈ (4.33, 4.33,
4,33) with corresponding bandwidth of (4.33Gbps, 8.66Gbps,
13Gbps). Hence, a good traõc engineering solution results in
better (more max-min fair) BwE allocations.
We run TE [17] and BwE independently because they work

at diòerent time-scales and diòerent topology granularity.
Since TE is more complex, we aggregate topology to site-
level where-as for BwE, we are able to run at a more gran-
ular cluster-level topology. TE re-optimizes network less of-
ten because changing network paths may result in packet re-
ordering, transient loss [16] and resulting routing changes
may add signiûcant load to network routers. Separation of
TE and BwE also gives us operational �exibility. he fact
that both systems have the same higher level objective func-
tion helps ensure that their decisions are aligned and eõcient.
Even though in our network we run these independently the
possibility of having a single system to do both can not be
ruled out in future.

5.4 Allocation Distribution
MPFA allocates bandwidth to the highest level of aggrega-

tions, site-fgs. his allocation needs to be distributed to lower
levels of aggregation. Distribution of allocation from cluster-
fg to lower levels is simpler since the network abstraction
does not change and the set of paths remains the same during
de-aggregation. We describe such distributions in this sec-
tion. he distribution from site-fg to cluster-fg is more com-
plex since the network abstraction changes from site-level to
cluster-level (Figure 1), requiring an extension of MPFA to
Hierarchical MPFA (Section 5.5) to allocate bandwidth di-
rectly to cluster-fgs while honoring fairness and network ab-
stractions at site-fg and cluster-fg level.

To distribute allocation from a cluster-fg to user-fgs, we cal-
culate the aggregated bandwidth functions for the cluster-fgs
(Section 3.2.4) and determine the fair share, su , correspond-
ing to the cluster-fg’s bandwidth allocation. We use su to look

Figure 7: Allocation Using WaterFill.

up the bandwidth allocation for each user-fg using its band-
width function.
Bandwidth distribution from a user-fg to job-fgs and from

a job-fg to task-fgs is simple max-min fair allocation of one
resource to several competing FlowGroups using aWaterFill
as shown in Figure 7. WaterFill calculates the water level cor-
responding to the maximum allocation to any FlowGroup.

he allocation to each child FlowGroup is
min(demand , waterl evel). If there is excess band-
width still remaining a�er running the WaterFill, it is
divided among the FlowGroups as bonus bandwidth. Since
some (or a majority) of the FlowGroups will not use the
bonus assigned to them, the bonus is over-allocated by a
conûgurable scaling factor.

5.5 Hierarchical MPFA
Next, we describe hierarchicalMPFA, which reconciles the

complexity between site-fg and cluster-fg level allocation. he
fairness goal is to allocate max-min fair share to site-fg re-
specting bandwidth functions and simultaneously observing
inter-site and intra-site topological constraints (Figure 1). Be-
cause not all cluster-fgs within a site-fg share the same WAN
paths, individual cluster-fgs within a site-fg may bottleneck
on diòerent intra-site links.

We motivate hierarchical fairness using an example based
on Figure 1. All links have 100Gbps capacity, except l1
(5Gbps) and l9 (40Gbps). here are two site-fgs, s f1 from S1
to S3 and s f2 from S2 to S3. s f1 consists of cluster-fgs: c f1
from C1

1 to C1
3 and c f2 from C2

1 to C1
3. s f2 consists of a cluster-

fg: c f3 from C1
2 to C1

3. All site-fgs have equal weights and for
each site-fg, all its member cluster-fgs have equal weights. c f1
and c f3 have 100Gbps of demand while c f2 has a 5Gbps de-
mand. If we run MPFA naively on site-fgs, then s f1 and s f2
will be allocated 20Gbps each due to the bottleneck link, l9.
However, when we further subdivide s f1’s 20Gbps among c f1
and c f2, c f1 only receives 5Gbps due to the bottleneck link l1
while c f2 only has demand of 5Gbps. c f3 receives all of s f2’s
20Gbps allocation.

With this naive approach, the ûnal total allocation on l9 is
30Gbps wasting 10Gbps, where c f3 could have used the extra
10Gbps. Allocation at the site levelmust account for indepen-
dent bottlenecks in the topology one layer down. Hence, we
present an eõcient hierarchical MPFA to allocate max-min
fair bandwidth among site-fgs while accounting for cluster-
level topology and fairness among cluster-fgs.

he goals of hierarchical MPFA are:

● Ensure max-min fairness of fair share across site-fg
based on site-fgs’ bandwidth functions.

● Within a site-fg, ensure max-min fairness of fair share
across cluster-fgs using cluster-fgs’ bandwidth functions.

● he algorithm should be work-conserving.

● he algorithm should not over-allocate any link in the
network, hence, should enforce capacity constraints of
intra-site and inter-site links.

For hierarchical MPFA, we must run MPFA on all cluster-
fgs to ensure that bottleneck links are fully utilized and en-
forced. To do so, we must create eòective bandwidth func-
tions for cluster-fgs such that the fairness among site-fgs and
fairness within a site-fg are honored.

We enhance MPFA in the following way. In addition to
bandwidth function, Bc f i , for cluster-fg, c f i , we further con-
sider the bandwidth function, Bs fx for site-fg, s fx . Using
∀i , Bc f i and ∀x , Bs fx , we derive the eòective bandwidth func-
tion, Bec f i , for c f i .
We create Bec f i by transforming Bc f i along the fair share di-

mension while preserving the relative priorities of c f i with
respect to each other. We call bandwidth values of diòerent
c f i as equivalent if they map to the same fair share based
on their respective bandwidth functions. To preserve rela-
tive priorities of ∀c f i ∈ s fx , the set of equivalent bandwidth
values should be identical before and a�er the bandwidth
functions transformation. Any transformation applied in fair
share should preserve this property as long as the same trans-
formation is applied to all c f i ∈ s fx . Allocated bandwidth to
each c f i on a given available capacity (e.g. Figure 4) should
be unchanged due to such transformation. In addition, we
must ûnd a transformation such that when all c f i ∈ s fx use
their eòective (transformed) bandwidth functions, Bec f i , they
can together exactly replace s fx . his means that when Bec f i
are added together, it equals Bs fx . ∀s,∑∀i∣c f i∈s fx B

e
c f i (s) =

Bs fx (s).
he steps to create Bec f i are:

1. For each site-fg, s fx , create aggregated bandwidth func-
tion, Bas fx (Section 3.2.4):

∀s, Bas fx (s) = ∑
∀c f i∈s fx

Bc f i (s)

2. Find a transformation function of fair share from Bas fx
to Bs fx . he transformation function, Tx is deûned as:

Tx(s) = s̄ ∣ Bas fx (s) = Bs fx (s̄)
Note that since bandwidth function is piece-wise linear
monotonic function, just ûnd Tx(s) for values for in-
teresting points (where slope changes in either Bas fx or
Bs fx).

3. For each c f i ∈ s fx , apply Tx on fair share dimension of
Bc f i to get Bec f i .

Bec f i (Tx(s)) = Bc f i (s)

0.0

15.0

20.0
22.5
25.0

30.0

 0

 7
.5

 1
0

 1
2

.5

 1
5

 2
0

B
a
n
d

w
id

th
 (

G
b
p

s)

Fair Share

Bcf1 (Input)

2

1

Apply T1
on fair share
Ô⇒

 0

 2
0

 5
0

 8
7

.5

 1
0

0

 1
1

0

0.0

15.0

20.0
22.5
25.0

30.0

B
a
n
d

w
id

th
 (

G
b
p

s)

Fair Share

Be
cf1 (Output)

0.75

0.167

0.067
0.2 0

+

0.0

15.0

20.0

25.0

30.0

 0

 7
.5

 1
0

 1
2

.5

 1
5

 2
0

B
a
n
d

w
id

th
 (

G
b
p

s)

Fair Share

Bcf2 (Input)

2

0

Apply T1
on fair share
Ô⇒

 0

 2
0

 5
0

 8
7

.5

 1
0

0

 1
1

0

0.0

15.0

20.0

25.0

30.0

B
a
n
d

w
id

th
 (

G
b
p

s)

Fair Share

Be
cf2 (Output)

0.75

0.167

0.133

0

=

0.0

30.0

40.0

47.5

55.0

 0

 7
.5

 1
0

 1
2

.5

 1
5

 2
0

B
a
n
d

w
id

th
 (

G
b
p

s)
Fair Share

Ba
sf1 (Calculated)

4

3

1
Calculate T1 :
∀ Bandwidth
map fair share
Bas f1 → Bs f1
T1(7.5) = 20
T1(10) = 50
T1(12.5) = 87.5
T1(15) = 100
T1(> 15) = ∞ 0

 2
0

 5
0

 8
7

.5

 1
0

0

 1
1

0

0.0

30.0

40.0

50.0
55.0

B
a
n
d

w
id

th
 (

G
b
p

s)

Fair Share

Bsf1 (Input)

1.5

0.33

0.2

0

Figure 8: Bandwidth Function Transformation Example

Again, just applying the transformation at the inter-
esting points (points where the slope of the function
changes) is suõcient.

An example of creating eòective bandwidth function is
shown in Figure 8. MPFA algorithm as described in Sec-
tion 5.3 is run over cluster-fgs as FlowGroups with their ef-
fective bandwidth functions to achieve hierarchical fairness.
When we run hierarchical MPFA in the topology shown

in Figure 1, the allocation to c f3 increases to 30Gbps, fully
using bottleneck link l9. However, if c f2 has higher demand
(say 100Gbps), then it will not receive beneût of c f1 being
bottlenecked early and s f1 will not receive its full fair share
of 20Gbps. To resolve this, we rerun the bandwidth function
transformation for a site-fg when any of its member cluster-
fgs is frozen due to an intra-site bottleneck link.

6. SYSTEM IMPLEMENTATION
his section describes various insights, design and imple-

mentation considerations thatmade BwE a practical and use-
ful system.

6.1 Demand Estimation
Estimating demand correctly is important for fair alloca-

tion and high network utilization. Estimated demand should
be greater than current usage to allow each FlowGroup to
ramp its bandwidth use. But high estimated demand (com-
pared to usage) of a high priority FlowGroup canwaste band-
width. In our experience, asking users to estimate their de-
mand is untenable because user estimates are wildly inaccu-
rate. Hence, BwE employs actual, near real-time measure-

ments of application usage to estimate demand. BwE es-
timates FlowGroup demand by maintaining usage history:
Demand = max(max∆t(usage) × scal e , min_demand)
We take the peak of a FlowGroup’s usage across ∆t time

interval, multiply it with a factor scal e > 1 and take the max
with min_demand. Without the concept of min_demand,
small �ows (few Kbps) would ramp to their real demand too
slowly. Empirically, we found that ∆t = 120s, scal e = 1.1 and
min_demand = 10Mbps works well for user-fg for our net-
work applications. We use diòerent values of min_demand
at diòerent levels of the hierarchy.

6.2 WaterFill Allocation For Bursty Flows
hedemands used in ourWaterFill algorithm (Section 5.4)

are based on peak historical usage and diòerent child Flow-
Groups can peak at diòerent times. his results in demand
over-estimation and subsequently the WaterFill allocations
can be too conservative. To account for burstiness and the re-
sulting statistical multiplexing, we estimate a burstiness factor
(≥ 1) for each FlowGroup based on its demand and sum of its
children’s demand:
burstiness f actor = ∑∀chi l dren estimated demand

parent′s estimated demand
Since estimated demand is based on peak historical usage

(Section 6.1), the burstiness factor of a FlowGroup is a mea-
sure of sumof peak usages of children divided by peak of sum
of usages of the children. We multiply a FlowGroup’s alloca-
tion by its burstiness factor before running theWaterFill. his
allows its children to burst as long as they are not bursting
together. If a FlowGroup’s children burst at uncoordinated
times, then the burstiness factor is high, otherwise the value
will be close to 1.

6.3 Fair Allocation for Satisfied Flow-
Groups

A Satisûed FlowGroup is one whose demand is less than
or equal to its allocation. Initially, we throttled each satis-
ûed FlowGroup strictly to its estimated demand. However
we found that latency sensitive applications could not ramp
fast enough to their fair share on a congested link. We next
eliminated throttling allocations for all satisûed FlowGroups.
However, this lead to oscillations in system behavior as a
FlowGroup switched between throttled and unthrottled each
time its usage increased.

Our current approach is to assign satisûed FlowGroups a
stable allocation that re�ects the fair share at inûnite demand.
his allocation is a FlowGroup’s allocation if its demand grew
to inûnity while demand for other FlowGroups remained
the same. When a high priority satisûed FlowGroup’s usage
increases, it will ramp almost immediately to its fair share.
Other low-priority FlowGroups will be throttled at the next
iteration of the BwE control loop. his implies that the ca-
pacity of a constrained link is oversubscribed and can result
in transient loss if a FlowGroup’s usage suddenly increases.

he naive approach for implementing user-fg allocation
involves running our global allocation algorithm multiple
times for each FlowGroup, assigning inûnite demand to the
target user-fg without modifying the demand of other user-

Figure 9: Improving Network Utilization

fgs. Because multiple such runs across all FlowGroups does
not scale, we run one instance of the global algorithm and
pass to Cluster Enforcers the bandwidth function for themost
constrained link for each FlowGroup. Assuming the most
constrained link does not change, the Cluster Enforcer can
eõciently calculate allocation for a FlowGroup with ∞ de-
mand in the constrained link, assuming it becomes the bot-
tleneck.

6.4 Improving Network Utilization
BwE allows network administrators to increase link uti-

lization by deploying high throughput NETBLT [10]-like
protocols for copy traõc. BwE is responsible for determin-
ing the �ow transmission rate for these protocols. We mark
packets for such copy �ows with low priority DSCP values so
that they absorb most of the transient network packet loss.
To ensure that the system achieves high utilization (>90%)
without aòecting latency/loss sensitive �ows such as web and
video traõc, the BwE Global Enforcer supports two rounds
of allocation.

● In the ûrst round, link capacities are set conservatively
(for example at 90% of actual capacity). All traõc types
are allowed to participate in this round of allocation.

● In the second round, the Global Enforcer allocates only
copy traõc, but it scales up the links aggressively, e.g.,
to 105% of link capacity.

● We also adjust link scaling factors depending on loss
on the link. If a link shows loss for higher QoS classes,
we reduce the scaling factor. his allows us to better
achieve a balance between loss and utilization on a link.

Figure 9 shows link utilization increasing from 80% to 98%
as we adjust the link capacity. he corresponding loss for
copy traõc also increases to an average 2% loss with no in-
creases in loss for loss-sensitive traõc.

6.5 Redundancy and Failure Handling
For scale and fault tolerance, we run multiple replicas at

each level of the BwE hierarchy. here are N live andM cold
standby Job Enforcers in each cluster. Hosts report all task-fgs
belonging to the same job-fg to the same Job Enforcer, shard-
ing diòerent job-fgs across Job Enforcers by hashing <user
name, job name, destination cluster, traõc_type>.

Cluster Enforcers run asmaster/hot standby pairs. Job En-
forcers report all information to both. Both instances in-
dependently run the allocation algorithm and return band-
width allocations to Job Enforcers. he Job Enforcers enforce
the bandwidth allocations received from the master. If the
master is unreachable Job Enforcers switch to the allocations
received from the standby. We employ a similar redundancy
approach between Global Enforcers and Cluster Enforcers.
Communication between BwE components is high prior-

ity and is not enforced. However, there can be edge scenar-
ios where BwE components are unable to communicate with
each other. Some examples are: BwE job failures (e.g. binaries
go into a crash loop) causing hosts to stop receiving updated
bandwidth allocations, network routing failures preventing
Cluster Enforcers from receiving allocation from the Global
Enforcers, or the network model becoming stale.

he general strategy for handling these failures is that we
continue to use last known state (bandwidth allocations or
capacity) for several minutes. For longer/sustained failures,
in most cases we eliminate allocations and rely on QoS and
TCP congestion management. For some traõc patterns such
as copy-traõc we set a low static allocation. We have found
this design pattern of defense by falling back to sub-optimal
but still operable baseline systems invaluable to building ro-
bust network infrastructure.

7. EVALUATION

7.1 Micro-benchmarks on Test Jobs
We begin with some micro-benchmarks of the live BwE

system to establish its baseline behavior. Figure 12(a) demon-
strates BwE fairness across users running diòerent number
of TCP connections. Two users send traõc across a network
conûgured to have 100Mbps of available capacity between the
source/destination clusters. User1 has two connections and a
weight of one. We vary the number of connections for User2
(shownon the x-axis) and its BwE assignedweight. he graph
shows the throughput ratio is equivalent to the users weight
ratio independent of the number of competing TCP �ows.

Next we show how quickly BwE can enforce bandwidth al-
locations with and without the inûnite demand feature (Sec-
tion 6.3). In this scenario there are 2 users on a simulated
100 Mbps link. Initially, User1 has weight of 3 and User2 has
weight of 1. At 120s, we change the weight of User2 to 12. In
Figure 12(b), where the inûnite demand feature is disabled,
we observe that BwE converges at 580s. In Figure 12(c), where
inûnite demand feature is enabled, we observe it converges at
160s. his demonstrates BwE can enforce bandwidth alloca-
tions and converge in intervals of tens of seconds. his delay
is reasonable for our production WAN network since large
bandwidth consumers are primarily copy traõc.

7.2 System Scale
A signiûcant challenge for BwE deployment is the system’s

sheer scale. Apart from organic growth to �ows and network
scale other reasons that aòect system scale were supporting

50.0k
400.0k

800.0k

1.2M

1.6M

Feb 2012 Jul 2012 Jan 2013 Jul 2013 Dec 2013
0.0
30.0M
60.0M
90.0M
120.0M
150.0M
180.0M

us
er

/jo
b/

cl
us

te
r

flo
w

 g
ro

up
s

ta
sk

 fl
ow

 g
ro

up
s

user flow groups (left)
job flow groups (left)

cluster flow groups (left)
task flow groups (right)

Figure 10: FlowGroup Counts

0.0
100.0M
200.0M
300.0M
400.0M
500.0M
600.0M
700.0M

Feb 2012 Jul 2012 Jan 2013 Jul 2013 Dec 2013
150
200
250
300
350
400
450
500
550

B
its

/s

C
or

es

Cores (right)
Control Traffic - WAN

Control Traffic - Total

Figure 11: Resource overhead (Control System)

ûne-grained bandwidth allocation and decreasing reporting
interval for enforcement frequency.
Figure 10 shows growth in FlowGroups over time. As ex-

pected, as we go up in the hierarchy the number of Flow-
Groups drops signiûcantly, allowing us to scale global com-
ponents. Figure 11 shows the amount of resources used by
our distributed deployment (excepting per-host overhead). It
also shows the communication overhead of the control plane.
We can conclude that the overall cost is very small relative to
enforcing traõc generated by hundreds of thousands of cores
using terabits/sec of bandwidth capacity.

Table 2 shows the number of FlowGroups on a congested
link at one point in time relative to all outgoing �ow groups
from a major cluster enforcer. It gives an idea of overall scale
in terms of the number of competing entities. here are por-
tions of the networkwithmillions of competing FlowGroups.
Table 3 shows our algorithm run time at various levels in the
hierarchy. We show max and average (across multiple in-
stances) for each level except global. Overall, our goal is to
enforce large �ows in a few minutes, which we are able to
achieve. he table also shows that the frequency of collecting
and distributing data is a major contributing factor to reac-
tion time.

site cluster user job task
One Congested Link 336 3.0k 40k 400k 12714k
Largest Cluster Enforcer 55 3.5k 63k 165k 15660k
Avg across cluster enforcers 53 1.5k 22k 60k 6496k
Global 1594 47.4k 682k 1825k 194088k

Table 2: Number of *-fgs (at various levels in BwE) for a con-
gested link and for a large cluster enforcer.

Algo Run-time Algo Reporting
Max(s) Mean(s) Interval(s) Interval(s)

Global Enforcer 3 - 10 10
Cluster Enforcer .16 .15 4 10
Job Enforcer <0.01 <0.01 4 5

Table 3: Algorithm run time and feedback cycle in seconds.
Algorithm interval is how frequently algorithm is invoked
and Reporting interval is the duration between two reports
from the children in BwE hierarchy.

(a) BwE Fairness (b) Allocation Capped at Demand (c) Allocation not Capped at Demand

Figure 12: BwE compliance

Min Max Mean
Number of user-fg 3% 11% 7%
Number of job-fg 3% 10% 6%
Usage 94% 99% 97%

Table 4: Percentage of FlowGroups enforced.

BwE tracks about 500k user-fgs andmillions of job-fgs, but
only enforces a small fraction of these. Processing for unen-
forced FlowGroups is lightweight at higher levels of the BwE
hierarchy allowing the system to scale. Table 4 shows the frac-
tion of enforced �ows and the fraction of total usage they rep-
resent. BwE only enforces 10% of the �ows but these �ows ac-
count for 94% of the traõc. We also found that for congested
links, those with more than 80% utilization, less than 1% of
the utilization belonged to unenforced �ows. his indicates
BwE is able to focus its work on the subset of �ows that most
contribute to utilization and any congestion.
We introduced a number of system optimizations to

address growth along the following dimensions: 1) Flow
Groups: Organic growth and increase in speciûcity (for e.g.,
delegation). For example, the overall design has been serv-
ing us through a growth of 10x from BwE’s inception (20M to
200M). 2) Paths: TraõcEngineering introduced newpaths in
the system. 3) Links: Organic network Growth 4) Reporting
frequency: there is a balance between enforcement accuracy
and resource overhead. 5) Bottleneck links: he number of
bottleneck links aòects the overall run time of the algorithm
on the Global Enforcer.

8. DISCUSSION AND FUTURE WORK
BwE requires accurate network modeling since it is a key

input to the allocation problem. his is challenging in an en-
vironment where devices fail o�en and new technologies are
being introduced rapidly. In many cases, we lack standard
APIs to expose network topology, routing and pathing infor-
mation. With So�ware Deûned Networking, we hope to see
improvements in this area. Another challenge is that for scal-
ability, we o�en combine a symmetric fullmesh topology into
a single abstract link. his assumption however breaks dur-
ing network failures and handling these edge cases continues
to be a challenge.

Our FlowGroup abstraction is limited in that it allows
users sending from multiple source/destination cluster pairs
over the same bottleneck link to have an advantage. We are

exploring abstractions where we can provide fair share to all
users across all bottleneck links irrespective of the number
and placement of communicating cluster pairs. Other areas
of research include improving the reaction time of the control
system while scaling to a large number of FlowGroups, pro-
viding fairness at longer timescales (hours or days) and in-
cluding �ow deadlines in the objective function for fairness.

8.1 Broader Applicability
Our work is motivated by the observation that per-�ow

bandwidth allocation is no longer the ideal abstraction for
emerging WAN use cases. We have seen substantial bene-
ût of BwE to applications for WAN distributed computing
and believe that it is also applicable to a number of emerg-
ing application classes in the broader Internet. For example,
video streaming services for collaboration or entertainment
increasingly dominate WAN communication. hese appli-
cations have well-understood bandwidth requirements with
step functions in additional utility from incremental band-
width allocation. Consider that a 480P video stream may
receive no incremental beneût from an additional 100Kbps
of bandwidth; only suõcient additional bandwidth to enable
720P streaming is useful. Finally, homes and businesses are
trending toward multiple simultaneous video streams with
known relative priority and incremental bandwidth utility, all
sharing a single bottleneck with known capacity.

Next, consider the move toward an Internet ofhings [29]
where hundreds of devices in a home or business may have
varying wide-area communication requirements. hese ap-
plications may range from home automation, to security,
health monitoring, to backup. For instance, home security
may have moderate bandwidth requirements but be of the
highest priority. Remote backup may have substantial, sus-
tained bandwidth requirements. However, the backup does
not have a hard deadline and is largely insensitive to packet
loss. Investigating BwE-basedmechanisms for fair allocation
based on an understanding of relative application utility in
response to additional bandwidth is an interesting area of fu-
ture work.

9. RELATED WORK
his paper focuses on allocating bandwidth among users

in emergingmulti-datacenterWANenvironments. Given the
generality of the problem, we necessarily build on a rich body

of related eòorts, including utility functions [8], weighted fair
sharing [2, 11, 12, 8] and host-based admission control [9].
We extend existingUtilitymax-min approaches [8] formulti-
path routing and hierarchical fairness.
Weighted queuing is one common bandwidth allocation

paradigm. While a good starting point, we ûnd weights
are insuõcient for delivering user guarantees. Relative to
weighted queuing, we focus on rate limiting based on de-
mand estimation. BwE control is centralized and protocol
agnostic, i.e., general to TCP and UDP. his is in contrast to
DRL [25], which solves the problem via distributed rate con-
trol for TCP while not accounting for network capacity ex-
plicitly.

Netshare [20] and Seawall [30] also use weighted band-
width allocation mechanisms. Seawall in particular achieves
per-link proportional fairness. We have foundmax-min fair-
ness to be more practical because it provides better isolation.

Gatekeeper [26] also employs host-based hierarchical to-
ken buckets to share bandwidth among data center ten-
ants, emphasizing work-conserving allocation. Gatekeeper
however assumes a simpliûed topology for every tenant.
BwE considers complex topologies, multi-path forwarding,
centralized bandwidth allocation, and a range of �exible
bandwidth allocation mechanisms. Secondnet [15] provides
pair-wise bandwidth guarantees but requires accurate user-
provided demands and is not work conserving.

Oktopus [4] proposes a datacenter tree topologywith spec-
iûed edge capacity. While suitable for datacenters, it is not a
natural ût for the WAN where user demands vary based on
source-destination pairs. he BwE abstraction is more ûne-
grained, with associated implementation and conûguration
challenges. Oktopus also ties the problem of bandwidth al-
location with VM placement. Our work however does not
aòect computation placement but rather takes the source of
demand as ûxed. We believe there are opportunities to ap-
ply such joint optimization to BwE. Datacenter bandwidth
sharing eòorts such as ElasticSwitch [24], FairCloud [23] and
EyeQ [18] focus on a hose model for tenants. EyeQ uses ECN
todetect congestion at the edge and assumes a congestion free
core. In contrast, our �ow-wise bandwidth sharing model al-
lows aggregation across users and is explicitly focused on a
congested core.

Recent eòorts such as SWAN [16], and B4 [17] are closely
related but focus on the network and routing infrastructure
to eòectively scale and utilize emergingWAN environments.
In particular, they focus on employing So�wareDeûnedNet-
working constructs for controlling and eõciently scaling the
network. Our work is complementary and focuses on en-
forcing policies given an existing multipath routing con-
ûguration. Jointly optimizing network routing, and band-
width allocation is an area for future investigation. TEM-
PUS [19] focuses on optimizing network utilization by ac-
counting for deadlines for long-lived �ows . Our bandwidth
sharing model applies to non-long-lived �ows as well and
does not require deadlines to be known ahead of time. Flow
deadlines open up possibility of further optimization (for ex-
ample, by smoothing bandwidth allocation over a longer pe-
riod of time) and that remains an area for future work for us.

Work in RSVP, Diòerentiated Services and Traõc Engi-
neering [14, 27, 7, 22, 21, 1, 5] overlaps in terms of goals. How-
ever, these approaches are network centric, assuming that
host control is not possible. In some sense, we take the oppo-
site approach, considering an orthogonal hierarchical con-
trol infrastructure that leverages host-based demand mea-
surement and enforcement.
Congestion Manager [3] is an inspiration for our work on

BwE, enabling a range of �exible bandwidth allocation poli-
cies to individual �ows based on an understanding of ap-
plication requirements. However, Congestion Manager still
manages bandwidth at the granularity of individual hosts,
whereas we focus on the infrastructure and algorithms for
bandwidth allocation in a large-scale distributed computing
WAN environment.

10. CONCLUSIONS
In this paper, we present Bandwidth Enforcer (BwE), our

mechanism for WAN bandwidth allocation. BwE allocates
bandwidth to competing applications based on �exible pol-
icy conûgured by bandwidth functions. BwE supports hierar-
chical bandwidth allocation and delegation among services
while simultaneously accounting for multi-path WAN com-
munication.
Based on multiple years of production experience, we

summarize a number of important beneûts to our WAN.
First, BwE provides isolation among competing services, de-
livering plentiful capacity in the common case while main-
taining required capacity under failure andmaintenance sce-
narios. Second, we provide a single point for specifying allo-
cation policy to administrators. While pathing, RTT, and ca-
pacity can shi� substantially, BwE continues to allocate band-
width according to policy. Finally, BwE enables the WAN to
run at higher levels of utilization than before. By tightly in-
tegrating new loss-insensitive ûle transfer protocols running
at low priority with BwE, we run many of our WAN links at
90% utilization.

Acknowledgements
Many teams within Google collaborated towards the success
of the BwE project. We would like to acknowledge the BwE
development, test and operations groups including Aaron
Racine, Alex Docauer, Alex Perry, Anand Kanagala, Andrew
McGregor, Angus Lees, Deepak Nulu, Dmitri Nikulin, Eric
Yan, Jon Zolla, Kai Song, Kirill Mendelev, Mahesh Kalla-
halla, Matthew Class, Michael Frumkin, Michael O’Reilly,
Ming Xu, Mukta Gupta, Nan Hua, Nikhil Panpalia, Phong
Chuong, Rajiv Ranjan, Richard Alimi, Sankalp Singh, Subba-
iah Venkata, Vijay Chandramohan, Xijie Zeng, Yuanbo Zhu,
AamerMahmood, Ben Treynor, BikashKoley andUrsHölzle
for their signiûcant contributions to the project. We would
also like to thank our shepherd, Srikanth Kandula, and the
anonymous SIGCOMM reviewers for their useful feedback.

11. REFERENCES
[1] Wikipedia: Diòerentiated services.

http://en.wikipedia.org/wiki/Diòerentiated_services.

http://en.wikipedia.org/wiki/Differentiated_services

[2] Allalouf, M., and Shavitt, Y. Centralized and
Distributed Algorithms for Routing and Weighted
Max-Min Fair Bandwidth Allocation. IEEE/ACM
Trans. Networking 16, 5 (2008), 1015–1024.

[3] Balakrishnan, H., Rahul, H. S., and Seshan, S. An
integrated congestion management architecture for
internet hosts. In In Proc. ACM SIGCOMM (1999),
pp. 175–187.

[4] Ballani, H., Costa, P., Karagiannis, T., and
Rowstron, A. Towards predictable datacenter
networks. In SIGCOMM (2011).

[5] Blake, S., Black, D., Carlson, M., Davies, E., Wang,
Z., andWeiss, W. An Architecture for Diòerentiated
Service. RFC 2475 (Informational), December 1998.
Updated by RFC 3260.

[6] Boudec, J.-Y. Rate adaptation, congestion control and
fairness: A tutorial, 2000.

[7] Braden, R., Zhang, L., Berson, S., Herzog, S., and
Jamin, S. Resource ReSerVation Protocol (RSVP) –
Version 1 Functional Speciûcation. RFC 2205
(Proposed Standard), September 1997. Updated by
RFCs 2750, 3936, 4495.

[8] Cao, Z., and Zegura, E. W. Utility max-min: An
application-oriented bandwidth allocation scheme. In
INFOCOM (1999).

[9] Choi, B.-K., and Bettati, R. Endpoint admission
control: network based approach. In Distributed
Computing Systems, 2001. 21st International Conference
on. (Apr 2001), pp. 227–235.

[10] Clark, D. D., Lambert, M. L., and Zhang, L. Netblt:
A high throughput transport protocol. In Proceedings
of the ACM Workshop on Frontiers in Computer
Communications Technology (New York, NY, USA,
1988), SIGCOMM ’87, ACM, pp. 353–359.

[11] Danna, E., Hassidim, A., Kaplan, H., Kumar, A.,
Mansour, Y., Raz, D., and Segalov, M. Upward Max
Min Fairness. In INFOCOM (2012), pp. 837–845.

[12] Danna, E., Mandal, S., and Singh, A. A Practical
Algorithm for Balancing the Max-min Fairness and
hroughput Objectives in Traõc Engineering. In Proc.
INFOCOM (March 2012), pp. 846–854.

[13] Dean, J., and Ghemawat, S. Mapreduce: Simpliûed
data processing on large clusters. Commun. ACM 51, 1
(January 2008), 107–113.

[14] Fortz, B., Rexford, J., and Thorup, M. Traõc
Engineering with Traditional IP Routing Protocols.
IEEE Communications Magazine 40 (2002), 118–124.

[15] Guo, C., Lu, G., Wang, H. J., Yang, S., Kong, C., Sun,
P., Wu, W., and Zhang, Y. SecondNet: A data center
network virtualization architecture with bandwidth
guarantees. In CoNEXT (2010).

[16] Hong, C.-Y., Kandula, S., Mahajan, R., Zhang, M.,
Gill, V., Nanduri, M., andWattenhofer, R. Have
Your Network and Use It Fully Too: Achieving High
Utilization in Inter-Datacenter WANs. In Proc.
SIGCOMM (August 2013).

[17] Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski,
L., Singh, A., Venkata, S., Wanderer, J., Zhou, J.,
Zhu, M., Zolla, J., Hölzle, U., Stuart, S., and
Vahdat, A. B4: Experience with a Globally-Deployed
So�ware Deûned WAN. In Proceedings of the ACM
SIGCOMM 2013 (2013), ACM, pp. 3–14.

[18] Jeyakumar, V., Alizadeh, M., Mazieres, D.,
Prabhakar, B., Kim, C., and Greenberg, A. Eyeq:
Practical network performance isolation at the edge. In
Proc. of NSDI (2013), USENIX Association, pp. 297–312.

[19] Kandula, S., Menache, I., Schwartz, R., and
Babbula, S. R. Calendaring for wide area networks. In
Proc. SIGCOMM (August 2014).

[20] Lam, T., Radhakrishnan, S., Vahdat, A., and
Varghese, G. NetShare: Virtualizing data center
networks across services. Tech. rep., 2010.

[21] Minei, I., and Lucek, J. MPLS-Enabled Applications:
Emerging Developments and New Technologies. Wiley
Series on Communications Networking & Distributed
Systems. Wiley, 2008.

[22] Osborne, E., and Simha, A. Traõc Engineering with
Mpls (Paperback). Networking Technology Series.
Cisco Press, 2002.

[23] Popa, L., Krishnamurthy, A., Ratnasamy, S., and
Stoica, I. Faircloud: Sharing the network in cloud
computing. In Proceedings of the 10th ACM Workshop
on Hot Topics in Networks (New York, NY, USA, 2011),
HotNets-X, ACM, pp. 22:1–22:6.

[24] Popa, L., Yalagandula, P., Banerjee, S., Mogul,
J. C., Turner, Y., and Santos, J. R. Elasticswitch:
Practical work-conserving bandwidth guarantees for
cloud computing. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM (New York,
NY, USA, 2013), SIGCOMM ’13, ACM, pp. 351–362.

[25] Raghavan, B., Vishwanath, K., Ramabhadran, S.,
Yocum, K., and Snoeren, A. C. Cloud control with
distributed rate limiting. In In SIGCOMM (2007).

[26] Rodrigues, H., Santos, J., Turner, Y., Soares, P.,
and Guedes, D. Gatekeeper: Supporting bandwidth
guarantees for multi-tenant datacenter networks. In
Workshop on I/O Virtualization (2011).

[27] Roughan, M., Thorup, M., and Zhang, Y. Traõc
Engineering with Estimated Traõc Matrices. In Proc.
IMC (2003), pp. 248–258.

[28] Saltzer, J. H., Reed, D. P., and Clark, D. D.
End-to-end arguments in system design. ACM Trans.
Comput. Syst. 2, 4 (November 1984), 277–288.

[29] Sarma, S., Brock, D. L., and Ashton, K. he
networked physical world–proposals for engineering
the next generation of computing, commerce &
automatic identiûcation. White Paper, Auto-ID Center,
MIT. Designed b y Foxner. www. foxner. com (2000).

[30] Shieh, A., Kandula, S., Greenberg, A., Kim, C., and
Saha, B. Sharing the data center network. In NSDI
(2011).

	Introduction
	Background
	Abstractions and Concepts
	Traffic Aggregates or FlowGroups
	Bandwidth Sharing Policies
	Requirements
	Configuration
	Bandwidth Functions
	Bandwidth Function Aggregation

	System Design
	Host Enforcer
	Job Enforcer
	Cluster Enforcer
	Network Model Server
	Global Enforcer

	BwE Allocation Algorithm
	Inputs and Outputs
	MPFA Problem
	MPFA Algorithm
	Interaction with Traffic Engineering (TE)

	Allocation Distribution
	Hierarchical MPFA

	System Implementation
	Demand Estimation
	WaterFill Allocation For Bursty Flows
	Fair Allocation for Satisfied FlowGroups
	Improving Network Utilization
	Redundancy and Failure Handling

	Evaluation
	Micro-benchmarks on Test Jobs
	System Scale

	Discussion and Future Work
	Broader Applicability

	Related Work
	Conclusions
	References

