
Page 1 of 90

Web Services Security Policy Language
(WS-SecurityPolicy)
July 2005

Version 1.1

Authors

Giovanni Della-Libera, Microsoft

Martin Gudgin, Microsoft

Phillip Hallam-Baker, VeriSign

Maryann Hondo, IBM

Hans Granqvist, Verisign
Chris Kaler, Microsoft (editor)

Hiroshi Maruyama, IBM

Michael McIntosh, IBM

Anthony Nadalin, IBM (editor)

Nataraj Nagaratnam, IBM

Rob Philpott, RSA Security

Hemma Prafullchandra, VeriSign

John Shewchuk, Microsoft

Doug Walter, Microsoft

 Riaz Zolfonoon, RSA Security

Copyright Notice
(c) 2001-2005 International Business Machines Corporation, Microsoft Corporation, RSA
Security Inc., and VeriSign Inc. All rights reserved. Permission to copy and display the
WS-SecurityPolicy Specification (the “Specification”, which includes WSDL and schema
documents), in any medium without fee or royalty is hereby granted, provided that you
include the following on ALL copies of the Specification, that you make:

1. A link or URL to the Specification at one of the Authors’ websites

2. The copyright notice as shown in the Specification.

IBM, Microsoft, RSA and Verisign (collectively, the "Authors") each agree to grant you a
license, under royalty-free and otherwise reasonable, non-discriminatory terms and
conditions, to their respective essential patent claims that they deem necessary to
implement the Specification.

THE SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE
SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION

http://www.ibm.com/
http://www.microsoft.com/
http://www.rsasecurity.com/
http://www.rsasecurity.com/
http://www.verisign.com/

Page 2 of 90

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the Specification or its contents without specific,
written prior permission. Title to copyright in the Specification will at all times remain
with the Authors.

OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR
DISTRIBUTION OF THE SPECIFICATION.

No other rights are granted by implication, estoppel or otherwise.

Abstract
This document indicates the policy assertions for use with WS-Policy which apply to
WSS: SOAP Message Security, WS-Trust and WS-SecureConversation.

Composable Architecture
By using the XML, SOAP and WSDL extensibility models, the WS* specifications are
designed to be composed with each other to provide a rich Web services environment.
WS-SecurityPolicy by itself does not provide a complete security solution for Web
services. WS-SecurityPolicy is a building block that is used in conjunction with other
Web service and application-specific protocols to accommodate a wide variety of security
models.

Status
This is a public consultation draft release of this specification for community evaluation
and review. Feedback on this specification is handled through the WS-* Workshop
process.

Table of Contents
1. Introduction

1.1 Example
2. Terminology and Notation

2.1 Terminology
2.2 Namespaces
2.3 Notational Conventions
2.4 Schema Files
2.5 Compliance

3. Security Policy Model
3.1 Security Assertion Model
3.2 Nested Policy Assertions
3.3 Security Binding Abstraction

http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-trust.asp
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-secureconversation.asp

Page 3 of 90

4. Policy Considerations
4.1 Nested Policy

4.1.1 Nesting Policy Elements
4.1.2 Nested Policy Assertions
4.1.3 Nesting Policy Processing Rules
4.1.4 Nested Policy Normalization Worked Example
4.1.5 Nested Policy Intersection Worked Example

4.2 Policy Subjects
5. Protection Assertions

5.1 Integrity Assertions
5.1.1 SignedParts Assertion
5.1.2 SignedElements Assertion

5.2 Confidentiality Assertions
5.2.1 EncryptedParts Assertion
5.2.2 EncryptedElements Assertion

5.3 Required Elements Assertion
5.3.1 RequiredElements Assertion

6. Token Assertions
6.1 Token Inclusion

6.1.1 Token Inclusion Values
6.2 Token Properties

6.2.1 [Derived Keys] Property
6.3 Token Assertions

6.3.1 UsernameToken Assertion
6.3.2 IssuedToken Assertion
6.3.3 X509Token Assertion
6.3.4 KerberosToken Assertion
6.3.5 SpnegoContextToken Assertion
6.3.6 SecurityContextToken Assertion
6.3.7 SecureConversationToken Assertion
6.3.8 SamlToken Assertion
6.3.9 RelToken Assertion
6.3.10 HttpsToken Assertion

7. Security Binding Properties
7.1 [Algorithm Suite] Property
7.2 [Timestamp] Property
7.3 [Protection Order] Property
7.4 [Signature Protection] Property
7.5 [Token Protection] Property
7.6 [Entire Header and Body Signatures] Property

Page 4 of 90

7.7 [Security Header Layout] Property
7.7.1 Strict Layout Rules

8. Security Binding Assertions
8.1 AlgorithmSuite Assertion
8.2 Layout Assertion
8.3 TransportBinding Assertion
8.4 SymmetricBinding Assertion
8.5 AsymmetricBinding Assertion

9. Supporting Tokens
9.1 SupportingTokens Assertion
9.2 SignedSupportingTokens Assertion
9.3 EndorsingSupportingTokens Assertion
9.4 SignedEndorsingSupportingTokens Assertion
9.5 Example

10. WSS: SOAP Message Security Options
10.1 Wss10 Assertion
10.2 Wss11 Assertion

11. WS-Trust Options
11.1 Trust10 Assertion

12. Security Considerations
13. Acknowledgements
14. References
Appendix A - Assertions and WS-PolicyAttachment

A.1 Endpoint Policy Subject Assertions
A.1.1 Security Binding Assertions
A.1.3 Token Assertions
A.1.4 WSS: SOAP Message Security 1.0 Assertions
A.1.5 WSS: SOAP Message Security 1.1 Assertions
A.1.6 Trust 1.0 Assertions

A.2 Operation Policy Subject Assertions
A.2.1 Supporting Token Assertions

A.3 Message Policy Subject Assertions
A.3.1 Supporting Token Assertions
A.3.2 Protection Assertions

A.4 Assertions With Undefined Policy Subject
A.4.1 General Assertions
A.4.2 Token Usage Assertions
A.4.3 Token Assertions
A.4.4 WSS: SOAP Message Security 1.0 Assertions
A.4.5 WSS: SOAP Message Security 1.1 Assertions
A.4.6 Trust 1.0 Assertions

Page 5 of 90

Appendix B – Issued Token Policy
Appendix C – Strict Security Header Layout Examples

C.1 Transport Binding
C.1.1 Policy
C.1.2 Initiator to Recipient Messages
C.1.3 Recipient to Initiator Messages

C.2 Symmetric Binding
C.2.1 Policy
C.2.2 Initiator to Recipient Messages
C.2.3 Recipient to Initiator Messages

C.3 Asymmetric Binding
C.3.1 Policy
C.3.2 Initiator to Recipient Messages
C.3.3 Recipient to Initiator Messages

1. Introduction
WS-Policy defines a framework for allowing web services to express their constraints and
requirements. Such constraints and requirements are expressed as policy assertions.
This document defines a set of security policy assertions for use with the WS-Policy
framework with respect to security features provided in WSS: SOAP Message Security,
WS-Trust and WS-SecureConversation. This document takes the approach of defining a
base set of assertions that describe how messages are to be secured. Flexibility with
respect to token types, cryptographic algorithms and mechanisms used, including using
transport level security is part of the design and allows for evolution over time. The
intent is to provide enough information for compatibility and interoperability to be
determined by web service participants along with all information necessary to actually
enable a participant to engage in a secure exchange of messages.
Sections 3.4, 11, 12, all examples and all Appendices are non-normative.

1.1 Example
Table 1 shows an "Effective Policy" example, including binding assertions and associated
property assertions, token assertions and integrity and confidentiality assertions.

Table 1: Example security policy.
(01) <wsp:Policy>
(02) <sp:SymmetricBinding>
(03) <wsp:Policy>
(04) <sp:ProtectionToken>
(05) <wsp:Policy>
(06) <sp:KerberosV5APREQToken

 sp:IncludeToken=".../IncludeToken/Once" />
(07) </wsp:Policy>
(08) </sp:ProtectionToken>
(09) <sp:SignBeforeEncrypting />
(10) <sp:EncryptSignature />

http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-trust.asp
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-secureconversation.asp

Page 6 of 90

(11) </wsp:Policy>
(12) </sp:SymmetricBinding>
(13) <sp:SignedParts>
(14) <sp:Body/>
(15) <sp:Header

 Namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 />

(16) </sp:SignedParts>
(17) <sp:EncryptedParts>
(18) <sp:Body/>
(19) </sp:EncryptedParts>
(20) </wsp:Policy>
Line 1 in Table 1 indicates that this is a policy statement and that all assertions
contained by the wsp:Policy element are required to be satisfied. Line 2 indicates the
kind of security binding in force. Line 3 indicates a nested wsp:Policy element which
contains assertions that qualify the behavior of the SymmetricBinding assertion. Line 4
indicates a ProtectionToken assertion. Line 5 indicates a nested wsp:Policy element
which contains assertions indicating the type of token to be used for the
ProtectionToken. Line 6 indicates that a Kerberos V5 APREQ token is to be used by both
parties in a message exchange for protection. Line 9 indicates that signatures are
generated over plaintext rather than ciphertext. Line 10 indicates that the signature over
the signed messages parts is required to be encrypted. Lines 13-16 indicate which
message parts are to be covered by the primary signature; in this case the soap:Body
element, indicated by Line 14 and any SOAP headers in the WS-Addressing namespace,
indicated by line 15. Lines 17-19 indicate which message parts are to be encrypted; in
this case just the soap:Body element, indicated by Line 18.

2. Terminology and Notation

2.1 Terminology
Policy

A collection of policy alternatives.

Policy Alternative
A collection of policy assertions.

Policy Assertion
An individual requirement, capability, other property, or a behavior.

Initiator
The role sending the initial message in a message exchange.

Recipient
The targeted role to process the initial message in a message exchange.

Security Binding
A set of properties that together provide enough information to secure a given
message exchange.

Security Binding Property
A particular aspect of securing an exchange of messages.

Security Binding Assertion

Page 7 of 90

A policy assertion that identifies the type of security binding being used to secure an
exchange of messages.

Security Binding Property Assertion
A policy assertion that specifies a particular value for a particular aspect of securing
an exchange of message.

Assertion Parameter
An element of variability within a policy assertion.

Token Assertion
Describes a token requirement. Token assertions defined within a security binding
are used to satisfy protection requirements.

Supporting Token
A token used to provide additional claims.

2.2 Namespaces
The XML namespace URI that MUST be used by implementations of this specification is:

http://schemas.xmlsoap.org/ws/2005/07/securitypolicy

Table 2 lists XML namespaces that are used in this specification. The choice of any
namespace prefix is arbitrary and not semantically significant.

Table 2: Prefixes and XML Namespaces used in this specification.

Prefix Namespace Specification(s)

S http://schemas.xmlsoap.org/soap/envelope/ [SOAP11]

ds http://www.w3.org/2000/09/xmldsig# [XMLDSIG]

enc http://www.w3.org/2001/04/xmlenc# [XMLENC]

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd

[WSS10]

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd

[WSS10]

wsse11 http://docs.oasis-open.org/wss/2005/xx/oasis-2005xx-
wss-wssecurity-secext-1.1.xsd

[WSS11]

wsp http://schemas.xmlsoap.org/ws/2004/09/policy [WS-Policy], [WS-
PolicyAttachment]

xsd http://www.w3.org/2001/XMLSchema [XMLSchema Part1],
[XMLSchema Part2]

wst http://schemas.xmlsoap.org/ws/2005/02/trust [WS-Trust]

wsc http://schemas.xmlsoap.org/ws/2005/02/sc [WS-
SecureConversation]

wsa http://schemas.xmlsoap.org/ws/2004/08/addressing [WS-Addressing]

sp http://schemas.xmlsoap.org/ws/2005/07/securitypolicy This specification

http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2000/09/xmldsig
http://www.w3.org/2001/04/xmlenc
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://schemas.xmlsoap.org/ws/2004/09/policy
http://schemas.xmlsoap.org/ws/2005/02/sc
http://schemas.xmlsoap.org/ws/2005/02/securitypolicy

Page 8 of 90

2.3 Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC2119.

This specification uses the following syntax to define outlines for messages:

• The syntax appears as an XML instance, but values in italics indicate data types
instead of literal values.

• Characters are appended to elements and attributes to indicate cardinality:

o "?" (0 or 1)

o "*" (0 or more)

o "+" (1 or more)

• The character "|" is used to indicate a choice between alternatives.

• The characters "(" and ")" are used to indicate that contained items are to be
treated as a group with respect to cardinality or choice.

• The characters "[" and "]" are used to call out references and property names.

• Ellipses (i.e., "...") indicate points of extensibility. Additional children and/or
attributes MAY be added at the indicated extension points but MUST NOT
contradict the semantics of the parent and/or owner, respectively. By default, if a
receiver does not recognize an extension, the receiver SHOULD ignore the
extension; exceptions to this processing rule, if any, are clearly indicated below.

• XML namespace prefixes (see Table 2) are used to indicate the namespace of the
element being defined.

In this document reference is made to the wsu:Id attribute and the wsu:Created and
wsu:Expires elements in a utility schema (http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd). The wsu:Id
attribute and the wsu:Created and wsu:Expires elements were added to the utility
schema with the intent that other specifications requiring such an ID or timestamp could
reference it (as is done here).

WS-SecurityPolicy is designed to work with the general Web Services framework
including WSDL service descriptions, UDDI businessServices and bindingTemplates and
SOAP message structure and message processing model, and WS-SecurityPolicy should
be applicable to any version of SOAP. The current SOAP 1.2 namespace URI is used
herein to provide detailed examples, but there is no intention to limit the applicability of
this specification to a single version of SOAP.

2.4 Schema Files
A normative copy of the XML Schema [XML Schema Part 1, Part 2] description for this
specification can be retrieved from the following address:

http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.xsd

2.5 Compliance
Normative text within this specification takes precedence over outlines, which in turn
take precedence over the XML Schema [XML Schema Part 1, Part 2], which in turn take
precedence over examples.

Sections 3.4, 11, 12, and all Appendices are not normative.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://schemas.xmlsoap.org/ws/2005/02/securitypolicy/ws-securitypolicy.xsd

Page 9 of 90

3. Security Policy Model
This specification defines policy assertions for the security properties for Web services.
These assertions are primarily designed to represent the security characteristics defined
in the WSS: SOAP Message Security, WS-Trust and WS-SecureConversation
specifications, but they can also be used for describing security requirements at a more
general or transport-independent level.

The primary goal of this specification is to define an initial set of patterns or sets of
assertions that represent common ways to describe how messages are secured on a
communication path. The intent is to allow flexibility in terms of the tokens,
cryptography, and mechanisms used, including leveraging transport security, but to be
specific enough to ensure interoperability based on assertion matching.

It is a goal of the security policy model to leverage the WS-Policy framework’s
intersection algorithm for selecting policy alternatives and the attachment mechanism
for associating policy assertions with web service artifacts. Consequently, wherever
possible, the security policy assertions do not use parameters or attributes. This enables
first-level, QName based assertion matching without security domain-specific knowledge
to be done at the framework level. The first level matching is intended to provide a
narrowed set of policy alternatives that are shared by the two parties attempting to
establish a secure communication path.

In general, assertions defined in this specification allow additional attributes, based on
schemas, to be added on to the assertion element as an extensibility mechanism but the
WS-Policy framework will not match based on these attributes. Attributes specified on
the assertion element that are not defined in this specification or in WS-Policy are to be
treated as informational properties.

3.1 Security Assertion Model
The goal to provide richer semantics for combinations of security constraints and
requirements and enable first-level QName matching, is enabled by the assertions
defined in this specification being separated into simple patterns: what parts of a
message are being secured (Protection Assertions), general aspects or pre-conditions of
the security (Conditional Assertions), the security mechanism (Security Binding
Assertions) that is used to provide the security, the token types and usage patterns
(Supporting Token Assertions) used to provide additional claims, and token referencing
and trust options (WSS and Trust Assertions).

To indicate the scope of protection, assertions identify message parts that are to be
protected in a specific way, such as integrity or confidentiality protection, and are
referred to as protection assertions.

The general aspects of security includes the relationships between or characteristics of
the environment in which security is being applied, such as the tokens being used, which
are for integrity or confidentiality protection and which are supporting, the applicable
algorithms to use, etc.

The security binding assertion is a logical grouping which defines how the general
aspects are used to protect the indicated parts. For example, that an asymmetric token
is used with a digital signature to provide integrity protection, and that parts are
encrypted with a symmetric key which is then encrypted using the public key of the
recipient. At its simplest form, the security binding restricts what can be placed in the
wsse:Security header and the associated processing rules.

Page 10 of 90

The intent of representing characteristics as assertions, is so that QName matching will
be sufficient to find common alternatives, and so that many aspects of security can be
factored out and re-used. For example, it may be common that the mechanism is
constant for an endpoint, but that the parts protected vary by message action.

3.2 Nested Policy Assertions
Assertions may be used to further qualify a specific aspect of another assertion. For
example, an assertion describing the set of algorithms to use may qualify the specific
behavior of a security binding. To enable this set of functionality, this specification
introduces a mechanism for nesting policy assertions underneath other assertions. This
mechanism is described in Section 4.

3.3 Security Binding Abstraction
As previously indicated, individual assertions are designed to be used in multiple
combinations. The binding represents common usage patterns for security mechanisms.
These Security Binding assertions are used to determine how the security is performed
and what to expect in the wsse:Security header.

Bindings are described textually and enforced programmatically. This specification
defines several bindings but others can be defined and agreed to for interoperability if
participating parties support it.

A binding defines the following security characteristics:

• The minimum set of tokens that will be used and how they are bound to
messages

• Any necessary key transfer mechanisms

• Any required message elements (e.g. timestamps)

• The content and ordering of elements in the wsse:Security header. Elements
not specified in the binding are not allowed.

• How correlation of messages is performed securely (if applicable to the message
pattern)

Together the above pieces of information, along with the assertions describing
conditions and scope, provide enough information to secure messages between an
initiator and a recipient.

The following list identifies the bindings defined in this specification. The bindings are
identified primarily by the style of protection encryption used to protect the message
exchange. A later section of this document provides details on the assertions for these
bindings.

• TransportBinding

• SymmetricBinding

• AsymmetricBinding

4. Policy Considerations
The following sections discuss details of WS-Policy and WS-PolicyAttachment relevant to
this specification.

Page 11 of 90

4.1 Nested Policy
The WS-Policy specification defines a mechanism for describing capabilities and
requirements as assertions. These assertions are contained within one of wsp:Policy,
wsp:All, or wsp:ExactlyOne. The WS-Policy specification defines the nesting semantics
associated with the wsp:Policy, wsp:All and wsp:ExactlyOne. However these semantics
do not allow individual assertions to specify that the child elements contained within the
assertion should also be evaluated as assertions.

The following section is an overview of the nesting semantics of WS-Policy elements.

4.1.1 Nesting Policy Elements

To determine whether two assertions are "compatible", the QName value, that is the
Name and Namespace of one assertion element is compared to the QName value of
another assertion. If they match, then they are compatible.

A wsp:Policy element may contain one or more assertions. To determine whether two
wsp:Policy elements are "compatible", each assertion in one wsp:Policy element is
compared, as described above, to the assertions in another wsp:Policy element. If all
assertions from each wsp:Policy element are matched exactly, they are compatible.

To enable richer sets of options to be expressed, WS-Policy defines the wsp:All and
wsp:ExactlyOne elements. These elements may be placed as immediate children of a
wsp:Policy element. In addition, these two elements may also appear under themselves.
This allows for a policy to describe alternative options within policy. Let’s say that a
policy wishes to express requirements for A and (B or C). This could be described as two
policy statements:

<wsp:Policy>

 <A />

</wsp:Policy>

<wsp:Policy>

 <A />

 <C />

</wsp:Policy>

Alternatively, we can use the wsp:All and wsp:ExactlyOne elements to describe the
alternative policy in a single wsp:Policy element:

<wsp:Policy>

 <wsp:All>

 <A />

 <wsp:ExactlyOne>

 <C />

 </wsp:ExactlyOne>

 </wsp:All>

</wsp:Policy>

This process is described in more detail in the WS-Policy specification.

Page 12 of 90

4.1.2 Nested Policy Assertions

Some assertions may need to declare that additional assertions, scoped only to that
assertion, further qualify the behavior and compatibility semantics of that assertion.
Whereas the wsp:All and wsp:ExactlyOne elements describe requirements and
alternatives of a wsp:Policy element, nested assertions describe requirements and
alternatives for the enclosing assertion element. To enable these semantics, this
specification defines some assertions such that they have a single wsp:Policy child
element which in turn contains assertions which qualify the behavior of the enclosing
assertion. Two such assertions are compatible if they have the same QName AND their
nested policy expressions (if any) are compatible.

For example, let’s say that a policy wishes to express requirements for A and B, and
furthermore that B requires C and D. The normalized policy statement would look like:

<wsp:Policy>

 <A />

 <wsp:Policy>

 <C />

 <D />

 </wsp:Policy>

</wsp:Policy>

The policy above is fully normalized. Policy normalization DOES NOT promote nested
assertions to the outer scope.

The wsp:Policy element allows any assertion as content. However, assertions defined in
this specification that allow nested policy will typically constrain the content of that
nested policy.

Note: To enable automatic intersection of nested policy assertions, policy engines will
need to be modified to scan the contents of assertions to determine whether intersection
is required. This approach is being investigated by the WS-Policy working group to
formalize the notion of nested policy and to define processing behavior requirements for
nested policy. Additionally, an attribute may be defined to advertise to a policy engine
that scanning is required on a particular assertion. For example:

<wsp:Policy>

 <A />

 <B x:ContainsPolicy="true">

 <wsp:Policy>

 ...

 </wsp:Policy>

</wsp:Policy>

Ideally the x:ContainsPolicy attribute will, at some point, be moved in the WS-Policy
namespace.

Page 13 of 90

4.1.3 Nesting Policy Processing Rules

This section provides rules for processing nested policy based on the informal description
above;

1. Assertions MUST specify whether or not they contain nested policy.
2. Assertions SHOULD specify which other assertions can be present in their nested

policy.
3. Nested assertions need to be specifically designed for nesting inside one or more

outer assertions. Assertions SHOULD specify which assertions they can be nested
within.

4. Assertions from one domain SHOULD NOT be nested inside assertions from
another domain. For example, assertions from a transaction domain should not
be nested inside an assertion from a security domain.

5. Assertions containing nested policy are normalized recursively such that in the
normal form each nested policy contains no choices. Thus each outer assertion
that contains nested policy containing choices is duplicated such that there are as
many instances of the outer assertion as there are choices in the nested policy,
one instance for each nested choice, recursively. See Section 4.1.4 for a worked
example of normalization.

6. Nested policies are intersected in their own processing contexts with the
corresponding nested policy in a matching outer assertion. Thus two assertions
having nested policy intersect if the outer assertion QName matches and the
nested policies intersect. Intersection always occurs using the normalized form.
See Section 4.1.5 for a worked example of intersection.

7. An assertion with an empty nested policy does not intersect with the same
assertion without nested policy.

4.1.4 Nested Policy Normalization Worked Example

This section shows a worked example of normalizing assertions with nested policy.

Policy 1
<wsp:Policy>

 <wsp:ExactlyOne>

 <wsp:All>

 <A />

 <wsp:Policy>

 <wsp:ExactlyOne>

 <wsp:All>

 <C/>

 </wsp:All>

 <wsp:All>

 <D/>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 </wsp:All>

Page 14 of 90

 </wsp:ExactlyOne>

</wsp:Policy>

The above policy is normalized by, in this case, creating two alternatives, both
containing an A assertion and a B assertion. One alternative contains a B assertion with
a nested C assertion while the other contains a B assertion with a nested D assertion;

Normalized form
<wsp:Policy>

 <wsp:ExactlyOne>

 <wsp:All>

 <A/>

 <wsp:Policy>

 <wsp:ExactlyOne>

 <wsp:All>

 <C/>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 </wsp:All>

 <wsp:All>

 <A/>

 <wsp:Policy>

 <wsp:ExactlyOne>

 <wsp:All>

 <D/>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

4.1.5 Nested Policy Intersection Worked Example

This section shows a worked example of computing the intersection of two policies that
contain assertions with nested policy.

Policy 1
<wsp:Policy>

 <wsp:ExactlyOne>

 <wsp:All>

Page 15 of 90

 <A />

 <wsp:Policy>

 <wsp:ExactlyOne>

 <wsp:All>

 <C/>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 </wsp:All>

 <wsp:All>

 <A />

 <wsp:Policy>

 <wsp:ExactlyOne>

 <wsp:All>

 <D/>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

Policy 2
<wsp:Policy>

 <wsp:ExactlyOne>

 <wsp:All>

 <A />

 <wsp:Policy>

 <wsp:ExactlyOne>

 <wsp:All>

 <C/>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 </wsp:All>

 <wsp:All>

 <A />

Page 16 of 90

 <wsp:Policy>

 <wsp:ExactlyOne>

 <wsp:All>

 <E/>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>
The two policies above, which are already in normal form, are intersected as follows;
firstly the QNames of the A and B assertions are intersected then the QNames of the
nested assertions inside the B assertions are intersected. In the nested case, only the
two B assertions that have nested C assertions match. Thus the intersection of the
nested policy is;

Intersected policy
<wsp:Policy>

 <wsp:ExactlyOne>

 <wsp:All>

 <A/>

 <A/>

 <wsp:Policy>

 <wsp:ExactlyOne>

 <wsp:All>

 <C/>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsp:Policy>

 <wsp:ExactlyOne>

 <wsp:All>

 <C/>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 </wsp:All>

Page 17 of 90

 </wsp:ExactlyOne>

</wsp:Policy>

4.2 Policy Subjects
WS-PolicyAttachment defines various attachment points for policy. This section defines
properties that are referenced later in this document describing the recommended or
required attachment points for various assertions. In addition, Appendix A groups the
various assertions according to policy subject.

[Message Policy Subject]

This property identifies a Message Policy Subject [WS-PolicyAttachment]. WS-
PolicyAttachment defines seven WSDL [WSDL 1.1] policy attachment points with
Message Policy Subject:

wsdl:message
A policy expression containing one or more assertions with Message Policy Subject
MUST NOT be attached to a wsdl:message.

wsdl:portType/wsdl:operation/wsdl:input, ./wsdl:output, or ./wsdl:fault
A policy expression containing one or more assertions with Message Policy Subject
MUST NOT be attached to a descendant of wsdl:portType.

wsdl:binding/wsdl:operation/wsdl:input, ./wsdl:output, or ./wsdl:fault
A policy expression containing one or more of the assertions with Message Policy
Subject MUST be attached to a descendant of wsdl:binding.

[Operation Policy Subject]

A token assertion with Operation Policy Subject indicates usage of the token on a per-
operation basis:

wsdl:portType/wsdl:operation
A policy expression containing one or more token assertions MUST NOT be attached
to a wsdl:portType/wsdl:operation.

wsdl:binding/wsdl:operation
A policy expression containing one or more token assertions MUST be attached to a
wsdl:binding/wsdl:operation.

[Endpoint Policy Subject]

A token assertion instance with Endpoint Policy Subject indicates usage of the token for
the entire set of messages described for the endpoint:

wsdl:portType
A policy expression containing one or more assertions with Endpoint Policy Subject
MUST NOT be attached to a wsdl:portType.

wsdl:binding
A policy expression containing one or more of the assertions with Endpoint Policy
Subject SHOULD be attached to a wsdl:binding.

wsdl:port
A policy expression containing one or more of the assertions with Endpoint Policy
Subject MAY be attached to a wsdl:port

Page 18 of 90

5. Protection Assertions
The following assertions are used to identify what is being protected and the level of
protection provided. These assertions SHOULD apply to [Message Policy Subject]. Note
that when assertions defined in this section are present in a policy, the order of those
assertions in that policy has no effect on the order of signature and encryption
operations (see Section 7.3).

5.1 Integrity Assertions
Two mechanisms are defined for specifying the set of message parts to integrity protect.
One uses QNames to specify either message headers or the message body while the
other uses XPath expressions to identify any part of the message.

5.1.1 SignedParts Assertion

The SignedParts assertion is used to specify the parts of the message outside of security
headers that require integrity protection. This assertion can be satisfied using WSS:
SOAP Message Security mechanisms or by mechanisms out of scope of SOAP message
security, for example by sending the message over a secure transport protocol like
HTTPS. The binding details the exact mechanism by which the protection is provided.

There MAY be multiple SignedParts assertions present. Multiple SignedParts assertions
present within a policy alternative are equivalent to a single SignedParts assertion
containing the union of all specified message parts. Note that this assertion does not
require that a given part appear in a message, just that if such a part appears, it
requires integrity protection.

Syntax

<sp:SignedParts ... >

 <sp:Body />?

 <sp:Header Name="xs:NCName"? Namespace="xs:anyURI" ... />*

 ...

</sp:SignedParts>

The following describes the attributes and elements listed in the schema outlined above:

/sp:SignedParts

This assertion specifies the parts of the message that need integrity protection. If
no child elements are specified, all message headers targeted at the
UltimateReceiver role [SOAP12] or actor [SOAP11] and the body of the message
MUST be integrity protected.

/sp:SignedParts/sp:Body

Presence of this optional empty element indicates that the entire body, that is the
soap:Body element, it's attributes and content, of the message needs to be
integrity protected.

/sp:SignedParts/sp:Header

Presence of this optional element indicates a specific SOAP header (or set of such
headers) needs to be protected. There may be multiple sp:Header elements
within a single sp:SignedParts element. If multiple SOAP headers with the same
local name but different namespace names are to be integrity protected multiple
sp:Header elements are needed, either as part of a single sp:SignedParts
assertion or as part of separate sp:SignedParts assertions.

Page 19 of 90

/sp:SignedParts/sp:Header/@Name

This optional attribute indicates the local name of the SOAP header to be integrity
protected. If this attribute is not specified, all SOAP headers whose namespace
matches the Namespace attribute are to be protected.

/sp:SignedParts/sp:Header/@Namespace

This required attribute indicates the namespace of the SOAP header(s) to be
integrity protected.

5.1.2 SignedElements Assertion

The SignedElements assertion is used to specify arbitrary elements in the message that
require integrity protection. This assertion can be satisfied using WSS: SOAP Message
Security mechanisms or by mechanisms out of scope of SOAP message security, for
example by sending the message over a secure transport protocol like HTTPS. The
binding details the exact mechanism by which the protection is provided.

There MAY be multiple SignedElements assertions present. Multiple SignedElements
assertions present within a policy alternative are equivalent to a single SignedElements
assertion containing the union of all specified XPath expressions.

Syntax

<sp:SignedElements XPathVersion="xs:anyURI"? ... >

 <sp:XPath>xs:string</sp:XPath>+

 ...

</sp:SignedElements>

The following describes the attributes and elements listed in the schema outlined above:

/sp:SignedElements

This assertion specifies the parts of the message that need integrity protection. If
no child elements are specified, all message headers targeted at the
UltimateReceiver role and the body of the message MUST be integrity protected.

/sp:SignedElements/@XPathVersion

This optional attribute contains a URI which indicates the version of XPath to use.

/sp:SignedElements/sp:XPath

This element contains a string specifying an XPath expression that identifies the
nodes to be integrity protected. The XPath expression is evaluated against the
S:Envelope element node of the message. Multiple instances of this element may
appear within this assertion and should be treated as separate references in the
signature.

5.2 Confidentiality Assertions
Two mechanisms are defined for specifying the set of message parts to confidentiality
protect. One uses QNames to specify either message headers or the message body while
the other uses XPath expressions to identify any part of the message.

5.2.1 EncryptedParts Assertion

The EncryptedParts assertion is used to specify the parts of the message that require
confidentiality. This assertion can be satisfied with WSS: SOAP Message Security
mechanisms or by mechanisms out of scope of SOAP message security, for example by

Page 20 of 90

sending the message over a secure transport protocol like HTTPS. The binding details
the exact mechanism by which the protection is provided.

There MAY be multiple EncryptedParts assertions present. Multiple EncryptedParts
assertions present within a policy alternative are equivalent to a single EncryptedParts
assertion containing the union of all specified message parts. Note that this assertion
does not require that a given part appear in a message, just that if such a part appears,
it requires confidentiality protection.

Syntax

<sp:EncryptedParts ... >

 <sp:Body/>?

 <sp:Header Name="xs:NCName"? Namespace="xs:anyURI" ... />*

 ...

</sp:EncryptedParts>

The following describes the attributes and elements listed in the schema outlined above:

/sp:EncryptedParts

This assertion specifies the parts of the message that need confidentiality
protection. The single child element of this assertion specifies the set of message
parts using an extensible dialect.

If no child elements are specified, the body of the message MUST be
confidentiality protected.

/sp:EncryptedParts/sp:Body

Presence of this optional empty element indicates that the entire body of the
message needs to be confidentiality protected. In the case where mechanisms
from WSS: SOAP Message Security are used to satisfy this assertion, then the
soap:Body element is encrypted using the #content encryption type.

/sp:EncryptedParts/sp:Header

Presence of this optional element indicates that a specific SOAP header (or set of
such headers) needs to be protected. There may be multiple sp:Header elements
within a single Parts element. Each header or set of headers MUST be encrypted.
Such encryption will encrypt such elements using WSS 1.1 Encrypted Headers. As
such, if WSS 1.1 Encrypted Headers are not supported by a service, then headers
cannot be encrypted using message level security. If multiple SOAP headers with
the same local name but different namespace names are to be encrypted then
multiple sp:Header elements are needed, either as part of a single
sp:EncryptedParts assertion or as part of separate sp:EncryptedParts assertions.

/sp:EncryptedParts/sp:Header/@Name

This optional attribute indicates the local name of the SOAP header to be
confidentiality protected. If this attribute is not specified, all SOAP headers whose
namespace matches the Namespace attribute are to be protected.

/sp:EncryptedParts/sp:Header/@Namespace

This required attribute indicates the namespace of the SOAP header(s) to be
confidentiality protected.

Page 21 of 90

5.2.2 EncryptedElements Assertion

The EncryptedElements assertion is used to specify arbitrary elements in the message
that require confidentiality protection. This assertion can be satisfied using WSS: SOAP
Message Security mechanisms or by mechanisms out of scope of SOAP message
security, for example by sending the message over a secure transport protocol like
HTTPS. The binding details the exact mechanism by which the protection is provided.

There MAY be multiple EncryptedElements assertions present. Multiple
EncryptedElements assertions present within a policy alternative are equivalent to a
single EncryptedElements assertion containing the union of all specified XPath
expressions.

Syntax

<sp:EncryptedElements XPathVersion="xs:anyURI"? ... >

 <sp:XPath>xs:string</sp:XPath>+

 ...

</sp:EncryptedElements>

The following describes the attributes and elements listed in the schema outlined above:

/sp:EncryptedElements

This assertion specifies the parts of the message that need confidentiality
protection. If no child elements are specified, the body of the message MUST be
confidentiality protected.

/sp:EncryptedElements/@XPathVersion

This optional attribute contains a URI which indicates the version of XPath to use.

/sp:EncryptedElements/sp:XPath

This element contains a string specifying an XPath expression that identifies the
nodes to be confidentiality protected. The XPath expression is evaluated against
the S:Envelope element node of the message. Multiple instances of this element
may appear within this assertion and should be treated as separate references.

5.3 Required Elements Assertion
A mechanism is defined for specifying, using XPath expressions, the set of header
elements that a message MUST contain.

Note: Specifications are expected to provide domain specific assertions that specify
which headers are expected in a message. This assertion is provided for cases where
such domain specific assertions have not been defined.

5.3.1 RequiredElements Assertion

The RequiredElements assertion is used to specify header elements that the message
MUST contain. This assertion specifies no security requirements.

There MAY be multiple RequiredElements assertions present. Multiple RequiredElements
assertions present within a policy alternative are equivalent to a single
RequiredElements assertion containing the union of all specified XPath expressions.

Syntax

<sp:RequiredElements XPathVersion="xs:anyURI"? ... >

 <sp:XPath>xs:string</sp:XPath>+

Page 22 of 90

 ...

</sp:RequiredElements>

The following describes the attributes and elements listed in the schema outlined above:

/sp:RequiredElements

This assertion specifies the headers elements that MUST appear in a message.

/sp:RequiredElements/@XPathVersion

This optional attribute contains a URI which indicates the version of XPath to use.

/sp:RequiredElements/sp:XPath

This element contains a string specifying an XPath expression that identifies the
header elements that a message MUST contain. The XPath expression is
evaluated against the S:Envelope/S:Header element node of the message.
Multiple instances of this element may appear within this assertion and should be
treated as a combined XPath expression.

6. Token Assertions
Token assertions specify the type of tokens to use to protect or bind tokens and claims
to the message. These assertions do not recommend usage of a Policy Subject.
Assertions which contain them SHOULD recommend a policy attachment point. With the
exception of transport token assertions, the token assertions defined in this section are
not specific to any particular security binding.

6.1 Token Inclusion
Any token assertion may also carry an optional sp:IncludeToken attribute. The schema
type of this attribute is xs:anyURI. This attribute indicates whether the token should be
included, that is written, in the message or whether cryptographic operations utilize an
external reference mechanism to refer to the key represented by the token. This
attribute is defined as a global attribute in the WS-SecurityPolicy namespace and is
intended to be used by any specification that defines token assertions.

6.1.1 Token Inclusion Values

The following table describes the set of valid token inclusion mechanisms supported by
this specification:

http://schemas.xmlsoap.org/ws/2005/07
/securitypolicy/IncludeToken/Never

The token MUST NOT be included in any
messages sent between the initiator and the
recipient; rather, an external reference to the
token should be used.

http://schemas.xmlsoap.org/ws/2005/07
/securitypolicy/IncludeToken/Once

The token MUST be included in only one
message sent from initiator to recipient.
References to the token MAY use an internal
reference mechanism. Subsequent related
messages sent between the recipient and the
initiator may refer to the token using an
external reference mechanism.

http://schemas.xmlsoap.org/ws/2005/07
/securitypolicy/IncludeToken/AlwaysToRe
cipient

The token MUST be included in all messages
sent from initator to recipient. The token MUST
NOT be include in messages sent from the

Page 23 of 90

recipient to the initiator.

http://schemas.xmlsoap.org/ws/2005/07
/securitypolicy/IncludeToken/Always

The token MUST be included in all messages
sent between the initiator and the recipient.
This is the default behavior.

Note: In examples, the namespace URI is replaced with "..." for brevity. For example,
.../IncludeToken/Never is actually
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Never. Other
token inclusion URI values MAY be defined but are out-of-scope of this specification.

The default behavior characteristics defined by this specification if this attribute is not
specified on a token assertion are .../IncludeToken/Always.

6.2 Token Properties

6.2.1 [Derived Keys] Property

This boolean property specifies whether derived keys should be used as defined in WS-
SecureConversation. If the value is 'true', derived keys MUST be used. If the value is
'false', derived keys MUST NOT be used. The value of this property applies to a specific
token. The value of this property is populated by assertions specific to the token. The
default value for this property is 'false'.

6.3 Token Assertions
The following sections describe the token assertions defined as part of this specification.

6.3.1 UsernameToken Assertion

This element represents a requirement to include a username token. The default version
of this token is the wsse:UsernameToken as defined in [WSS: Username Token Profile
1.0].

Syntax

<sp:UsernameToken sp:IncludeToken="xs:anyURI"? ... >

 <wsp:Policy>

 (

 <sp:WssUsernameToken10 ... /> |

 <sp:WssUsernameToken11 ... />

) ?

 ...

 </wsp:Policy> ?

 ...

</sp:UsernameToken>

The following describes the attributes and elements listed in the schema outlined above:

/sp:UsernameToken
This identifies a UsernameToken assertion.

/sp:UsernameToken/@sp:IncludeToken
This optional attribute identifies the token inclusion value for this token assertion.

/sp:UsernameToken/wsp:Policy
This optional element identifies additional requirements for use of the
sp:UsernameToken assertion.

Page 24 of 90

/sp:UsernameToken/wsp:Policy/sp:WssUsernameToken10
This optional element indicates that a Username token should be used as defined in
[WSS: Username Token Profile 1.0].

/sp:UsernameToken/wsp:Policy/sp:WssUsernameToken11
This optional element indicates that a Username token should be used as defined in
[WSS: Username Token Profile 1.1].

Note: While Username tokens could be used cryptographically, such usage is
discouraged in general because of the relatively low entropy typically associated with
passwords. This specification does not define a cryptographic binding for the Username
token. A new token assertion could be defined to allow for cryptographic binding.

6.3.2 IssuedToken Assertion

This element represents a requirement for an issued token, that is one issued by some
token issuer using the mechanisms defined in WS-Trust. This assertion is used in 3rd
party scenarios. For example, the initiator may need to request a SAML token from a
given token issuer in order to secure messages sent to the recipient.

Syntax

<sp:IssuedToken sp:IncludeToken="xs:anyURI"? ... >

 <sp:Issuer>wsa:EndpointReferenceType</sp:Issuer>?

 <sp:RequestSecurityTokenTemplate TrustVersion="xs:anyURI"? >

 ...

 </sp:RequestSecurityTokenTemplate>

 <wsp:Policy>

 <sp:RequireDerivedKeys ... /> ?

 <sp:RequireExternalReference ... /> ?

 <sp:RequireInternalReference ... /> ?

 ...

 </wsp:Policy> ?

 ...

</sp:IssuedToken>

The following describes the attributes and elements listed in the schema outlined above:

/sp:IssuedToken

This identifies an IssuedToken assertion.

/sp:IssuedToken/@sp:IncludeToken
This optional attribute identifies the token inclusion value for this token assertion.

/sp:IssuedToken/sp:Issuer

This optional element, of type wsa:EndpointReferenceType, contains a reference to
the issuer for the issued token.

/sp:IssuedToken/sp:RequestSecurityTokenTemplate

This required element contains elements which MUST be copied into the request sent
to the specified issuer. Note: the initiator is not required to understand the contents
of this element.

See Appendix B for details of the content of this element.

/sp:IssuedToken/sp:RequestSecurityTokenTemplate/@TrustVersion

Page 25 of 90

This optional attribute contains a URI identifying the version of WS-Trust referenced
by the contents of this element.

/sp:IssuedToken/wsp:Policy
This optional element identifies additional requirements for use of the
sp:IssuedToken assertion.

/sp:IssuedToken/wsp:Policy/sp:RequireDerivedKeys
This optional element sets the [Derived Keys] property for this token to 'true'.

/sp:IssuedToken/wsp:Policy/sp:RequireInternalReference
This optional element indicates whether an internal reference is required when
referencing this token.
Note: This reference will be supplied by the issuer of the token.

/sp:IssuedToken/wsp:Policy/sp:RequireExternalReference
This optional element indicates whether an external reference is required when
referencing this token.
Note: This reference will be supplied by the issuer of the token.

Note: The IssuedToken may or may not be associated with key material and such key
material may be symmetric or asymmetric. The Binding assertion will imply the type of
key associated with this token. Services may also include information in the
sp:RequestSecurityTokenTemplate element to explicitly define the expected key type.
See Appendix B for details of the sp:RequestSecurityTokenTemplate element.

6.3.3 X509Token Assertion

This element represents a requirement for a binary security token carrying an X509
token. The default version of this token and associated profile is the X509 Version 3
token as specified in [WSS: X509 Certificate Token Profile 1.0].

Syntax

<sp:X509Token sp:IncludeToken="xs:anyURI"? ... >

 <wsp:Policy>

 <sp:RequireKeyIdentifierReference ... /> ?

 <sp:RequireIssuerSerialReference ... /> ?

 <sp:RequireEmbeddedTokenReference ... /> ?

 <sp:RequireThumbprintReference ... /> ?

 (

 <sp:WssX509V1Token10 ... /> |

 <sp:WssX509V3Token10 ... /> |

 <sp:WssX509Pkcs7Token10 ... /> |

 <sp:WssX509PkiPathV1Token10 ... /> |

 <sp:WssX509V1Token11 ... /> |

 <sp:WssX509V3Token11 ... /> |

 <sp:WssX509Pkcs7Token11 ... /> |

 <sp:WssX509PkiPathV1Token11 ... />

) ?

 ...

 </wsp:Policy> ?

Page 26 of 90

 ...

</sp:X509Token>

The following describes the attributes and elements listed in the schema outlined above:

/sp:X509Token
This identifies an X509Token assertion.

/sp:X509Token/@sp:IncludeToken
This optional attribute identifies the token inclusion value for this token assertion.

/sp:X509Token/wsp:Policy
This optional element identifies additional requirements for use of the sp:X509Token
assertion.

/sp:X509Token/wsp:Policy/sp:RequireKeyIdentifierReference
This optional element indicates that a key identifier reference is required when
referencing this token.

/sp:X509Token/wsp:Policy/sp:RequireIssuerSerialReference
This optional element indicates that an issuer serial reference is required when
referencing this token.

/sp:X509Token/wsp:Policy/sp:RequireEmbeddedTokenReference
This optional element indicates that an embedded token reference is required when
referencing this token.

/sp:X509Token/wsp:Policy/sp:RequireThumbprintReference
This optional element indicates that a thumbprint reference is required when
referencing this token.

/sp:X509Token/wsp:Policy/sp:WssX509V1Token10
This optional element indicates that an X509 Version 1 token should be used as
defined in [WSS: X509 Token Profile 1.0].

/sp:X509Token/wsp:Policy/sp:WssX509V3Token10
This optional element indicates that an X509 Version 3 token should be used as
defined in [WSS: X509 Token Profile 1.0].

/sp:X509Token/wsp:Policy/sp:WssX509Pkcs7Token10
This optional element indicates that an X509 PKCS7 token should be used as defined
in [WSS: X509 Token Profile 1.0].

/sp:X509Token/wsp:Policy/sp:WssX509PkiPathV1Token10
This optional element indicates that an X509 PKI Path Version 1 token should be
used as defined in [WSS: X509 Token Profile 1.0].

/sp:X509Token/wsp:Policy/sp:WssX509V1Token11
This optional element indicates that an X509 Version 1 token should be used as
defined in [WSS: X509 Token Profile 1.1].

/sp:X509Token/wsp:Policy/sp:WssX509V3Token11
This optional element indicates that an X509 Version 3 token should be used as
defined in [WSS: X509 Token Profile 1.1].

/sp:X509Token/wsp:Policy/sp:WssX509Pkcs7Token11
This optional element indicates that an X509 PKCS7 token should be used as defined
in [WSS: X509 Token Profile 1.1].

/sp:X509Token/wsp:Policy/sp:WssX509PkiPathV1Token11

Page 27 of 90

This optional element indicates that an X509 PKI Path Version 1 token should be
used as defined in [WSS: X509 Token Profile 1.1].

6.3.4 KerberosToken Assertion

This element represents a requirement for a Kerberos token. The default version of this
token and associated profile is the Kerberos Version 5 AP-REQ security token as
specified in [WSS: Kerberos Token Profile 1.0].

Syntax

<sp:KerberosToken sp:IncludeToken="xs:anyURI"? ... >

 <wsp:Policy>

 <sp:RequireDerivedKeys ... /> ?

 <sp:RequireKeyIdentifierReference ... /> ?

 (

 <sp:WssKerberosV5ApReqToken11 ... /> |

 <sp:WssGssKerberosV5ApReqToken11 ... />

) ?

 ...

 </wsp:Policy> ?

 ...

</sp:KerberosToken>

The following describes the attributes and elements listed in the schema outlined above:

/sp:KerberosToken
This identifies a KerberosV5ApReqToken assertion.

/sp:KerberosToken/@sp:IncludeToken
This optional attribute identifies the token inclusion value for this token assertion.

/sp:KerberosToken/wsp:Policy
This optional element identifies additional requirements for use of the
sp:KerberosToken assertion.

/sp:KerberosToken/wsp:Policy/sp:RequireDerivedKeys
This optional element sets the [Derived Keys] property for this token to 'true'.

/sp:KerberosToken/wsp:Policy/sp:RequireKeyIdentifierReference
This optional element indicates that a key identifier reference is required when
referencing this token.

/sp:KerberosToken/wsp:Policy/sp:WssKerberosV5ApReqToken11

This optional element indicates that a Kerberos Version 5 AP-REQ token should be
used as defined in [WSS: Kerberos Token Profile 1.1].

/sp:KerberosToken/wsp:Policy/sp:WssGssKerberosV5ApReqToken11
This optional element indicates that a GSS Kerberos Version 5 AP-REQ token should
be used as defined in [WSS: Kerberos Token Profile 1.1].

6.3.5 SpnegoContextToken Assertion

This element represents a requirement for a SecurityContextToken obtained by
executing an n-leg RST/RSTR SPNEGO binary negotiation protocol with the Web Service,
as defined in WS-Trust.

Page 28 of 90

Syntax

<sp:SpnegoContextToken sp:IncludeToken="xs:anyURI"? ... >

 <sp:Issuer>wsa:EndpointReferenceType</sp:Issuer> ?

 <wsp:Policy>

 <sp:RequireDerivedKeys ... /> ?

 ...

 </wsp:Policy> ?

 ...

</sp:SpnegoContextToken>

The following describes the attributes and elements listed in the schema outlined above:

/sp:SpnegoContextToken

This identifies a SpnegoContextToken assertion.

/sp:SpnegoContextToken/@sp:IncludeToken
This optional attribute identifies the token inclusion value for this token assertion.

/sp:SpnegoContextToken/sp:Issuer

This optional element, of type wsa:EndpointReferenceType, contains a reference to
the issuer for the Spnego Context Token.

/sp:SpnegoContextToken/wsp:Policy
This optional element identifies additional requirements for use of the
sp:SpnegoContextToken assertion.

/sp:SpnegoContextToken/wsp:Policy/sp:RequireDerivedKeys
This optional element sets the [Derived Keys] property for this token to 'true'.

6.3.6 SecurityContextToken Assertion

This element represents a requirement for a SecurityContextToken token. The default
version of this token is the Security Context Token as specified in [WS-
SecureConversation 1.0].

Syntax

<sp:SecurityContextToken sp:IncludeToken="xs:anyURI"? ... >

 <wsp:Policy>

 <sp:RequireDerivedKeys ... /> ?

 <sp:RequireExternalUriReference ... /> ?

 <sp:SC10SecurityContextToken ... /> ?

 ...

 </wsp:Policy> ?

 ...

</sp:SecurityContextToken>

The following describes the attributes and elements listed in the schema outlined above:

/sp:SecurityContextToken

This identifies a SecurityContextToken assertion.

/sp:SecurityContextToken/@sp:IncludeToken
This optional attribute identifies the token inclusion value for this token assertion.

/sp:SecurityContextToken/wsp:Policy

This optional element identifies additional requirements for use of the
sp:SecurityContextToken assertion.

/sp:SecurityContextToken/wsp:Policy/sp:RequireDerivedKeys
This optional element sets the [Derived Keys] property for this token to 'true'.

/sp:SecurityContextToken/wsp:Policy/sp:RequireExternalUriReference
This optional element indicates that an external URI reference is required when
referencing this token.

/sp:SecurityContextToken/wsp:Policy/sp:SC10SecurityContextToken
This optional element indicates that a Security Context Token should be used as
defined in [WS-SecureConversation 1.0].

Note: This assertion does not describe how to obtain a Security Context Token but
rather assumes that both parties have the token already or have agreed separately on a
mechanism for obtaining the token. If a definition of the mechanism for obtaining the
Security Context Token is desired in policy, then either the sp:SecureConversationToken
or the sp:IssuedToken assertion should be used instead.

6.3.7 SecureConversationToken Assertion

This element represents a requirement for a Security Context Token retrieved from the
indicated issuer address. The default version of this token and associated protocol is the
Security Context Token as defined in [WS-SecureConversation 1.0]. If the sp:Issuer
address is absent, the protocol MUST be executed at the same address as the service
endpoint address.

Note: This assertion describes the token accepted by the target service. Because this
token is issued by the target service and may not have a separate port (with separate
policy), this assertion SHOULD contain a bootstrap policy indicating the security binding
and policy that is used when requesting this token from the target service. That is, the
bootstrap policy is used to obtain the token and then the current (outer) policy is used
when making requests with the token. This is illustrated in the diagram below.

Initiator Recipient

RST
Bootstrap Policy

RSTR

Application Request
Outer Policy

...

Syntax

<sp:SecureConversationToken sp:IncludeToken="xs:anyURI"? ... >

 <sp:Issuer>wsa:EndpointReferenceType</sp:Issuer>?

 <wsp:Policy>

 <sp:RequireDerivedKeys ... /> ?

 <sp:RequireExternalUriReference ... /> ?

 <sp:SC10SecurityContextToken ... /> ?

Page 29 of 90

Page 30 of 90

 <sp:BootstrapPolicy ... > ?

 <wsp:Policy> ... </wsp:Policy>

 </sp:BootstrapPolicy>

 </wsp:Policy> ?

 ...

</sp:SecureConversationToken>

The following describes the attributes and elements listed in the schema outlined above:

/sp:SecureConversationToken

This identifies a SecureConversationToken assertion.

/sp:SecureConversationToken/@sp:IncludeToken
This optional attribute identifies the token inclusion value for this token assertion.

/sp:SecureConversationToken/sp:Issuer

This optional element, of type wsa:EndpointReferenceType, contains a reference to
the issuer for the Security Context Token.

/sp:SecureConversationToken/wsp:Policy
This optional element identifies additional requirements for use of the
sp:SecureConversationToken assertion.

/sp:SecureConversationToken/wsp:Policy/sp:RequireDerivedKeys
This optional element sets the [Derived Keys] property for this token to 'true'.

/sp:SecureConversationToken/wsp:Policy/sp:RequireExternalUriReference
This optional element indicates that an external URI reference is required when
referencing this token.

/sp:SecureConversationToken/wsp:Policy/sp:SC10SecurityContextToken
This optional element indicates that a Security Context Token should be used as
obtained using the protocol defined in [WS-SecureConversation 1.0].

/sp:SecureConversationToken/wsp:Policy/sp:BootstrapPolicy

This optional element contains the policy indicating the requirements for obtaining
the Security Context Token.

/sp:SecureConversationToken/wsp:Policy/sp:BootstrapPolicy/wsp:Policy

This element contains the security binding requirements for obtaining the Security
Context Token.

Example
<wsp:Policy>

 <sp:SymmetricBinding>

 <wsp:Policy>

 <sp:ProtectionToken>

 <wsp:Policy>

 <sp:SecureConversationToken>

 <sp:Issuer>

 <wsa:Address>http://example.org/sts</wsa:Address>

 </sp:Issuer>

 <wsp:Policy>

Page 31 of 90

 <sp:SC10SecurityContextToken />

 <sp:BootstrapPolicy>

 <wsp:Policy>

 <sp:AsymmetricBinding>

 <wsp:Policy>

 <sp:InitiatorToken>

 ...

 </sp:InitiatorToken>

 <sp:RecipientToken>

 ...

 </sp:RecipientToken>

 </wsp:Policy>

 </sp:AsymmetricBinding>

 <sp:SignedParts>

 ...

 </sp:SignedParts>

 ...

 </wsp:Policy>

 </sp:BootstrapPolicy>

 </wsp:Policy>

 </sp:SecureConversationToken>

 </wsp:Policy>

 </sp:ProtectionToken>

 ...

 </wsp:Policy>

 </sp:SymmetricBinding>

 <sp:SignedParts>

 ...

 </sp:SignedParts>

 ...

</wsp:Policy>

6.3.8 SamlToken Assertion

This element represents a requirement for a SAML token. The default version of this
token and associated profile is SAML Version 1.0 token as described in the [WSS: SAML
Token Profile].

Syntax

<sp:SamlToken sp:IncludeToken="xs:anyURI"? ... >

 <wsp:Policy>

 <sp:RequireDerivedKeys ... /> ?

 <sp:RequireKeyIdentifierReference ... /> ?

 (

 <sp:WssSamlV10Token10 ... /> |

Page 32 of 90

 <sp:WssSamlV11Token10 ... /> |

 <sp:WssSamlV10Token11 ... /> |

 <sp:WssSamlV11Token11 ... /> |

 <sp:WssSamlV20Token11 ... />

) ?

 ...

 </wsp:Policy> ?

 ...

</sp:SamlToken>

The following describes the attributes and elements listed in the schema outlined above:

/sp:SamlToken

This identifies a SamlToken assertion.

/sp:SamlToken/@sp:IncludeToken
This optional attribute identifies the token inclusion value for this token assertion.

/sp:SamlToken/wsp:Policy
This optional element identifies additional requirements for use of the sp:SamlToken
assertion.

/sp:SamlToken/wsp:Policy/sp:RequireDerivedKeys
This optional element sets the [Derived Keys] property for this token to 'true'.

/sp:SamlToken/wsp:Policy/sp:RequireKeyIdentifierReference
This optional element indicates that a key identifier reference is required when
referencing this token.

/sp:SamlToken/wsp:Policy/sp:WssSamlV10Token10
This optional element identifies that a SAML Version 1.0 token should be used as
defined in [WSS: SAML Token Profile 1.0].

/sp:SamlToken/wsp:Policy/sp:WssSamlV11Token10
This optional element identifies that a SAML Version 1.1 token should be used as
defined in [WSS: SAML Token Profile 1.0].

/sp:SamlToken/wsp:Policy/sp:WssSamlV10Token11
This optional element identifies that a SAML Version 1.0 token should be used as
defined in [WSS: SAML Token Profile 1.1].

/sp:SamlToken/wsp:Policy/sp:WssSamlV11Token11
This optional element identifies that a SAML Version 1.1 token should be used as
defined in [WSS: SAML Token Profile 1.1].

/sp:SamlToken/wsp:Policy/sp:WssSamlV20Token11
This optional element identifies that a SAML Version 2.0 token should be used as
defined in [WSS: SAML Token Profile 1.1].

Note: This assertion does not describe how to obtain a SAML Token but rather assumes
that both parties have the token already or have agreed separately on a mechanism for
obtaining the token. If a definition of the mechanism for obtaining the SAML Token is
desired in policy, the sp:IssuedToken assertion should be used instead.

Page 33 of 90

6.3.9 RelToken Assertion

This element represents a requirement for a REL token. The default version of this token
and associate profile is the REL Version 1.0 token as described in the [WSS: REL Token
Profile].

Syntax

<sp:RelToken sp:IncludeToken="xs:anyURI"? ... >

 <wsp:Policy>

 <sp:RequireDerivedKeys ... /> ?

 <sp:RequireKeyIdentifierReference ... /> ?

 (

 <sp:WssRelV10Token10 ... /> |

 <sp:WssRelV20Token10 ... /> |

 <sp:WssRelV10Token11 ... /> |

 <sp:WssRelV20Token11 ... />

) ?

 ...

 </wsp:Policy> ?

 ...

</sp:RelToken>

The following describes the attributes and elements listed in the schema outlined above:

/sp:RelToken

This identifies a RelToken assertion.

/sp:RelToken/@sp:IncludeToken
This optional attribute identifies the token inclusion value for this token assertion.

/sp:RelToken/wsp:Policy
This optional element identifies additional requirements for use of the sp:RelToken
assertion.

/sp:RelToken/wsp:Policy/sp:RequireDerivedKeys
This optional element sets the [Derived Keys] property for this token to 'true'.

/sp:RelToken/wsp:Policy/sp:RequireKeyIdentifierReference
This optional element indicates that a key identifier reference is required when
referencing this token.

/sp:RelToken/wsp:Policy/sp:WssRelV10Token10
This optional element identifies that a REL Version 1.0 token should be used as
defined in [WSS: REL Token Profile 1.0].

/sp:RelToken/wsp:Policy/sp:WssRelV20Token10
This optional element identifies that a REL Version 2.0 token should be used as
defined in [WSS: REL Token Profile 1.0].

/sp:RelToken/wsp:Policy/sp:WssRelV10Token11
This optional element identifies that a REL Version 1.0 token should be used as
defined in [WSS: REL Token Profile 1.1].

/sp:RelToken/wsp:Policy/sp:WssRelV20Token11
This optional element identifies that a REL Version 2.0 token should be used as
defined in [WSS: REL Token Profile 1.1].

Page 34 of 90

Note: This assertion does not describe how to obtain a REL Token but rather assumes
that both parties have the token already or have agreed separately on a mechanism for
obtaining the token. If a definition of the mechanism for obtaining the REL Token is
desired in policy, the sp:IssuedToken assertion should be used instead.

6.3.10 HttpsToken Assertion

This element represents a requirement for a transport binding to support the use of
HTTPS.

Syntax

<sp:HttpsToken RequireClientCertificate="xs:boolean" ... >

 <wsp:Policy>

 ...

 </wsp:Policy> ?

 ...

</sp:HttpsToken>

The following describes the attributes and elements listed in the schema outlined above:

/sp:HttpsToken
This identifies an Https assertion stating that use of the HTTPS protocol specification
is supported.

/sp:HttpsToken/@RequireClientCertificate
The client MUST provide a certificate when negotiating the HTTPS session.

/sp:HttpsToken/wsp:Policy
This optional element identifies additional requirements for use of the sp:HttpsToken
assertion.

7. Security Binding Properties
This section defines the various properties or conditions of a security binding, their
semantics, values and defaults where appropriate. Properties are used by a binding in a
manner similar to how variables are used in code. Assertions populate, (or set) the value
of the property (or variable). When an assertion that populates a value of a property
appears in a policy, that property is set to the value indicated by the assertion. The
security binding then uses the value of the property to control its behavior. The
properties listed here are common to the various security bindings described in Section
8. Assertions that define values for these properties are defined in Section 8. The
following properties are used by the security binding assertions.

7.1 [Algorithm Suite] Property
This property specifies the algorithm suite required for performing cryptographic
operations with symmetric or asymmetric key based security tokens. An algorithm suite
specifies actual algorithms and allowed key lengths. A policy alternative will define what
algorithms are used and how they are used. This property defines the set of available
algorithms. The value of this property is typically referenced by a security binding and is
used to specify the algorithms used for all cryptographic operations performed under the
security binding.

Note: In some cases, this property MAY be referenced under a context other than a
security binding and used to control the algorithms used under that context. For
example, supporting token assertions define such a context.

Page 35 of 90

An algorithm suite defines values for each of the following operations and properties:

• [Sym Sig] Symmetric Key Signature

• [Asym Sig] Signature with an asymmetric key

• [Dig] Digest

• [Enc] Encryption

• [Sym KW] Symmetric Key Wrap

• [Asym KW] Asymmetric Key Wrap

• [Comp Key] Computed key

• [Enc KD] Encryption key derivation

• [Sig KD] Signature key derivation

• [Min SKL] Minimum symmetric key length

• [Max SKL] Maximum symmetric key length

• [Min AKL] Minimum asymmetric key length

• [Max AKL] Maximum asymmetric key length

The following table provides abbreviations for the algorithm URI used in the table below:

Abbreviation Algorithm URI
HmacSha1 http://www.w3.org/2000/09/xmldsig#hmac-sha1
RsaSha1 http://www.w3.org/2000/09/xmldsig#rsa-sha1
Sha1 http://www.w3.org/2000/09/xmldsig#sha1
Sha256 http://www.w3.org/2001/04/xmlenc#sha256
Sha512 http://www.w3.org/2001/04/xmlenc#sha512
Aes128 http://www.w3.org/2001/04/xmlenc#aes128-cbc
Aes192 http://www.w3.org/2001/04/xmlenc#aes192-cbc
Aes256 http://www.w3.org/2001/04/xmlenc#aes256-cbc
TripleDes http://www.w3.org/2001/04/xmlenc#tripledes-cbc
KwAes128 http://www.w3.org/2001/04/xmlenc#kw-aes256
KwAes192 http://www.w3.org/2001/04/xmlenc#kw-aes192
KwAes256 http://www.w3.org/2001/04/xmlenc#kw-aes128
KwTripleDes http://www.w3.org/2001/04/xmlenc#kw-tripledes
KwRsaOaep http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
KwRsa15 http://www.w3.org/2001/04/xmlenc#rsa-1_5
PSha1 http://schemas.xmlsoap.org/ws/2005/02/sc/dk/p_sha1
PSha1L128 http://schemas.xmlsoap.org/ws/2005/02/sc/dk/p_sha1
PSha1L192 http://schemas.xmlsoap.org/ws/2005/02/sc/dk/p_sha1
PSha1L256 http://schemas.xmlsoap.org/ws/2005/02/sc/dk/p_sha1
XPath http://www.w3.org/TR/1999/REC-xpath-19991116
XPath20 http://www.w3.org/2002/06/xmldsig-filter2
C14n http://www.w3.org/2001/10/xml-c14n#
ExC14n http://www.w3.org/2001/10/xml-exc-c14n#
SNT http://www.w3.org/TR/soap12-n11n

STRT10
http://docs.oasis-open.org/wss/2004/xx/oasis-2004xx-wss-soap-
message-security-1.0#STR-Transform

The tables below show all the base algorithm suites defined by this specification. This
table defines values for properties which are common for all suites:

http://www.w3.org/2002/06/xmldsig-filter2
http://www.w3.org/2001/10/xml-exc-c14n
http://www.w3.org/TR/soap12-n11n

Property Algorithm / Value
[Sym KS] HmacSha1
[Asym KS] RsaSha1
[Comp Key] PSha1
[Max SKL] 256
[Min AKL] 1024
[Max AKL] 4096

This table defines additional properties whose values can be specified along with the
default value for that property.

Property Algorithm / Value
[C14n] ExC14n
[Soap Norm] None
[STR Trans] None
[XPath] None

This table defines values for the remaining components for each algorithm suite.
Algorithm Suite [Dig] [Enc] [Sym KW] [Asym KW] [Enc KD] [Sig KD] [Min SKL]
Basic256 Sha1 Aes256 KwAes256 KwRsaOaep PSha1L256 PSha1L192 256

Basic192 Sha1 Aes192 KwAes192 KwRsaOaep PSha1L192 PSha1L192 192

Basic128 Sha1 Aes128 KwAes128 KwRsaOaep PSha1L128 PSha1L128 128

TripleDes Sha1 TripleDes KwTripleDes KwRsaOaep PSha1L192 PSha1L192 192

Basic256Rsa15 Sha1 Aes256 KwAes256 KwRsa15 PSha1L256 PSha1L192 256

Basic192Rsa15 Sha1 Aes192 KwAes192 KwRsa15 PSha1L192 PSha1L192 192

Basic128Rsa15 Sha1 Aes128 KwAes128 KwRsa15 PSha1L128 PSha1L128 128

TripleDesRsa15 Sha1 TripleDes KwTripleDes KwRsa15 PSha1L192 PSha1L192 192

Basic256Sha256 Sha256 Aes256 KwAes256 KwRsaOaep PSha1L256 PSha1L192 256

Basic192Sha256 Sha256 Aes192 KwAes192 KwRsaOaep PSha1L192 PSha1L192 192

Basic128Sha256 Sha256 Aes128 KwAes128 KwRsaOaep PSha1L128 PSha1L128 128

TripleDesSha256 Sha256 TripleDes KwTripleDes KwRsaOaep PSha1L192 PSha1L192 192

Basic256Sha256Rsa15 Sha256 Aes256 KwAes256 KwRsa15 PSha1L256 PSha1L192 256

Basic192Sha256Rsa15 Sha256 Aes192 KwAes192 KwRsa15 PSha1L192 PSha1L192 192

Basic128Sha256Rsa15 Sha256 Aes128 KwAes128 KwRsa15 PSha1L128 PSha1L128 128

TripleDesSha256Rsa15 Sha256 TripleDes KwTripleDes KwRsa15 PSha1L192 PSha1L192 192

7.2 [Timestamp] Property
This boolean property specifies whether a wsu:Timestamp element is present in the
wsse:Security header. If the value is 'true', the timestamp element MUST be present
and MUST be integrity protected either by transport or message level security. If the
value is 'false', the timestamp element MUST NOT be present. The default value for this
property is 'false'.

7.3 [Protection Order] Property
This property indicates the order in which integrity and confidentiality are applied to the
message, in cases where both integrity and confidentiality are required:

EncryptBeforeSigning Signature MUST computed over ciphertext.
Encryption key and signing key MUST be
derived from the same source key.

SignBeforeEncrypting Signature MUST be computed over

Page 36 of 90

Page 37 of 90

plaintext. The resulting signature SHOULD
be encrypted. Supporting signatures MUST
be over the plain text signature.

The default value for this property is 'SignBeforeEncrypting'.

7.4 [Signature Protection] Property
This boolean property specifies whether the signature must be encrypted. If the value is
'true', the primary signature MUST be encrypted and any signature confirmation
elements MUST also be encrypted. If the value is 'false', the primary signature MUST
NOT be encrypted and any signature confirmation elements MUST NOT be encrypted.
The default value for this property is 'false'.

7.5 [Token Protection] Property
This boolean property specifies whether signatures must cover the token used to
generate that signature. If the value is 'true', then each token used to generate a
signature MUST be covered by that signature. If the value is 'false', then the token
MUST NOT be covered by the signature. Note that in cases where derived keys are used,
the 'main' token and NOT the derived key token is covered by the signature. It is
recommended that assertions that define values for this property apply to [Endpoint
Policy Subject]. The default value for this property is 'false'.

7.6 [Entire Header and Body Signatures] Property
This boolean property specifies whether signature digests over the SOAP body and SOAP
headers must only cover the entire body and entire header elements. If the value is
'true', then each digest over the SOAP body MUST be over the entire SOAP body
element and not a descendant of that element. In addition each digest over a SOAP
header MUST be over an actual header element and not a descendant of a header
element. This restriction does not specifically apply to the wsse:Security header.
However signature digests over child elements of the wsse:Security header MUST be
over the entire child element and not a descendent of that element. If the value is
'false', then signature digests MAY be over a descendant of the SOAP Body or a
descendant of a header element. Setting the value of this property to 'true' mitigates
against some possible re-writing attacks. It is recommended that assertions that define
values for this property apply to [Endpoint Policy Subject]. The default value for this
property is 'false'.

7.7 [Security Header Layout] Property
This property indicates which layout rules to apply when adding items to the security
header. The following table shows which rules are defined by this specification.

Strict Items are added to the security header
following the numbered layout rules
described below according to a general
principle of 'declare before use'.

Lax Items are added to the security header in
any order that conforms to WSS: SOAP
Message Security

LaxTimestampFirst As Lax except that the first item in the

Page 38 of 90

security header MUST be a
wsse:Timestamp

LaxTimestampLast As Lax except that the last item in the
security header MUST be a
wsse:Timestamp

The default value of this property is 'Lax'.

7.7.1 Strict Layout Rules

1. Tokens that are included in the message MUST be declared before use. For
example,

a. A local signing token MUST occur before the signature that uses it.

b. A local token serving as the source token for a derived key token MUST
occur before that derived key token.

c. A local encryption token MUST occur before the reference list that points
to xenc:EncryptedData elements that use it.

d. If the same token is used for both signing and encryption, then it should
appear before the earlier element in the security header.

2. Signed elements inside the security header MUST occur before the signature that
signs them. For example,

a. A timestamp MUST occur before the signature that signs it.

b. A Username token (usually in encrypted form) MUST occur before the
signature that signs it.

c. A primary signature MUST occur before the supporting token signature
that signs the primary signature's signature value element.

d. A wsse11:SignatureConfirmation element MUST occur before the
signature that signs it.

3. When an element in a security header is encrypted, the resulting
xenc:EncryptedData element has the same order requirements as the source
plain text element. For example, an encrypted primary signature MUST occur
before any supporting token signature per 2c above and an encrypted token has
the same ordering requirements as the unencrypted token.

4. If there are any encrypted elements in the message then a top level
xenc:ReferenceList element MUST be present in the security header. The
xenc:ReferenceList MUST occur before any xenc:EncryptedData elements in
the security header that are referenced from the reference list. However, the
xenc:ReferenceList is not required to appear before independently encrypted
tokens such as the xenc:EncryptedKey token as defined in WSS.

5. An xenc:EncryptedKey element without an internal reference list [WSS: SOAP
Message Security 1.1] MUST obey rule (1). An xenc:EncryptedKey element with
an internal reference list MUST additionally obey rule (4).

Examples of these layout rules for each security binding are described in Appendix C.

Page 39 of 90

8. Security Binding Assertions
The appropriate representation of the different facets of security mechanisms requires
distilling the common primitives (to enable reuse) and then combining the primitive
elements into patterns.

8.1 AlgorithmSuite Assertion
This assertion indicates a requirement for an algorithm suite as defined under the
[Algorithm Suite] property described in Section 7.1. The scope of this assertion is
defined by its containing assertion.

Syntax

<sp:AlgorithmSuite ... >

 <wsp:Policy>

 (<sp:Basic256 ... /> |

 <sp:Basic192 ... /> |

 <sp:Basic128 ... /> |

 <sp:TripleDes ... /> |

 <sp:Basic256Rsa15 ... /> |

 <sp:Basic192Rsa15 ... /> |

 <sp:Basic128Rsa15 ... /> |

 <sp:TripleDesRsa15 ... /> |

 <sp:Basic256Sha256 ... /> |

 <sp:Basic192Sha256 ... /> |

 <sp:Basic128Sha256 ... /> |

 <sp:TripleDesSha256 ... /> |

 <sp:Basic256Sha256Rsa15 ... /> |

 <sp:Basic192Sha256Rsa15 ... /> |

 <sp:Basic128Sha256Rsa15 ... /> |

 <sp:TripleDesSha256Rsa15 ... /> |

 ...)

 <sp:InclusiveC14N ... /> ?

 <sp:SOAPNormalization10 ... /> ?

 <sp:STRTransform10 ... /> ?

 <sp:XPath10 ... /> ?

 <sp:XPathFilter20 ... /> ?

 ...

 </wsp:Policy>

 ...

</sp:AlgorithmSuite>

The following describes the attributes and elements listed in the schema outlined above:

/sp:AlgorithmSuite
This identifies an AlgorithmSuite assertion.

/sp:AlgorithmSuite/wsp:Policy

Page 40 of 90

This element contains one or more policy assertions that indicate the specific
algorithm suite to use.

/sp:AlgorithmSuite/wsp:Policy/sp:Basic256

This assertion indicates that the [Algorithm Suite] property is set to 'Basic256'.

/sp:AlgorithmSuite/wsp:Policy/sp:Basic192

This assertion indicates that the [Algorithm Suite] property is set to 'Basic192'.

/sp:AlgorithmSuite/wsp:Policy/sp:Basic128

This assertion indicates that the [Algorithm Suite] property is set to 'Basic128'.

/sp:AlgorithmSuite/wsp:Policy/sp:TripleDes

This assertion indicates that the [Algorithm Suite] property is set to 'TripleDes'.

/sp:AlgorithmSuite/wsp:Policy/sp:Basic256Rsa15

This assertion indicates that the [Algorithm Suite] property is set to 'Basic256Rsa15'.

/sp:AlgorithmSuite/wsp:Policy/sp:Basic192Rsa15

This assertion indicates that the [Algorithm Suite] property is set to 'Basic192Rsa15'.

/sp:AlgorithmSuite/wsp:Policy/sp:Basic128Rsa15

This assertion indicates that the [Algorithm Suite] property is set to 'Basic128Rsa15'.

/sp:AlgorithmSuite/wsp:Policy/sp:TripleDesRsa15

This assertion indicates that the [Algorithm Suite] property is set to
'TripleDesRsa15'.

/sp:AlgorithmSuite/wsp:Policy/sp:Basic256Sha256

This assertion indicates that the [Algorithm Suite] property is set to
'Basic256Sha256'.

/sp:AlgorithmSuite/wsp:Policy/sp:Basic192Sha256

This assertion indicates that the [Algorithm Suite] property is set to
'Basic192Sha256'.

/sp:AlgorithmSuite/wsp:Policy/sp:Basic128Sha256

This assertion indicates that the [Algorithm Suite] property is set to
'Basic128Sha256'.

/sp:AlgorithmSuite/wsp:Policy/sp:TripleDesSha256

This assertion indicates that the [Algorithm Suite] property is set to
'TripleDesSha256'.

/sp:AlgorithmSuite/wsp:Policy/sp:Basic256Sha256Rsa15

This assertion indicates that the [Algorithm Suite] property is set to
'Basic256Sha256Rsa15'.

/sp:AlgorithmSuite/wsp:Policy/sp:Basic192Sha256Rsa15

This assertion indicates that the [Algorithm Suite] property is set to
'Basic192Sha256Rsa15'.

/sp:AlgorithmSuite/wsp:Policy/sp:Basic128Sha256Rsa15

This assertion indicates that the [Algorithm Suite] property is set to
'Basic128Sha256Rsa15'.

/sp:AlgorithmSuite/wsp:Policy/sp:TripleDesSha256Rsa15

Page 41 of 90

This assertion indicates that the [Algorithm Suite] property is set to
'TripleDesSha256Rsa15'.

/sp:AlgorithmSuite/wsp:Policy/sp:InclusiveC14N

This assertion indicates that the [C14N] property of an algorithm suite is set to
'C14N'.

/sp:AlgorithmSuite/wsp:Policy/sp:SoapNormalization10

This assertion indicates that the [SOAP Norm] property is set to 'SNT'.

/sp:AlgorithmSuite/wsp:Policy/sp:STRTransform10

This assertion indicates that the [STR Transform] property is set to 'STRT10'.

/sp:AlgorithmSuite/wsp:Policy/sp:XPath10

This assertion indicates that the [XPath] property is set to 'XPath'.

/sp:AlgorithmSuite/wsp:Policy/sp:XPathFilter20

This assertion indicates that the [XPath] property is set to 'XPath20'.

8.2 Layout Assertion
This assertion indicates a requirement for a particular security header layout as defined
under the [Security Header Layout] property described in Section 7.7. The scope of this
assertion is defined by its containing assertion.

Syntax

<sp:Layout ... >

 <wsp:Policy>

 <sp:Strict ... /> |

 <sp:Lax ... /> |

 <sp:LaxTsFirst ... /> |

 <sp:LaxTsLast ... /> |

 ...

 </wsp:Policy>

 ...

</sp:Layout>

The following describes the attributes and elements listed in the schema outlined above:

/sp:Layout
This identifies a Layout assertion.

/sp:Layout/wsp:Policy

This element contains one or more policy assertions that indicate the specific security
header layout to use.

/sp:Layout/wsp:Policy/sp:Strict

This assertion indicates that the [Security Header Layout] property is set to 'Strict'.

/sp:Layout/wsp:Policy/sp:Lax

This assertion indicates that the [Security Header Layout] property is set to 'Lax'.

/sp:Layout/wsp:Policy/sp:LaxTsFirst

Page 42 of 90

This assertion indicates that the [Security Header Layout] property is set to
'LaxTimestampFirst'.

/sp:Layout/wsp:Policy/sp:LaxTsLast

This assertion indicates that the [Security Header Layout] property is set to
'LaxTimestampLast'.

8.3 TransportBinding Assertion
The TransportBinding assertion is used in scenarios in which message protection and
security correlation is provided by means other than WSS: SOAP Message Security, for
example by a secure transport like HTTPS. Specifically, this assertion indicates that the
message is protected using the means provided by the transport. This binding has one
binding specific token property; [Transport Token]. This assertion MUST apply to
[Endpoint Policy Subject].

Syntax

<sp:TransportBinding ... >

 <wsp:Policy>

 <sp:TransportToken ... >

 <wsp:Policy> ... </wsp:Policy>

 ...

 </sp:TransportToken>

 <sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite>

 <sp:Layout ... > ... </sp:Layout> ?

 <sp:IncludeTimestamp ... /> ?

 ...

 </wsp:Policy>

 ...

</sp:TransportBinding>

The following describes the attributes and elements listed in the schema outlined above:

/sp:TransportBinding

This identifies a TransportBinding assertion.

/sp:TransportBinding/wsp:Policy

This indicates a nested wsp:Policy element that defines the behavior of the
TransportBinding assertion.

/sp:TransportBinding/wsp:Policy/sp:TransportToken

This assertion indicates a requirement for a Transport Token. The specified token
populates the [Transport Token] property and indicates how the transport is secured.

/sp:TransportBinding/wsp:Policy/sp:TransportToken/wsp:Policy

This indicates a nested policy that identifies the type of Transport Token to use.

/sp:TransportBinding/wsp:Policy/sp:AlgorithmSuite

This assertion indicates a value that populates the [Algorithm Suite] property. See
Section 8.1 for more details.

/sp:TransportBinding/wsp:Policy/sp:Layout

Page 43 of 90

This assertion indicates a value that populates the [Security Header Layout]
property. See Section 8.2 for more details.

/sp:TransportBinding/wsp:Policy/sp:IncludeTimestamp

This assertion indicates that the [Timestamp] property is set to 'true'.

8.4 SymmetricBinding Assertion
The SymmetricBinding assertion is used in scenarios in which message protection is
provided by means defined in WSS: SOAP Message Security. This binding has two
binding specific token properties; [Encryption Token] and [Signature Token]. If the
message pattern requires multiple messages, this binding defines that the [Encryption
Token] used from initiator to recipient is also used from recipient to initiator. Similarly,
the [Signature Token] used from initiator to recipient is also use from recipient to
initiator. If a sp:ProtectionToken assertion is specified, the specified token populates
both token properties and is used as the basis for both encryption and signature in both
directions. This assertion MUST apply to [Endpoint Policy Subject].

Syntax

<sp:SymmetricBinding ... >

 <wsp:Policy>

 (

 <sp:EncryptionToken ... >

 <wsp:Policy> ... </wsp:Policy>

 </sp:EncryptionToken>

 <sp:SignatureToken ... >

 <wsp:Policy> ... </wsp:Policy>

 </sp:SignatureToken>

) | (

 <sp:ProtectionToken ... >

 <wsp:Policy> ... </wsp:Policy>

 </sp:ProtectionToken>

)

 <sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite>

 <sp:Layout ... > ... </sp:Layout> ?

 <sp:IncludeTimestamp ... /> ?

 <sp:EncryptBeforeSigning ... /> ?

 <sp:EncryptSignature ... /> ?

 <sp:ProtectTokens ... /> ?

 <sp:OnlySignEntireHeadersAndBody ... /> ?

 ...

 </wsp:Policy>

 ...

</sp:SymmetricBinding>

The following describes the attributes and elements listed in the schema outlined above:

/sp:SymmetricBinding

This identifies a SymmetricBinding assertion.

Page 44 of 90

/sp:SymmetricBinding/wsp:Policy

This indicates a nested wsp:Policy element that defines the behavior of the
SymmetricBinding assertion.

/sp:SymmetricBinding/wsp:Policy/sp:EncryptionToken

This assertion indicates a requirement for an Encryption Token. The specified token
populates the [Encryption Token] property and is used for encryption. It is an error
for both an sp:EncryptionToken and an sp:ProtectionToken assertion to be specified.

/sp:SymmetricBinding/wsp:Policy/sp:EncryptionToken/wsp:Policy

The policy contained here MUST identify one or more tokens to use for encryption.

/sp:SymmetricBinding/wsp:Policy/sp:SignatureToken

This assertion indicates a requirement for a Signature Token. The specified token
populates the [Signature Token] property and is used for the message signature. It
is an error for both an sp:SignatureToken and an sp:ProtectionToken assertion to be
specified.

/sp:SymmetricBinding/wsp:Policy/sp:SignatureToken/wsp:Policy

The policy contained here MUST identify one or more tokens to use for signatures.

/sp:SymmetricBinding/wsp:Policy/sp:ProtectionToken

This assertion indicates a requirement for a Protection Token. The specified token
populates the [Encryption Token] and [Signature Token properties] and is used for
the message signature and for encryption. It is an error for both an
sp:ProtectionToken assertion and either an sp:EncryptionToken assertion or an
sp:SignatureToken assertion to be specified.

/sp:SymmetricBinding/wsp:Policy/sp:ProtectionToken/wsp:Policy

The policy contained here MUST identify exactly one token to use for protection.

/sp:SymmetricBinding/wsp:Policy/sp:AlgorithmSuite

This assertion indicates a value that populates the [Algorithm Suite] property. See
Section 8.1 for more details.

/sp:SymmetricBinding/wsp:Policy/sp:Layout

This assertion indicates a value that populates the [Security Header Layout]
property. See Section 8.1 for more details.

/sp:SymmetricBinding/wsp:Policy/sp:IncludeTimestamp

This assertion indicates that the [Timestamp] property is set to 'true'.

/sp:SymmetricBinding/wsp:Policy/sp:EncryptBeforeSigning

This assertion indicates that the [Protection Order] property is set to
'EncryptBeforeSigning'.

/sp:SymmetricBinding/wsp:Policy/sp:EncryptSignature

This assertion indicates that the [Signature Protection] property is set to 'true'.

/sp:SymmetricBinding/wsp:Policy/sp:ProtectTokens

This assertion indicates that the [Token Protection] property is set to 'true'.

/sp:SymmetricBinding/wsp:Policy/sp:OnlySignEntireHeadersAndBody

This assertion indicates that the [Entire Header And Body Signatures] property is set
to 'true'.

Page 45 of 90

8.5 AsymmetricBinding Assertion
The AsymmetricBinding assertion is used in scenarios in which message protection is
provided by means defined in WSS: SOAP Message Security. This binding has two
binding specific token properties; [Initiator Token] and [Recipient Token]. If the
message pattern requires multiple messages, this binding defines that the [Initiator
Token] is used for the message signature from initiator to the recipient, and for
encryption from recipient to initiator. The [Recipient Token] is used for encryption from
initiator to recipient, and for the message signature from recipient to initiator. This
assertion MUST apply to [Endpoint Policy Subject].

Syntax

<sp:AsymmetricBinding ... >

 <wsp:Policy>

 <sp:InitiatorToken>

 <wsp:Policy> ... </wsp:Policy>

 </sp:InitiatorToken>

 <sp:RecipientToken>

 <wsp:Policy> ... </wsp:Policy>

 </sp:RecipientToken>

 <sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite>

 <sp:Layout ... > ... </sp:Layout> ?

 <sp:IncludeTimestamp ... /> ?

 <sp:EncryptBeforeSigning ... /> ?

 <sp:EncryptSignature ... /> ?

 <sp:ProtectTokens ... /> ?

 <sp:OnlySignEntireHeadersAndBody ... /> ?

 ...

 </wsp:Policy>

 ...

</sp:AsymmetricBinding>

The following describes the attributes and elements listed in the schema outlined above:

/sp:AsymmetricBinding

This identifies a AsymmetricBinding assertion.

/sp:AsymmetricBinding/wsp:Policy

This indicates a nested wsp:Policy element that defines the behavior of the
AsymmetricBinding assertion.

/sp:AsymmetricBinding/wsp:Policy/sp:InitiatorToken

This assertion indicates a requirement for an Initiator Token. The specified token
populates the [Initiator Token] property and is used for the message signature from
initiator to recipient, and encryption from recipient to initiator.

/sp:AsymmetricBinding/wsp:Policy/sp:InitiatorToken/wsp:Policy

The policy contained here MUST identify one or more token assertions.

/sp:AsymmetricBinding/wsp:Policy/sp:RecipientToken

Page 46 of 90

This assertion indicates a requirement for a Recipient Token. The specified token
populates the [Recipient Token] property and is used for encryption from initiator to
recipient, and for the message signature from recipient to initiator.

/sp:AsymmetricBinding/wsp:Policy/sp:RecipientToken/wsp:Policy

The policy contained here MUST identify one or more token assertions.

/sp:AsymmetricBinding/wsp:Policy/sp:AlgorithmSuite

This assertion indicates a value that populates the [Algorithm Suite] property. See
Section 8.1 for more details.

/sp:AsymmetricBinding/wsp:Policy/sp:Layout

This assertion indicates a value that populates the [Security Header Layout]
property. See Section 8.2 for more details.

/sp:AsymmetricBinding/wsp:Policy/sp:IncludeTimestamp

This assertion indicates that the [Timestamp] property is set to 'true'.

/sp:AsymmetricBinding/wsp:Policy/sp:EncryptBeforeSigning

This assertion indicates that the [Protection Order] property is set to
'EncryptBeforeSigning'.

/sp:AsymmetricBinding/wsp:Policy/sp:EncryptSignature

This assertion indicates that the [Signature Protection] property is set to 'true'.

/sp:AsymmetricBinding/wsp:Policy/sp:ProtectTokens

This assertion indicates that the [Token Protection] property is set to 'true'.

/sp:AsymmetricBinding/wsp:Policy/sp:OnlySignEntireHeadersAndBody

This assertion indicates that the [Entire Header And Body Signatures] property is set
to 'true'.

9. Supporting Tokens
Security Bindings use tokens to secure the message exchange. The Security Binding will
require one to create a signature using the token identified in the Security Binding
policy. This signature will here-to-fore be referred to as the “message signature”.
Additional tokens may be specified to augment the claims provided by the token
associated with the “message signature” provided by the Security Binding. This section
defines four properties related to supporting token requirements which may be
referenced by a Security Binding: [Supporting Tokens], [Signed Supporting Tokens],
[Endorsing Supporting Tokens] and [Signed Endorsing Supporting Tokens]. Four
assertions are defined to populate those properties: SupportingTokens,
SignedSupportingTokens, EndorsingSupportingTokens, and
SignedEndorsingSupportingTokens. These assertions SHOULD apply to [Endpoint Policy
Subject]. These assertions MAY apply to [Message Policy Subject] or [Operation Policy
Subject].

Supporting tokens may be specified at a different scope than the binding assertion which
provides support for securing the exchange. For instance, a binding is specified at the
scope of an endpoint, while the supporting tokens might be defined at the scope of a
message. When assertions that populate this property are defined in overlapping scopes,
the sender should merge the requirements by include all tokens from the outer scope
and any additional tokens for a specific message from the inner scope.

To illustrate the different ways that supporting tokens may be bound to the message,
let’s consider a message with three components: Header1, Header2, and Body.

Each binding requires that the message is signed using a token satisfying the required
usage for that binding, and that the signature (Sig1) covers important parts of the
message including the message timestamp (TS) facilitate replay detection. The signature
is then included as part of the Security header as illustrated below:

Body

Header1

Header2

Security

Sig1

TS

Note: if required, the initiator may also include in the Security header the token used as
the basis for the message signature (Sig1), not shown in the diagram.

If transport security is used, only the message timestamp (TS) is included in the
Security header as illustrated below:

Body

Header1

Header2

Security

TS

9.1 SupportingTokens Assertion
Supporting tokens are included in the security header and may optionally include
additional message parts to sign and/or encrypt.

Page 47 of 90

Page 48 of 90

Syntax

<sp:SupportingTokens ... >

 <wsp:Policy>

 [Token Assertion]+

 <sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite> ?

 (

 <sp:SignedParts ... > ... </sp:SignedParts> |

 <sp:SignedElements ... > ... </sp:SignedElements> |

 <sp:EncryptedParts ... > ... </sp:EncryptedParts> |

 <sp:EncryptedElements ... > ... </sp:EncryptedElements> |

) *

 ...

 </wsp:Policy>

 ...

</sp:SupportingTokens>

The following describes the attributes and elements listed in the schema outlined above:

/sp:SupportingTokens

This identifies a SupportingTokens assertion. The specified tokens populate the
[Supporting Tokens] property.

/sp:SupportingTokens/wsp:Policy

This describes additional requirements for satisfying the SupportingTokens assertion.

/sp:SupportingTokens/wsp:Policy/[Token Assertion]

The policy MUST identify one or more token assertions.

/sp:SupportingTokens/wsp:Policy/sp:AlgorithmSuite

This optional element follows the schema outlined in Section 8.1 and describes the
algorithms to use for cryptographic operations performed with the tokens identified
by this policy assertion.

/sp:SupportingTokens/wsp:Policy/sp:SignedParts

This optional element follows the schema outlined in Section 5.1.1 and describes
additional message parts that MUST be included in the signature generated with the
token identified by this policy assertion.

/sp:SupportingTokens/wsp:Policy/sp:SignedElements

This optional element follows the schema outlined in Section 5.1.2 and describes
additional message elements that MUST be included in the signature generated with
the token identified by this policy assertion.

/sp:SupportingTokens/wsp:Policy/sp:EncryptedParts

This optional element follows the schema outlined in Section 5.2.1 and describes
additional message parts that MUST be encrypted using the token identified by this
policy assertion.

/sp:SupportingTokens/wsp:Policy/sp:EncryptedElements

This optional element follows the schema outlined in Section 5.2.1 and describes
additional message elements that MUST be encrypted using the token identified by
this policy assertion.

9.2 SignedSupportingTokens Assertion
Signed tokens are included in the “message signature” as defined above and may
optionally include additional message parts to sign and/or encrypt. The diagram below
illustrates how the attached token (Tok2) is signed by the message signature (Sig1):

Body

Header1

Header2

Security

Sig1

Tok2

TS

If transport security is used, the token (Tok2) is included in the Security header as
illustrated below:

Syntax

<sp:SignedSupportingTokens ... >

 <wsp:Policy>

 [Token Assertion]+

 <sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite> ?

 (

 <sp:SignedParts ... > ... </sp:SignedParts> |

 <sp:SignedElements ... > ... </sp:SignedElements> |

 <sp:EncryptedParts ... > ... </sp:EncryptedParts> |

 <sp:EncryptedElements ... > ... </sp:EncryptedElements> |

) *

Page 49 of 90

Page 50 of 90

 ...

 </wsp:Policy>

 ...

</sp:SignedSupportingTokens>

The following describes the attributes and elements listed in the schema outlined above:

/sp:SignedSupportingTokens

This identifies a SignedSupportingTokens assertion. The specified tokens populate the
[Signed Supporting Tokens] property.

/sp:SignedSupportingTokens/wsp:Policy

This describes additional requirements for satisfying the SignedSupportingTokens
assertion.

/sp:SignedSupportingTokens/wsp:Policy/[Token Assertion]

The policy MUST identify one or more token assertions.

/sp:SignedSupportingTokens/wsp:Policy/sp:AlgorithmSuite

This optional element follows the schema outlined in Section 8.1 and describes the
algorithms to use for cryptographic operations performed with the tokens identified
by this policy assertion.

/sp:SignedSupportingTokens/wsp:Policy/sp:SignedParts

This optional element follows the schema outlined in Section 5.1.1 and describes
additional message parts that MUST be included in the signature generated with the
token identified by this policy assertion.

/sp:SignedSupportingTokens/wsp:Policy/sp:SignedElements

This optional element follows the schema outlined in Section 5.1.2 and describes
additional message elements that MUST be included in the signature generated with
the token identified by this policy assertion.

/sp:SignedSupportingTokens/wsp:Policy/sp:EncryptedParts

This optional element follows the schema outlined in Section 5.2.1 and describes
additional message parts that MUST be encrypted using the token identified by this
policy assertion.

/sp:SignedSupportingTokens/wsp:Policy/sp:EncryptedElements

This optional element follows the schema outlined in Section 5.2.1 and describes
additional message elements that MUST be encrypted using the token identified by
this policy assertion.

9.3 EndorsingSupportingTokens Assertion
Endorsing tokens sign the message signature, that is they sign the entire ds:Signature
element produced from the message signature and may optionally include additional
message parts to sign and/or encrypt. The diagram below illustrates how the endorsing
signature (Sig2) signs the message signature (Sig1):

Body

Header1

Header2

Security

Sig1

Sig2

TS

If transport security is used, the signature (Sig2) should cover the message timestamp
as illustrated below:

Body

Header1

Header2

Security

TS

Sig2

Syntax

<sp:EndorsingSupportingTokens ... >

 <wsp:Policy>

 [Token Assertion]+

 <sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite> ?

 (

 <sp:SignedParts ... > ... </sp:SignedParts> |

 <sp:SignedElements ... > ... </sp:SignedElements> |

 <sp:EncryptedParts ... > ... </sp:EncryptedParts> |

 <sp:EncryptedElements ... > ... </sp:EncryptedElements> |

) *

 ...

 </wsp:Policy>

 ...

</sp:EndorsingSupportingTokens>

The following describes the attributes and elements listed in the schema outlined above:

Page 51 of 90

Page 52 of 90

/sp:EndorsingSupportingTokens

This identifies an EndorsingSupportingTokens assertion. The specified tokens
populate the [Endorsing Supporting Tokens] property.

/sp:EndorsingSupportingTokens/wsp:Policy

This describes additional requirements for satisfying the EndorsingSupportingTokens
assertion.

/sp:EndorsingSupportingTokens/wsp:Policy/[Token Assertion]

The policy MUST identify one or more token assertions.

/sp:EndorsingSupportingTokens/wsp:Policy/sp:AlgorithmSuite

This optional element follows the schema outlined in Section 8.1 and describes the
algorithms to use for cryptographic operations performed with the tokens identified
by this policy assertion.

/sp:EndorsingSupportingTokens/wsp:Policy/sp:SignedParts

This optional element follows the schema outlined in Section 5.1.1 and describes
additional message parts that MUST be included in the signature generated with the
token identified by this policy assertion.

/sp:EndorsingSupportingTokens/wsp:Policy/sp:SignedElements

This optional element follows the schema outlined in Section 5.1.2 and describes
additional message elements that MUST be included in the signature generated with
the token identified by this policy assertion.

/sp:EndorsingSupportingTokens/wsp:Policy/sp:EncryptedParts

This optional element follows the schema outlined in Section 5.2.1 and describes
additional message parts that MUST be encrypted using the token identified by this
policy assertion.

/sp:EndorsingSupportingTokens/wsp:Policy/sp:EncryptedElements

This optional element follows the schema outlined in Section 5.2.1 and describes
additional message elements that MUST be encrypted using the token identified by
this policy assertion.

9.4 SignedEndorsingSupportingTokens Assertion
Signed endorsing tokens sign the entire ds:Signature element produced from the
message signature and are themselves signed by that message signature, that is both
tokens (the token used for the message signature and the signed endorsing token) sign
each other. This assertion may optionally include additional message parts to sign
and/or encrypt. The diagram below illustrates how the signed token (Tok2) is signed by
the message signature (Sig1) and the endorsing signature (Sig2) signs the message
signature (Sig1):

Body

Header1

Header2

Security

Sig1

Sig2

Tok2

TS

If transport security is used, the token (Tok2) is included in the Security header and the
signature (Sig2) should cover the message timestamp as illustrated below:

Body

Header1

Header2

Security

Sig2

Tok2

TS

Syntax

<sp:SignedEndorsingSupportingTokens ... >

 <wsp:Policy>

 [Token Assertion]+

 <sp:AlgorithmSuite ... > ... </sp:AlgorithmSuite> ?

 (

 <sp:SignedParts ... > ... </sp:SignedParts> |

 <sp:SignedElements ... > ... </sp:SignedElements> |

 <sp:EncryptedParts ... > ... </sp:EncryptedParts> |

 <sp:EncryptedElements ... > ... </sp:EncryptedElements> |

) *

 ...

 </wsp:Policy>

Page 53 of 90

Page 54 of 90

 ...

</sp:SignedEndorsingSupportingTokens>

The following describes the attributes and elements listed in the schema outlined above:

/sp:SignedEndorsingSupportingTokens

This identifies a SignedEndorsingSupportingTokens assertion. The specified tokens
populate the [Signed Endorsing Supporting Tokens] property.

/sp:SignedEndorsingSupportingTokens/wsp:Policy

This describes additional requirements for satisfying the EndorsingSupportingTokens
assertion.

/sp:SignedEndorsingSupportingTokens/wsp:Policy/[Token Assertion]

The policy MUST identify one or more token assertions.

/sp:SignedEndorsingSupportingTokens/wsp:Policy/sp:AlgorithmSuite

This optional element follows the schema outlined in Section 8.1 and describes the
algorithms to use for cryptographic operations performed with the tokens identified
by this policy assertion.

/sp:SignedEndorsingSupportingTokens/wsp:Policy/sp:SignedParts

This optional element follows the schema outlined in Section 5.1.1 and describes
additional message parts that MUST be included in the signature generated with the
token identified by this policy assertion.

/sp:SignedEndorsingSupportingTokens/wsp:Policy/sp:SignedElements

This optional element follows the schema outlined in Section 5.1.2 and describes
additional message elements that MUST be included in the signature generated with
the token identified by this policy assertion.

/sp:SignedEndorsingSupportingTokens/wsp:Policy/sp:EncryptedParts

This optional element follows the schema outlined in Section 5.2.1 and describes
additional message parts that MUST be encrypted using the token identified by this
policy assertion.

/sp:SignedEndorsingSupportingTokens/wsp:Policy/sp:EncryptedElements

This optional element follows the schema outlined in Section 5.2.1 and describes
additional message elements that MUST be encrypted using the token identified by
this policy assertion.

9.5 Example
Example policy containing supporting token assertions.

<!-- Example Endpoint Policy -->

<wsp:Policy>

 <sp:SymmetricBinding>

 <wsp:Policy>

 <sp:ProtectionToken>

 <sp:IssuedToken sp:IncludeToken=".../IncludeToken/Once" >

 <sp:Issuer>...</sp:Issuer>

 <sp:RequestSecurityTokenTemplate>

 ...

Page 55 of 90

 </sp:RequestSecurityTokenTemplate>

 </sp:IssuedToken>

 </sp:ProtectionToken>

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic256 />

 </wsp:Policy>

 </sp:AlgorithmSuite>

 ...

 <sp:SignedTokens>

 <wsp:Policy>

 <sp:UsernameToken sp:IncludeToken=".../IncludeToken/Once" />

 </wsp:Policy>

 </sp:SignedTokens>

 <sp:SignedEndorsingTokens>

 <wsp:Policy>

 <sp:X509V3Token sp:IncludeToken=".../IncludeToken/Once" />

 </wsp:Policy>

 </sp:SignedEndorsingTokens>

 </wsp:Policy>

 </sp:SymmetricBinding>

 ...

</wsp:Policy>

The sp:SignedTokens assertion in the above policy indicates that a Username Token
must be included in the security header and covered by the message signature. The
sp:SignedEndorsingTokens assertion indicates that an X509 certificate must be include
in the security header and covered by the message signature. In addition, a signature
over the message signature based on the key material associated with the X509
certificate must be include in the security header..

10. WSS: SOAP Message Security Options
There are several optional aspects to the WSS: SOAP Message Security specification that
are independent of the trust and token taxonomies. This section describes another class
of properties and associated assertions that indicate the supported aspects of WSS:
SOAP Message Security. The assertions defined here MUST apply to [Endpoint Policy
Subject].

The properties and assertions dealing with token references defined in this section
indicate whether the initiator and recipient MUST be able to process a given reference
mechanism, or whether the initiator and recipient MAY send a fault if such references
are encountered.

Note: This approach is chosen because:

A) [WSS: SOAP Message Security] allows for multiple equivalent reference
mechanisms to be used in a single reference.

B) In a multi-message exchange, a token may be referenced using different
mechanisms depending on which of a series of messages is being secured.

Page 56 of 90

WSS: SOAP Message Security 1.0 Properties

[Direct References]

This property indicates whether the initiator and recipient MUST be able to process direct
token references (by ID or URI reference). This property always has a value of 'true'. i.e.
All implementations MUST be able to process such references.

[Key Identifier References]

This boolean property indicates whether the initiator and recipient MUST be able to
process key-specific identifier token references. A value of 'true' indicates that the
initiator and recipient MUST be able to generate and process such references. A value of
'false' indicates that the initiator and recipient MUST NOT generate such references and
that the initiator and recipient MAY send a fault if such references are encountered. This
property has a default value of 'false'.

[Issuer Serial References]

This boolean property indicates whether the initiator and recipient MUST be able to
process references using the issuer and token serial number. A value of 'true' indicates
that the initiator and recipient MUST be able to process such references. A value of
'false' indicates that the initiator and recipient MUST NOT generate such references and
that the initiator and recipient MAY send a fault if such references are encountered. This
property has a default value of 'false'.

[External URI References]

This boolean property indicates whether the initiator and recipient MUST be able to
process references to tokens outside the message using URIs. A value of 'true' indicates
that the initiator and recipient MUST be able to process such references. A value of
'false' indicates that the initiator and recipient MUST NOT generate such references and
that the initiator and recipient MAY send a fault if such references are encountered. This
property has a default value of 'false'.

[Embedded Token References]

This boolean property indicates whether the initiator and recipient MUST be able to
process references that contain embedded tokens. A value of 'true' indicates that the
initiator and recipient MUST be able to process such references. A value of 'false'
indicates that the initiator and recipient MUST NOT generate such references and that
the initiator and recipient MAY send a fault if such references are encountered. This
property has a default value of 'false'.

WSS: SOAP Message Security 1.1 Properties

[Thumbprint References]

This boolean property indicates whether the initiator and recipient MUST be able to
process references using token thumbprints. A value of 'true' indicates that the initiator
and recipient MUST be able to process such references. A value of 'false' indicates that
the initiator and recipient MUST NOT generate such references and that the initiator and
recipient MAY send a fault if such references are encountered. This property has a
default value of 'false'.

[EncryptedKey References]

This boolean property indicates whether the initiator and recipient MUST be able to
process references using EncryptedKey references. A value of 'true' indicates that the
initiator and recipient MUST be able to process such references. A value of 'false'

Page 57 of 90

indicates that the initiator and recipient MUST NOT generate such references and that
the initiator and recipient MAY send a fault if such references are encountered. This
property has a default value of 'false'.

[Signature Confirmation]

This boolean property specifies whether wsse11:SignatureConfirmation elements
should be used as defined in WSS: Soap Message Security 1.1. If the value is 'true',
wsse11:SignatureConfirmation elements MUST be used. If the value is 'false',
signature confirmation elements MUST NOT be used. The value of this property applies
to all signatures that are included in the security header. This property has a default
value of 'false'.

10.1 Wss10 Assertion
The Wss10 assertion allows you to specify which WSS: SOAP Message Security 1.0
options are supported.

Syntax

<sp:Wss10 ... >

 <wsp:Policy>

 <sp:MustSupportRefKeyIdentifier ... /> ?

 <sp:MustSupportRefIssuerSerial ... /> ?

 <sp:MustSupportRefExternalURI ... /> ?

 <sp:MustSupportRefEmbeddedToken ... /> ?

 ...

 </wsp:Policy>

 ...

</sp:Wss10>

The following describes the attributes and elements listed in the schema outlined above:

/sp:Wss10

This identifies a WSS10 assertion.

/sp:Wss10/wsp:Policy

This indicates a policy that controls WSS: SOAP Message Security 1.0
options./sp:Wss10/wsp:Policy/sp:MustSupportRefKeyIdentifier

This assertion indicates that the [Key Identifier References] property is set to 'true'.

/sp:Wss10/wsp:Policy/sp:MustSupportRefIssuerSerial

This assertion indicates that the [Issuer Serial References] property is set to 'true'.

/sp:Wss10/wsp:Policy/sp:MustSupportRefExternalURI

This assertion indicates that the [External URI References] property is set to 'true'.

/sp:Wss10/wsp:Policy/sp:MustSupportRefEmbeddedToken

This assertion indicates that the [Embedded Token References] property is set to
'true'.

10.2 Wss11 Assertion
The Wss11 assertion allows you to specify which WSS: SOAP Message Security 1.1
options are supported.

Page 58 of 90

Syntax

< sp:Wss11 ... >

 <wsp:Policy>

 <sp:MustSupportRefKeyIdentifier ... /> ?

 <sp:MustSupportRefIssuerSerial ... /> ?

 <sp:MustSupportRefExternalURI ... /> ?

 <sp:MustSupportRefEmbeddedToken ... /> ?

 <sp:MustSupportRefThumbprint ... /> ?

 <sp:MustSupportRefEncryptedKey ... /> ?

 <sp:RequireSignatureConfirmation ... /> ?

 ...

 </wsp:Policy>

</sp:Wss11>

The following describes the attributes and elements listed in the schema outlined above:

/sp:Wss11

This identifies an WSS11 assertion.

/sp:Wss11/wsp:Policy

This indicates a policy that controls WSS: SOAP Message Security 1.1 options.

/sp:Wss11/wsp:Policy/sp:MustSupportRefKeyIdentifier

This assertion indicates that the [Key Identifier References] property is set to 'true'.

/sp:Wss11/wsp:Policy/sp:MustSupportRefIssuerSerial

This assertion indicates that the [Issuer Serial References] property is set to 'true'.

/sp:Wss11/wsp:Policy/sp:MustSupportRefExternalURI

This assertion indicates that the [External URI References] property is set to 'true'.

/sp:Wss11/wsp:Policy/sp:MustSupportRefEmbeddedToken

This assertion indicates that the [Embedded Token References] property is set to
'true'.

/sp:Wss11/wsp:Policy/sp:MustSupportRefThumbprint

This assertion indicates that the [Thumbprint References] property is set to 'true'.

/sp:Wss11/wsp:Policy/sp:MustSupportRefEncryptedKey

This assertion indicates that the [EncryptedKey References] property is set to 'true'.

/sp:Wss11/wsp:Policy/sp:RequireSignatureConfirmation

This assertion indicates that the [Signature Confirmation] property is set to 'true'.

11. WS-Trust Options
This section defines the various policy assertions related to exchanges based on WS-
Trust, specifically with client and server challenges and entropy behaviors. These
assertions relate to interactions with a Security Token Service and may augment the
behaviors defined by the Binding Property Assertions defined in Section 7. The
assertions defined here MUST apply to [Endpoint Policy Subject].

WS-Trust 1.0 Properties

[Client Challenge]

Page 59 of 90

This boolean property indicates whether client challenges are supported. A value of 'true'
indicates that a wst:SignChallenge element is supported inside of an RST sent by the
client to the server. A value of 'false' indicates that a wst:SignChallenge is not
supported. There is no change in the number of messages exchanged by the client and
service in satisfying the RST. This property has a default value of 'false'.

[Server Challenge]

This boolean property indicates whether server challenges are supported. A value of
'true' indicates that a wst:SignChallenge element is supported inside of an RSTR sent
by the server to the client. A value of 'false' indicates that a wst:SignChallenge is not
supported. A challenge issued by the server may increase the number of messages
exchanged by the client and service in order to accommodate the
wst:SignChallengeResponse element sent by the client to the server in response to the
wst:SignChallenge element. A final RSTR containing the issued token will follow
subsequent to the server receiving the wst:SignChallengeResponse element. This
property has a default value of 'false'.

[Client Entropy]

This boolean property indicates whether client entropy is required to be used as key
material for a requested proof token. A value of 'true' indicates that client entropy is
required. A value of 'false' indicates that client entropy is not required. This property has
a default value of 'false'.

[Server Entropy]

This boolean property indicates whether server entropy is required to be used as key
material for a requested proof token. A value of 'true' indicates that server entropy is
required. A value of 'false' indicates that server entropy is not required. This property
has a default value of 'false'.

Note: If both the [Client Entropy] and [Server Entropy] properties are set to true, Client
and server entropy are combined to produce a computed key using the Computed Key
algorithm defined by the [Algorithm Suite] property.

[Issued Tokens]

This boolean property indicates whether the wst:IssuedTokens header is supported as
described in WS-Trust. A value of 'true' indicates that the wst:IssuedTokens header is
supported. A value of 'false' indicates that the wst:IssuedTokens header is not
supported. This property has a default value of 'false'.

11.1 Trust10 Assertion
The Trust10 assertion allows you to specify which WS-Trust 1.0 options are supported.

Syntax

<sp:Trust10 ... >

 <wsp:Policy>

 <sp:MustSupportClientChallenge ... />?

 <sp:MustSupportServerChallenge ... />?

 <sp:RequireClientEntropy ... />?

 <sp:RequireServerEntropy ... />?

 <sp:MustSupportIssuedTokens ... />?

 ...

Page 60 of 90

 </wsp:Policy>

 ...

</sp:Trust10 ... >

The following describes the attributes and elements listed in the schema outlined above:

/sp:Trust10

This identifies a Trust10 assertion.

/sp:Trust10/wsp:Policy

This indicates a policy that controls WS-Trust 1.0 options.

/sp:Trust10/wsp:Policy/sp:MustSupportClientChallenge

This assertion indicates that the [Client Challenge] property is set to 'true'.

/sp:Trust10/wsp:Policy/sp:MustSupportServerChallenge

This assertion indicates that the [Server Challenge] property is set to 'true'.

/sp:Trust10/wsp:Policy/sp:RequireClientEntropy

This assertion indicates that the [Client Entropy] property is set to 'true'.

/sp:Trust10/wsp:Policy/sp:RequireServerEntropy

This assertion indicates that the [Server Entropy] property is set to 'true'.

/sp:Trust10/wsp:Policy/sp:MustSupportIssuedTokens

This assertion indicates that the [Issued Tokens] property is set to 'true'.

12. Security Considerations
It is strongly recommended that policies and assertions be signed to prevent tampering.

It is recommended that policies should not be accepted unless they are signed and have
an associated security token to specify the signer has proper claims for the given policy.
That is, a party shouldn't rely on a policy unless the policy is signed and presented with
sufficient claims. It is further recommended that the entire policy exchange mechanism
be protected to prevent man-in-the-middle downgrade attacks.

It should be noted that the mechanisms described in this document could be secured as
part of a SOAP message using WSS: SOAP Message Security or embedded within other
objects using object-specific security mechanisms.

It is recommended that policies not specify two (or more) SignedSupportingTokens or
SignedEndorsingSupportingTokens of the same token type. Messages conforming to
such policies are subject to modification which may be undetectable.

It is recommended that policies specify the OnlySignEntireHeadersAndBody assertion
along with the rest of the policy in order to combat certain XML substitution attacks.

13. Acknowledgements
We would like to thank the following people for their contributions towards this
specification:

Vaithialingam B. Balayoghan, Microsoft

Francisco Curbera, IBM

Christopher Ferris, IBM

Cedric Fournet, Microsoft

Andy Gordon, Microsoft

Page 61 of 90

Tomasz Janczuk, Microsoft

David Melgar, IBM

Bruce Rich, IBM

Jeffrey Schlimmer, Microsoft

Chris Sharp, IBM

Kent Tamura, IBM

T.R. Vishwanath, Microsoft

Elliot Waingold, Microsoft

14. References
The following are normative references

[KEYWORDS]
S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119,
Harvard University, March 1997

[RFC2068]
 IETF Standard, "Hypertext Transfer Protocol -- HTTP/1.1" January 1997

[SOAP11]
W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000.

[SOAP12]
W3C Recommendation, "SOAP Version 1.2 Part 1: Messaging Framework," 24 June
2003.

[XMLSchema Part1]
W3C Recommendation, "XML Schema Part 1: Structure Second Edition," 28 October
2004.

[XMLSchema Part2]
W3C Recommendation, "XML Schema Part 2: Datatypes Second Edition," 28 October
2004.

[URI]
T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI): Generic
Syntax," RFC 3986, MIT/LCS, Day Software, Adobe Systems, January 2005.

The following are non-normative references

[WS-Policy]
S.Bajaj, et.al.,"Web Services Policy Framework (WS-Policy)," September 2004

[WS-PolicyAttachment]
S.Bajaj, et.al.,"Web Services Policy Attachment (WS-PolicyAttachment)," September
2004

[WS-Trust]
S.Anderson, et.al.,"Web Services Trust Language (WS-Trust)," February 2005

[WS-SecureConversation]
S.Anderson, et.al.,"Web Services Secure Conversation Language (WS-
SecureConversation)," February 2005

[WS-Addressing]
D.Box, et.al.,"Web Services Addressing Language (WS-Addressing)," August 2004

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2068.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://specs.xmlsoap.org/ws/2004/09/policy/ws-policy.pdf
http://specs.xmlsoap.org/ws/2004/09/policy/ws-policyattachment.pdf
http://specs.xmlsoap.org/ws/2005/02/trust/WS-Trust.pdf
http://specs.xmlsoap.org/ws/2005/02/sc/WS-SecureConversation.pdf
http://specs.xmlsoap.org/ws/2005/02/sc/WS-SecureConversation.pdf
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/

Page 62 of 90

[WSS10]
A. Nadalin, et.al., "Web Services Security: SOAP Message Security 1.0 (WS-Security
2004)," OASIS Standard 200401, March 2004

[WSS:UsernameToken 1.0]
A. Nadalin, et.al., "Web Services Security: UsernameToken Profile 1.0," OASIS
Standard 200401, March 2004

[WSS:X509Token]
P. Hallam-Baker, et.al., "Web Services Security X.509 Certificate Token Profile,"
OASIS Standard 200401, March 2004

[WSS:Kerberos Token 1.0]
TBD - update

[XMLDSIG]
D. Eastlake, J. R., D. Solo, M. Bartel, J. Boyer , B. Fox , E. Simon. XML-Signature
Syntax and Processing, W3C Recommendation, 12 February 2002.
http://www.w3.org/TR/xmldsig-core/.

[XMLENC]
W3C Recommendation, "XML Encryption Syntax and Processing," 10 December
2002.

Appendix A - Assertions and WS-PolicyAttachment
This non-normative appendix classifies assertions according to their suggested scope in
WSDL 1.1 per Section 4 of [WS-PolicyAttachment]. See Figure 1 in Section 4.1 of [WS-
PolicyAttachment] for a graphical representation of the relationship between policy scope
and WSDL.

A.1 Endpoint Policy Subject Assertions

A.1.1 Security Binding Assertions

TransportBinding Assertion (Section 8.3)

SymmetricBinding Assertion (Section 8.4)

AsymmetricBinding Assertion (Section 8.5)

A.1.3 Token Assertions

SupportingTokens Assertion (Section 9.1)

SignedSupportingTokens Assertion (Section 9.2)

EndorsingSupportingTokens Assertion (Section 9.3)

SignedEndorsingSupportingTokens Assertion (Section 9.4)

A.1.4 WSS: SOAP Message Security 1.0 Assertions

Wss10 Assertion (Section 10.1)

A.1.5 WSS: SOAP Message Security 1.1 Assertions

Wss11 Assertion (Section 10.2)

A.1.6 Trust 1.0 Assertions

Trust10 Assertion (Section 11.1)

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/

Page 63 of 90

A.2 Operation Policy Subject Assertions

A.2.1 Supporting Token Assertions

SupportingTokens Assertion (Section 9.1)

SignedSupportingTokens Assertion (Section 9.2)

EndorsingSupportingTokens Assertion (Section 9.3)

SignedEndorsingSupportingTokens Assertion (Section 9.4)

A.3 Message Policy Subject Assertions

A.3.1 Supporting Token Assertions

SupportingTokens Assertion (Section 9.1)

SignedSupportingTokens Assertion (Section 9.2)

EndorsingSupportingTokens Assertion (Section 9.3)

SignedEndorsingSupportingTokens Assertion (Section 9.4)

A.3.2 Protection Assertions

SignedParts Assertion (Section 5.1.1)

SignedElements Assertion (Section 5.1.2)

EncryptedParts Assertion (Section 5.2.1)

EncryptedElements Assertion (Section 5.2.2)

RequiredElements Assertion (Section 5.3.1)

A.4 Assertions With Undefined Policy Subject
The assertions listed in this section do not have a defined policy subject because they
appear nested inside some other assertion which does have a defined policy subject.

A.4.1 General Assertions

AlgorithmSuite Assertion (Section 8.1)

Layout Assertion (Section 8.2)

IncludeTimestamp Assertion (Section 8.3)

IncludeTimestamp Assertion (Section 8.4)

EncryptBeforeSigning Assertion (Section 8.4)

EncryptSignature Assertion (Section 8.4)

ProtectTokens Assertion (Section 8.4)

OnlySignEntireHeadersAndBody Assertion (Section 8.4)

IncludeTimestamp Assertion (Section 8.5)

EncryptBeforeSigning Assertion (Section 8.5)

EncryptSignature Assertion (Section 8.5)

ProtectTokens Assertion (Section 8.5)

OnlySignEntireHeadersAndBody Assertion (Section 8.5)

A.4.2 Token Usage Assertions

TransportToken Assertion (Section 8.3)

EncryptionToken Assertion (Section 8.4)

Page 64 of 90

SignatureToken Assertion (Section 8.4)

ProtectionToken Assertion (Section 8.4)

InitiatorToken Assertion (Section 8.5)

RecipientToken Assertion (Section 8.5)

A.4.3 Token Assertions

UsernameToken Assertion (Section 6.3.1)

IssuedToken Assertion (Section 6.3.2)

X509Token Assertion (Section 6.3.3)

KerberosToken Assertion (Section 6.3.4)

SpnegoContextToken Assertion (Section 6.3.5)

SecurityContextToken Assertion (Section 6.3.6)

SecureConversationToken Assertion (Section 6.3.7)

SamlToken Assertion (Section 6.3.8)

RelToken Assertion (Section 6.3.9)

HttpsToken Assertion (Section 6.3.10)

A.4.4 WSS: SOAP Message Security 1.0 Assertions

MustSupportRefKeyIdentifier Assertion (Section 10.1)

MustSupportRefIssuerSerial Assertion (Section 10.1)

MustSupportRefExternalUri Assertion (Section 10.1)

MustSupportRefEmbeddedToken Assertion (Section 10.1)

A.4.5 WSS: SOAP Message Security 1.1 Assertions

MustSupportRefKeyIdentifier Assertion (Section 10.2)

MustSupportRefIssuerSerial Assertion (Section 10.2)

MustSupportRefExternalUri Assertion (Section 10.2)

MustSupportRefEmbeddedToken Assertion (Section 10.2)

MustSupportRefThumbprint Assertion (Section 10.2)

RequireSignatureConfirmation Assertion (Section 10.2)

A.4.6 Trust 1.0 Assertions

MustSupportClientChallenge Assertion (Section 11.1)

MustSupportServerChallenge Assertion (Section 11.1)

RequireClientEntropy Assertion (Section 11.1)

RequireServerEntropy Assertion (Section 11.1)

MustSupportIssuedTokens Assertion (Section 11.1)

Appendix B – Issued Token Policy
The section provides further detail about behavior associated with the IssuedToken
assertion in section 6.2.2.

The issued token security model involves a three-party setup. There’s a target Server, a
Client, and a trusted third party called a Security Token Service or STS. Policy flows
from Server to Client, and from STS to Client. Policy may be embedded inside an Issued

Token assertion, or acquired out-of-band. There may be an explicit trust relationship
between the Server and the STS. There must be a trust relationship between the Client
and the STS.

The Issued Token policy assertion includes two parts: 1) client-specific parameters that
must be understood and processed by the client and 2) STS specific parameters which
are to be processed by the STS. The format of the Issued Token policy assertion is
illustrated in the figure below.

Issued Token Policy

Client Parameters

STS Parameters

The client-specific parameters of the Issued Token policy assertion along with the
remainder of the server policy are consumed by the client. The STS specific parameters
of the Issued Token policy assertion are passed on to the STS by copying the
parameters directly into the RST request sent by the Client to the STS as illustrated in
the figure below.

Client Server

STS

Server Policy

1

23

STS PolicyRST

Before the Client sends the RST to the STS, it will need to obtain the policy for the STS.
This will help to formulate the RST request and will include any security-specific
requirements of the STS.

The Client may augment or replace the contents of the RST made to the STS based on
the Client-specific parameters received from the Issued Token policy assertion contained
in the Server policy, from policy it received for the STS, or any other local parameters.

The Issued Token Policy Assertion contains elements which must be understood by the
Client. The assertion contains one element which contains a list of arbitrary elements
which should be sent along to the STS by copying the elements as-is directly into the
request sent by the Client to the STS following the protocol defined in WS-Trust.

Elements inside the sp:RequestSecurityTokenTemplate element MUST conform to WS-
Trust [WS-Trust]. All items are optional, since the Server and STS may already have a

Page 65 of 90

Page 66 of 90

pre-arranged relationship which specifies some or all of the conditions and constraints
for issued tokens.

Appendix C – Strict Security Header Layout Examples
The following sections describe the security header layout for specific bindings when
applying the ‘Strict’ layout rules defined in Section 7.7.

C.1 Transport Binding
This section describes how the ‘Strict’ security header layout rules apply to the Transport
Binding.

C.1.1 Policy

The following example shows a policy indicating a Transport Binding, an Https Token as
the Transport Token, an algorithm suite, a requirement to include tokens in the
supporting signatures, a username token attached to the message, and finally an X509
token attached to the message and endorsing the message signature. No message
protection requirements are described since the transport covers all message parts.

<wsp:Policy>

 <sp:TransportBinding>

 <wsp:Policy>

 <sp:TransportToken>

 <wsp:Policy>

 <sp:HttpsToken />

 </wsp:Policy>

 </sp:TransportToken>

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic256 />

 </wsp:Policy>

 </sp:AlgorithmSuite>

 <sp:Layout>

 <wsp:Policy>

 <sp:Strict />

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp />

 <sp:SignedSupportingTokens>

 <wsp:Policy>

 <sp:UsernameToken sp:IncludeToken=".../IncludeToken/Once" />

 </wsp:Policy>

 </sp:SignedSupportingTokens>

 <sp:SignedEndorsingSupportingTokens>

 <wsp:Policy>

 <sp:X509V3Token sp:IncludeToken=".../IncludeToken/Once" />

 </wsp:Policy>

Page 67 of 90

 </sp:SignedEndorsingSupportingTokens>

 </wsp:Policy>

 </sp:TransportBinding>

 <sp:Wss11>

 <sp:RequireSignatureConfirmation />

 </sp:Wss11>

</wsp:Policy>

This policy is used as the basis for the examples shown in the subsequent section
describing the security header layout for this binding.

C.1.2 Initiator to Recipient Messages

Messages sent from initator to recipient have the following layout for the security
header:

1. A wsu:Timestamp element.

2. Any tokens contained in the [Signed Supporting Tokens] property.

3. Any tokens contained in the [Signed Endorsing Supporting Tokens] property each
followed by the corresponding signature. Each signature MUST cover the
wsu:Timestamp element from 1 above and SHOULD cover any other unique
identifier for the message in order to prevent replays. If [Token Protection] is
'true', the signature MUST also cover the supporting token. If [Derived Keys] is
'true' and the supporting token is associated with a symmetric key, then a
Derived Key Token, based on the supporting token, appears between the
supporting token and the signature.

4. Any signatures for tokens contained in the [Endorsing Supporting Tokens]
property. Each signature MUST cover the wsu:Timestamp element from 1 above
and SHOULD cover at least some other unique identifier for the message in order
to prevent replays. If [Token Protection] is 'true', the signature MUST also cover
the supporting token. If [Derived Keys] is 'true' and the supporting token is
associated with a symmetric key, then a Derived Key Token, based on the
supporting token, appears before the signature.

The following diagram illustrates the security header layout for the initiator to recipient
message:

The blue outer box shows that the entire message is protected (signed and encrypted)
by the transport. The red arrows (left) from the box labeled Sig2 indicate the parts
signed by the supporting token labeled ST2, namely the message timestamp labeled TS
and the token used as the basis for the signature labeled ST2. The green dotted arrow
indicates the token that was used as the basis for the signature. In general, the ordering
of the items in the security header follows the most optimal layout for a receiver to
process its contents.

Example:

Initiator to recipient message

<S:Envelope>

 <S:Header>

 ...

 <wsse:Security>

 <wsu:Timestamp wsu:Id="timestamp">

 <wsu:Created>[datetime]</wsu:Created>

 <wsu:Expires>[datetime]</wsu:Expires>

 </wsu:Timestamp>

Page 68 of 90

Page 69 of 90

 <wsse:UsernameToken wsu:Id='SomeSignedToken' >

 ...

 </wsse:UsernameToken>

 <wsse:BinarySecurityToken wsu:Id="SomeSignedEndorsingToken" >

 ...

 </wsse:BinarySecurityToken>

 <ds:Signature>

 <ds:SignedInfo>

 <ds:References>

 <ds:Reference URI="#timestamp" />

 <ds:Reference URI="#SomeSignedEndorsingToken" />

 </ds:References>

 </ds:SignedInfo>

 <ds:Signature>...</ds:Signature>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#SomeSignedEndorsingToken" />

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 ...

 </wsse:Security>

 ...

 </S:Header>

 <S:Body>

 ...

 </S:Body>

</S:Envelope>

C.1.3 Recipient to Initiator Messages

Messages sent from recipient to initiator have the following layout for the security
header:

1. A wsu:Timestamp element.

2. If the [Signature Confirmation] property has a value of 'true', then a
wsse11:SignatureConfirmation element for each signature in the
corresponding message sent from initiator to recipient. If there are no signatures
in the corresponding message from the initiator to the recipient, then a
wsse11:SignatureConfirmation element with no Value attribute.

The following diagram illustrates the security header layout for the recipient to initiator
message:

The blue outer box shows that the entire message is protected (signed and encrypted)
by the transport. One wsse11:SignatureConfirmation element labeled SC1
corresponding to the signature in the initial message illustrated previously is included. In
general, the ordering of the items in the security header follows the most optimal layout
for a receiver to process its contents.

Example:

Recipient to initiator message

<S:Envelope>

 <S:Header>

 ...

 <wsse:Security>

 <wsu:Timestamp wsu:Id="timestamp">

 <wsu:Created>[datetime]</wsu:Created>

 <wsu:Expires>[datetime]</wsu:Expires>

 </wsu:Timestamp>

 <wsse11:SignatureConfirmation Value="..." />

 ...

 </wsse:Security>

 ...

 </S:Header>

Page 70 of 90

Page 71 of 90

 <S:Body>

 ...

 </S:Body>

</S:Envelope>

C.2 Symmetric Binding
This section describes how the ‘Strict’ security header layout rules apply to the
Symmetric Binding.

C.2.1 Policy

The following example shows a policy indicating a Symmetric Binding, a symmetric key
based IssuedToken provided as the Protection Token, an algorithm suite, a requirement
to encrypt the message parts before signing, a requirement to encrypt the message
signature, a requirement to include tokens in the message signature and the supporting
signatures, a username token attached to the message, and finally an X509 token
attached to the message and endorsing the message signature. Minimum message
protection requirements are described as well.

<!-- Example Endpoint Policy -->

<wsp:Policy>

 <sp:SymmetricBinding>

 <wsp:Policy>

 <sp:ProtectionToken>

 <sp:IssuedToken sp:IncludeToken=".../IncludeToken/Once" >

 <sp:Issuer>...</sp:Issuer>

 <sp:RequestSecurityTokenTemplate>

 ...

 </sp:RequestSecurityTokenTemplate>

 </sp:IssuedToken>

 </sp:ProtectionToken>

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic256 />

 </wsp:Policy>

 </sp:AlgorithmSuite>

 <sp:Layout>

 <wsp:Policy>

 <sp:Strict />

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp />

 <sp:EncryptBeforeSigning />

 <sp:EncryptSignature />

 <sp:ProtectTokens />

 <sp:SignedSupportingTokens>

Page 72 of 90

 <wsp:Policy>

 <sp:UsernameToken sp:IncludeToken=".../IncludeToken/Once" />

 </wsp:Policy>

 </sp:SignedSupportingTokens>

 <sp:SignedEndorsingSupportingTokens>

 <wsp:Policy>

 <sp:X509V3Token sp:IncludeToken=".../IncludeToken/Once" />

 </wsp:Policy>

 </sp:SignedEndorsingSupportingTokens>

 </wsp:Policy>

 </sp:SymmetricBinding>

 <sp:Wss11>

 <wsp:Policy>

 <sp:RequireSignatureConfirmation />

 </wsp:Policy>

 </sp:Wss11>

</wsp:Policy>

<!-- Example Message Policy -->

<wsp:Policy>

 <sp:SignedParts>

 <sp:Header Name="Header1" Namespace="..." />

 <sp:Header Name="Header2" Namespace="..." />

 <sp:Body/>

 </sp:SignedParts>

 <sp:EncryptedParts>

 <sp:Header Name="Header2" Namespace="..." />

 <sp:Body/>

 </sp:EncryptedParts>

</wsp:Policy>

This policy is used as the basis for the examples shown in the subsequent section
describing the security header layout for this binding.

C.2.2 Initiator to Recipient Messages

Messages sent from initiator to recipient have the following layout for the security
header:

1. A wsu:Timestamp element if [Timestamp] is 'true'.

2. If the sp:IncludeToken attribute on the [Encryption Token] is
.../IncludeToken/Once or .../IncludeToken/Always, then the [Encryption Token].

3. If [Derived Keys] is 'true', then a Derived Key Token, based on the [Encryption
Token]. This Derived Key Token is used for encryption.

4. A reference list including references to encrypted items. If [Signature Protection]
is 'true', then the reference list MUST include a reference to the message
signature. If [Protection Order] is 'SignBeforeEncrypting', then the reference list

Page 73 of 90

MUST include a reference to all the message parts specified in the EncryptedParts
assertions in the policy. If [Derived Keys] is 'true', then the key in the token from
3 above MUST be used, otherwise the key in the [Encryption Token].

5. Any tokens from the [Signed Supporting Tokens] and [Signed Endorsing
Supporting Tokens] properties whose sp:IncludeToken attribute is
.../IncludeToken/Once or .../IncludeToken/Always.

6. If the [Signature Token] is not the same as the [Encryption Token], and the
sp:IncludeToken attribute on the [Signature Token] is .../IncludeToken/Once or
.../IncludeToken/Always, then the [Signature Token].

7. If [Derived Keys] is 'true', then a Derived Key Token based on the [Signature
Token]. This Derived Key Token is used for signature.

8. A signature over the wsu:Timestamp from 1 above, any tokens from 5 above
regardless of whether they are included in the message, and any message parts
specified in SignedParts assertions in the policy. If [Token Protection] is 'true',
the signature MUST cover the [Signature Token] regardless of whether it is
included in the message. If [Derived Keys] is 'true', the key in the token from 7
above MUST be used, otherwise the key in the [Signature Token] from 6 above.

9. Signatures covering the main signature from 8 above for any tokens from the
[Endorsing Supporting Tokens] and [Signed Endorsing Supporting Tokens]
properties. If [Token Protection] is 'true', the signature MUST also cover the
endorsing token. If [Derived Keys] is 'true' and the endorsing token is associated
with a symmetric key, then a Derived Key Token, based on the endorsing token,
appears before the signature.

10. If [Protection Order] is 'EncryptBeforeSigning', then a reference list referencing
all the message parts specified in EncryptedParts assertions in the policy. If
[Derived Keys] is 'true', then the key in the token from 3 above MUST be used,
otherwise the key in the [Encryption Token] from 2 above.

The following diagram illustrates the security header layout for the initiator to recipient
message:

Encrypt Then Sign Sign Then Encrypt

Body

Header1

Header2

Security

TS

Ref1

Sig1

Sig2

ST2

Ref1

ST1

ST3

Body

Header1

Header2

Security

Sig1

TS

Sig2

ST2

Ref1

ST1

ST3

The blue arrows (right) indicate parts that were signed as part of the message signature
labeled Sig1. The red arrows (left) from the box labeled Sig2 indicate the parts signed by
the supporting token labeled ST2, namely the message signature labeled Sig1 and the
token used as the basis for the signature labeled ST2. The black arrows (left) from boxes
labeled Ref1 indicate references to parts encrypted using a key based on the Shared
Secret Token labeled ST1. The green dotted arrows indicate the token that was used as
the basis for each cryptographic operation. In general, the ordering of the items in the
security header follows the most optimal layout for a receiver to process its contents.

Example:

Initiator to recipient message using EncryptBeforeSigning.

<S:Envelope>

 <S:Header>

 <x:Header1 wsu:Id="Header1" >

 ...

 </x:Header1>

 <wsse11:EncryptedHeader wsu:Id="enc_Header2">

 <!-- Plaintext Header2

 <x:Header2 wsu:Id="Header2" >

 ...

 </x:Header2>

 -->

 ...

 </wsse11:EncryptedHeader>

Page 74 of 90

Page 75 of 90

 ...

 <wsse:Security>

 <wsu:Timestamp wsu:Id="Timestamp">

 <wsu:Created>...</wsu:Created>

 <wsu:Expires>...</wsu:Expires>

 </wsu:Timestamp>

 <saml:Assertion AssertionId="_SharedSecretToken" ...>

 ...

 </saml:Assertion>

 <xenc:ReferenceList>

 <xenc:DataReference URI="#enc_Signature" />

 <xenc:DataReference URI="#enc_SomeUsernameToken" />

 ...

 </xenc:ReferenceList>

 <xenc:EncryptedData ID="enc_SomeUsernameToken" >

 <!-- Plaintext UsernameToken

 <wsse:UsernameToken wsu:Id="SomeUsernameToken" >

 ...

 </wsse:UsernameToken>

 -->

 ...

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#_SharedSecretToken" />

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </xenc:EncryptedData>

 <wsse:BinarySecurityToken wsu:Id="SomeSupportingToken" >

 ...

 </wsse:BinarySecurityToken>

 <xenc:EncryptedData ID="enc_Signature">

 <!-- Plaintext Signature

 <ds:Signature Id="Signature">

 <ds:SignedInfo>

 <ds:References>

 <ds:Reference URI="#Timestamp" >...</ds:Reference>

 <ds:Reference URI="#SomeUsernameToken" >...</ds:Reference>

 <ds:Reference URI="#SomeSupportingToken" >...</ds:Reference>

 <ds:Reference URI="#_SharedSecretToken" >...</ds:Reference>

 <ds:Reference URI="#Header1" >...</ds:Reference>

 <ds:Reference URI="#Header2" >...</ds:Reference>

 <ds:Reference URI="#Body" >...</ds:Reference>

 </ds:References>

Page 76 of 90

 </ds:SignedInfo>

 <ds:Signature>...</ds:Signature>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#_SharedSecretToken" />

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 -->

 ...

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#_SharedSecretToken" />

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </xenc:EncryptedData>

 <ds:Signature>

 <ds:SignedInfo>

 <ds:References>

 <ds:Reference URI="#Signature" >...</ds:Reference>

 <ds:Reference URI="#SomeSupportingToken" >...</ds:Reference>

 </ds:References>

 </ds:SignedInfo>

 <ds:Signature>...</ds:Signature>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#SomeSupportingToken" />

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 <xenc:ReferenceList>

 <xenc:DataReference URI="#enc_Body" />

 <xenc:DataReference URI="#enc_Header2" />

 ...

 </xenc:ReferenceList>

 </wsse:Security>

 </S:Header>

 <S:Body>

 <xenc:EncryptedData Id="enc_Body">

 ...

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#_SharedSecretToken" />

Page 77 of 90

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </xenc:EncryptedData>

 </S:Body>

</S:Envelope>

C.2.3 Recipient to Initiator Messages

Messages send from recipient to initiator have the following layout for the security
header:

1. A wsu:Timestamp element if [Timestamp] is 'true'.

2. If the sp:IncludeToken attribute on the [Encryption Token] is
.../IncludeToken/Always, then the [Encryption Token].

3. If [Derived Keys] is 'true', then a Derived Key Token, based on the [Encryption
Token]. This Derived Key Token is used for encryption.

4. A reference list including references to encrypted items. If [Signature Protection]
is 'true', then the reference list MUST include a reference to the message
signature from 6 below, and the wsse11:SignatureConfirmation elements from
5 below if any. If [Protection Order] is 'SignBeforeEncrypting', then the reference
list MUST include a reference to all the message parts specified in the
EncryptedParts assertions in the policy. If [Derived Keys] is 'true', then the key in
the token from 2 above MUST be used, otherwise the key in the [Encryption
Token] from 2 above.

5. If [Signature Confirmation] is 'true' then a wsse11:SignatureConfirmation
element for each signature in the corresponding message sent from initiator to
recipient. If there are no signatures in the corresponding message from the
initiator to the recipient, then a wsse11:SignatureConfirmation element with
no Value attribute.

6. If the [Signature Token] is not the same as the [Encryption Token], and the
sp:IncludeToken attribute on the [Signature Token] is .../IncludeToken/Always,
then the [Signature Token].

7. If [Derived Keys] is 'true', then a Derived Key Token, based on the [Signature
Token]. This Derived Key Token is used for signature.

8. A signature over the wsu:Timestamp from 1 above, any
wsse11:SignatureConfirmation elements from 5 above, and all the message
parts specified in SignedParts assertions in the policy. If [Token Protection] is
'true', the signature MUST also cover the [Signature Token] regardless of
whether it is included in the message. If [Derived Keys] is 'true', the key in the
token from 6 above MUST be used, otherwise the key in the [Signature Token].

9. If [Protection Order] is 'EncryptBeforeSigning' then a reference list referencing all
the message parts specified in EncryptedParts assertions in the policy. If [Derived
Keys] is 'true', then the key in the Derived Key Token from 3 above MUST be
used, otherwise the key in the [Encryption Token].

The following diagram illustrates the security header layout for the recipient to initiator
message:

Encrypt Then Sign Sign Then Encrypt

Body

Header1

Header2

Security

Sig1

TS

SC1

Ref1

SC2

Body

Header1

Header2

Security

TS

Ref1

Sig1

SC1

Ref1

SC2

The blue arrows (right) indicate parts that were signed as part of the message signature
labeled Sig1. The black arrows (left) from boxes labeled Ref1 indicate references to parts
encrypted using a key based on the [SharedSecret Token] (not shown in these diagrams
as it is referenced as an external token). Two wsse11:SignatureConfirmation elements
labeled SC1 and SC2 corresponding to the two signatures in the initial message
illustrated previously is included. In general, the ordering of the items in the security
header follows the most optimal layout for a receiver to process its contents. The rules
used to determine this ordering are described in Appendix C.

Example:

Recipient to initiator message using EncryptBeforeSigning.

<S:Envelope>

 <S:Header>

 <x:Header1 wsu:Id="Header1" >

 ...

 </x:Header1>

 <wsse11:EncryptedHeader wsu:Id="enc_Header2">

 <!-- Plaintext Header2

 <x:Header2 wsu:Id="Header2" >

 ...

 </x:Header2>

 -->

 ...

 </wsse11:EncryptedHeader>

 ...

 <wsse:Security>

 <wsu:Timestamp wsu:Id="Timestamp">

Page 78 of 90

Page 79 of 90

 <wsu:Created>...</wsu:Created>

 <wsu:Expires>...</wsu:Expires>

 </wsu:Timestamp>

 <xenc:ReferenceList>

 <xenc:DataReference URI="#enc_Signature" />

 <xenc:DataReference URI="#enc_SigConf1" />

 <xenc:DataReference URI="#enc_SigConf2" />

 ...

 </xenc:ReferenceList>

 <xenc:EncryptedData ID="enc_SigConf1" >

 <!-- Plaintext SignatureConfirmation

 <wsse11:SignatureConfirmation wsu:Id="SigConf1" >

 ...

 </wsse11:SignatureConfirmation>

 -->

 ...

 </xenc:EncryptedData>

 <xenc:EncryptedData ID="enc_SigConf2" >

 <!-- Plaintext SignatureConfirmation

 <wsse11:SignatureConfirmation wsu:Id="SigConf2" >

 ...

 </wsse11:SignatureConfirmation>

 -->

 ...

 </xenc:EncryptedData>

 <xenc:EncryptedData Id="enc_Signature">

 <!-- Plaintext Signature

 <ds:Signature Id="Signature">

 <ds:SignedInfo>

 <ds:References>

 <ds:Reference URI="#Timestamp" >...</ds:Reference>

 <ds:Reference URI="#SigConf1" >...</ds:Reference>

 <ds:Reference URI="#SigConf2" >...</ds:Reference>

 <ds:Reference URI="#Header1" >...</ds:Reference>

 <ds:Reference URI="#Header2" >...</ds:Reference>

 <ds:Reference URI="#Body" >...</ds:Reference>

 </ds:References>

 </ds:SignedInfo>

 <ds:Signature>...</ds:Signature>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#_SomeIssuedToken" />

 </wsse:SecurityTokenReference>

Page 80 of 90

 </ds:KeyInfo>

 </ds:Signature>

 -->

 ...

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#_SomeIssuedToken" />

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 <xenc:EncryptedData>

 <xenc:ReferenceList>

 <xenc:DataReference URI="#enc_Body" />

 <xenc:DataReference URI="#enc_Header2" />

 ...

 </xenc:ReferenceList>

 </wsse:Security>

 </S:Header>

 <S:Body>

 <xenc:EncryptedData Id="enc_Body">

 ...

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#_SomeIssuedToken" />

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </xenc:EncryptedData>

 </S:Body>

</S:Envelope>

C.3 Asymmetric Binding
This section describes how the ‘Strict’ security header layout rules apply to the
Asymmetric Binding.

C.3.1 Policy

The following example shows a policy indicating an Asymmetric Binding, an X509 token
as the [Initiator Token], an X509 token as the [Recipient Token], an algorithm suite, a
requirement to encrypt the message parts before signing, a requirement to encrypt the
message signature, a requirement to include tokens in the message signature and the
supporting signatures, a requirement to include wsse11:SignatureConfirmation
elements, a username token attached to the message, and finally an X509 token
attached to the message and endorsing the message signature. Minimum message
protection requirements are described as well.

<!-- Example Endpoint Policy -->

<wsp:Policy>

Page 81 of 90

 <sp:AsymmetricBinding>

 <wsp:Policy>

 <sp:RecipientToken>

 <wsp:Policy>

 <sp:X509V3Token sp:IncludeToken=".../IncludeToken/Always" />

 </wsp:Policy>

 </sp:RecipientToken>

 <sp:InitiatorToken>

 <wsp:Policy>

 <sp:X509V3Token sp:IncludeToken=".../IncludeToken/Always" />

 </wsp:Policy>

 </sp:InitiatorToken>

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic256 />

 </wsp:Policy>

 </sp:AlgorithmSuite>

 <sp:Layout>

 <wsp:Policy>

 <sp:Strict />

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp />

 <sp:EncryptBeforeSigning />

 <sp:EncryptSignature />

 <sp:ProtectTokens />

 <sp:SignedSupportingTokens>

 <wsp:Policy>

 <sp:UsernameToken sp:IncludeToken=".../IncludeToken/Once" />

 </wsp:Policy>

 </sp:SignedSupportingTokens>

 <sp:SignedEndorsingSupportingTokens>

 <wsp:Policy>

 <sp:X509V3Token sp:IncludeToken=".../IncludeToken/Once" />

 </wsp:Policy>

 </sp:SignedEndorsingSupportingTokens>

 </wsp:Policy>

 </sp:AsymmetricBinding>

 <sp:Wss11>

 <wsp:Policy>

 <sp:RequireSignatureConfirmation />

 </wsp:Policy>

 </sp:Wss11>

Page 82 of 90

</wsp:Policy>

<!-- Example Message Policy -->

<wsp:All>

 <sp:SignedParts>

 <sp:Header Name="Header1" Namespace="..." />

 <sp:Header Name="Header2" Namespace="..." />

 <sp:Body/>

 </sp:SignedParts>

 <sp:EncryptedParts>

 <sp:Header Name="Header2" Namespace="..." />

 <sp:Body/>

 </sp:EncryptedParts>

</wsp:All>

This policy is used as the basis for the examples shown in the subsequent section
describing the security header layout for this binding.

C.3.2 Initiator to Recipient Messages

Messages sent from initiator to recipient have the following layout:

1. A wsu:Timestamp element if [Timestamp] is 'true'.

2. If a [Recipient Token] is specified, and the associated sp:IncludeToken attribute
is .../IncludeToken/Once or .../IncludeToken/Always, then the [Recipient Token].

3. If a [Recipient Token] is specified then an xenc:EncryptedKey element,
containing a key encrypted for the recipient. If [Protection Order] is
'SignBeforeEncrypting' then the xenc:EncryptedKey element MUST include an
xenc:ReferenceList containing a reference to all the message parts specified in
EncryptedParts assertions in the policy. If [Signature Protection] is 'true' then the
reference list MUST contain a reference to the message signature from 6 below.
It is an error if [Signature Protection] is 'true' and there is not a message
signature.

4. Any tokens from the [Signed Supporting Tokens] and [Signed Endorsing
Supporting Tokens] properties whose sp:IncludeToken attribute is
.../IncludeToken/Once or .../IncludeToken/Always.

5. If an [Initiator Token] is specified, and the associated sp:IncludeToken attribute
is .../IncludeToken/Once or .../IncludeToken/Always, then the [Initiator Token].

6. A signature based on the key in the [Initiator Token] if specified, over the
wsu:Timestamp from 1 above, any tokens from 4 above regardless of whether
they are included in the message, and any message parts specified in
SignedParts assertions in the policy. If [Token Protection] is 'true', the signature
MUST also cover the [Initiator Token] regardless of whether it is included in the
message.

7. Signatures for tokens from the [Endorsing Supporting Tokens] and [Signed
Endorsing Supporting Tokens] properties. If [Derived Keys] is 'true' and the
supporting token is associated with a symmetric key, then a Derived Key Token,
based on the supporting token, appears before the signature. If [Token

Protection] is 'true', the signature MUST also cover the supporting token
regardless of whether it is included in the message.

8. If a [Recipient Token] is specified and [Protection Order] is
'EncryptBeforeSigning' then a reference list including a reference to all the
message parts specified in EncryptedParts assertions in the policy. The encrypted
parts MUST reference the key contained in the xenc:EncryptedKey element from
3 above.

The following diagram illustrates the security header layout for the initiator to recipient
messages:

Encrypt Then Sign Sign Then Encrypt

Body

Header1

Header2

Security

TS

Ref1

Sig2

Sig3

ST3

EK1

ST4

ST2

ST1

Body

Header1

Header2

Security

Sig2

TS

Sig3

ST2

EK1

ST4

ST3

ST1

The blue arrows (right) indicate parts that were signed as part of the message signature
labeled Sig2 using the [Initiator Token] labeled ST2. The red arrows (left) from the box
labeled Sig3 indicate the parts signed by the supporting token ST3, namely the message
signature Sig2 and the token used as the basis for the signature labeled ST3. The black
arrows (left) from boxes labeled EK1 indicate references to parts encrypted using a key
encrypted for the [Recipient Token] labeled ST1. The black arrows (left) from boxes
labeled Ref1 indicate additional references to parts encrypted using the key contained in
the encrypted key labeled EK1. The green dotted arrows indicate the token used as the
basis for each cryptographic operation. In general, the ordering of the items in the
security header follows the most optimal layout for a receiver to process its contents.
The rules used to determine this ordering are described in Appendix C.

Note: In most typical scenarios, the recipient key is not included in the message, but
rather the encrypted key contains an external reference to the token containing the
encryption key. The diagram illustrates how one might attach a security token related to
the encrypted key for completeness. One possible use-case for this approach might be a

Page 83 of 90

Page 84 of 90

stack which does not support the STR Dereferencing Transform, but wishes to include
the encryption token in the message signature.

Example

Initiator to recipient message

<S:Envelope>

 <S:Header>

 <x:Header1 wsu:Id="Header1" >

 ...

 </x:Header1>

 <wsse11:EncryptedHeader wsu:Id="enc_Header2">

 <!-- Plaintext Header2

 <x:Header2 wsu:Id="Header2" >

 ...

 </x:Header2>

 -->

 ...

 </wsse11:EncryptedHeader>

 ...

 <wsse:Security>

 <wsu:Timestamp wsu:Id="Timestamp">

 <wsu:Created>...</wsu:Created>

 <wsu:Expires>...</wsu:Expires>

 </wsu:Timestamp>

 <wsse:BinarySecurityToken wsu:Id="RecipientToken" >

 ...

 </wsse:BinarySecurityToken>

 <xenc:EncryptedKey wsu:Id="RecipientEncryptedKey" >

 ...

 <xenc:ReferenceList>

 <xenc:DataReference URI="#enc_Signature" />

 <xenc:DataReference URI="#enc_SomeUsernameToken" />

 ...

 </xenc:ReferenceList>

 </xenc:EncryptedKey>

 <xenc:EncryptedData ID="enc_SomeUsernameToken" >

 <!-- Plaintext UsernameToken

 <wsse:UsernameToken wsu:Id="SomeUsernameToken" >

 ...

 </wsse:UsernameToken>

 -->

 ...

 </xenc:EncryptedData>

 <wsse:BinarySecurityToken wsu:Id="SomeSupportingToken" >

Page 85 of 90

 ...

 </wsse:BinarySecurityToken>

 <wsse:BinarySecurityToken wsu:Id="InitiatorToken" >

 ...

 </wsse:BinarySecurityToken>

 <xenc:EncryptedData ID="enc_Signature">

 <!-- Plaintext Signature

 <ds:Signature Id="Signature">

 <ds:SignedInfo>

 <ds:References>

 <ds:Reference URI="#Timestamp" >...</ds:Reference>

 <ds:Reference URI="#SomeUsernameToken" >...</ds:Reference>

 <ds:Reference URI="#SomeSupportingToken" >...</ds:Reference>

 <ds:Reference URI="#RecipientToken" >...</ds:Reference>

 <ds:Reference URI="#InitiatorToken" >...</ds:Reference>

 <ds:Reference URI="#Header1" >...</ds:Reference>

 <ds:Reference URI="#Header2" >...</ds:Reference>

 <ds:Reference URI="#Body" >...</ds:Reference>

 </ds:References>

 </ds:SignedInfo>

 <ds:Signature>...</ds:Signature>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#InitiatorToken" />

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 -->

 ...

 </xenc:EncryptedData>

 <ds:Signature>

 <ds:SignedInfo>

 <ds:References>

 <ds:Reference URI="#Signature" >...</ds:Reference>

 <ds:Reference URI="#SomeSupportingToken" >...</ds:Reference>

 </ds:References>

 </ds:SignedInfo>

 <ds:Signature>...</ds:Signature>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#SomeSupportingToken" />

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

Page 86 of 90

 </ds:Signature>

 <xenc:ReferenceList>

 <xenc:DataReference URI="#enc_Body" />

 <xenc:DataReference URI="#enc_Header2" />

 ...

 </xenc:ReferenceList>

 </wsse:Security>

 </S:Header>

 <S:Body>

 <xenc:EncryptedData Id="enc_Body">

 ...

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#RecipientEncryptedKey" />

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </xenc:EncryptedData>

 </S:Body>

</S:Envelope>

C.3.3 Recipient to Initiator Messages

Messages sent from recipient to initiator have the following layout:

1. A wsu:Timestamp element if [Timestamp] is 'true'.

2. If an [Initiator Token] is specified, and the associated sp:IncludeToken attribute
is .../IncludeToken/Always, then the [Initiator Token].

3. If an [Initiator Token] is specified then an xenc:EncryptedKey element,
containing a key encrypted for the initiator. If [Protection Order] is
'SignBeforeEncrypting' then the xenc:EncryptedKey element MUST include an
xenc:ReferenceList containing a reference to all the message parts specified in
EncryptedParts assertions in the policy. If [Signature Protection] is 'true' then the
reference list MUST also contain a reference to the message signature from 6
below, if any and references to the wsse11:SignatureConfirmation elements
from 4 below, if any.

4. If [Signature Confirmation] is 'true', then a wsse11:SignatureConfirmation
element for each signature in the corresponding message sent from initiator to
recipient. If there are no signatures in the corresponding message from the
initiator to the recipient, then a wsse11:SignatureConfirmation element with
no Value attribute.

5. If a [Recipient Token] is specified, and the associated sp:IncludeToken attribute
is .../IncludeToken/Always, then the [Recipient Token].

6. If a [Recipient Token] is specified, then a signature based on the key in the
[Recipient Token], over the wsu:Timestamp from 1 above, the
wsse11:SignatureConfirmation elements from 4 above, and any message parts
specified in SignedParts assertions in the policy. If [Token Protection] is 'true' and

the [Initiator Token] is specified, then the signature MUST also cover the
[Initiator Token].

7. If an [Initiator Token] is specified and [Protection Order] is
'EncryptBeforeSigning' then a reference list including a reference to all the
message parts specified in EncryptedParts assertions in the policy. The encrypted
parts MUST reference the key contained in the xenc:EncryptedKey element from
3 above.

The following diagram illustrates the security header layout for the recipient to initiator
messages:

Sign Then EncryptEncrypt Then Sign

Body

Header1

Header2

Security

Sig2

TS

SC1

EK1

SC2

ST2

ST1

Body

Header1

Header2

Security

TS

Ref1

Sig2

SC1

EK1

SC2

ST2

ST1

The blue arrows (right) indicate parts that were signed as part of the message signature
labeled Sig2 using the [Recipient Token] labeled ST2. The black arrows (left) from boxes
labeled EK1 indicate references to parts encrypted using a key encrypted for the
[Recipient Token] labeled ST1. The black arrows (left) from boxes labeled Ref1 indicate
additional references to parts encrypted using the key contained in the encrypted key
labeled EK1. The green dotted arrows indicate the token used as the basis for each
cryptographic operation. Two wsse11:SignatureConfirmation elements labeled SC1
and SC2 corresponding to the two signatures in the initial message illustrated previously
is included. In general, the ordering of the items in the security header follows the most
optimal layout for a receiver to process its contents. The rules used to determine this
ordering are described in Appendix C.

Example:

Recipient to initiator message

<S:Envelope>

 <S:Header>

Page 87 of 90

Page 88 of 90

 <x:Header1 wsu:Id="Header1" >

 ...

 </x:Header1>

 <wsse11:EncryptedHeader wsu:Id="enc_Header2">

 <!-- Plaintext Header2

 <x:Header2 wsu:Id="Header2" >

 ...

 </x:Header2>

 -->

 ...

 </wsse11:EncryptedHeader>

 ...

 <wsse:Security>

 <wsu:Timestamp wsu:Id="Timestamp">

 <wsu:Created>...</wsu:Created>

 <wsu:Expires>...</wsu:Expires>

 </wsu:Timestamp>

 <wsse:BinarySecurityToken wsu:Id="InitiatorToken" >

 ...

 </wsse:BinarySecurityToken>

 <xenc:EncryptedKey wsu:Id="InitiatorEncryptedKey" >

 ...

 <xenc:ReferenceList>

 <xenc:DataReference URI="#enc_Signature" />

 <xenc:DataReference URI="#enc_SigConf1" />

 <xenc:DataReference URI="#enc_SigConf2" />

 ...

 </xenc:ReferenceList>

 </xenc:EncryptedKey>

 <xenc:EncryptedData ID="enc_SigConf2" >

 <!-- Plaintext SignatureConfirmation

 <wsse11:SignatureConfirmation wsu:Id="SigConf2" ...>

 ...

 </wsse11:SignatureConfirmation>

 -->

 ...

 </xenc:EncryptedData>

 <xenc:EncryptedData ID="enc_SigConf1" >

 <!-- Plaintext SignatureConfirmation

 <wsse11:SignatureConfirmation wsu:Id="SigConf1" ...>

 ...

 </wsse11:SignatureConfirmation>

 -->

Page 89 of 90

 ...

 </xenc:EncryptedData>

 <wsse:BinarySecurityToken wsu:Id="RecipientToken" >

 ...

 </wsse:BinarySecurityToken>

 <xenc:EncryptedData ID="enc_Signature">

 <!-- Plaintext Signature

 <ds:Signature Id="Signature">

 <ds:SignedInfo>

 <ds:References>

 <ds:Reference URI="#Timestamp" >...</ds:Reference>

 <ds:Reference URI="#SigConf1" >...</ds:Reference>

 <ds:Reference URI="#SigConf2" >...</ds:Reference>

 <ds:Reference URI="#RecipientToken" >...</ds:Reference>

 <ds:Reference URI="#InitiatorToken" >...</ds:Reference>

 <ds:Reference URI="#Header1" >...</ds:Reference>

 <ds:Reference URI="#Header2" >...</ds:Reference>

 <ds:Reference URI="#Body" >...</ds:Reference>

 </ds:References>

 </ds:SignedInfo>

 <ds:Signature>...</ds:Signature>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#RecipientToken" />

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 -->

 ...

 </xenc:EncryptedData>

 <xenc:ReferenceList>

 <xenc:DataReference URI="#enc_Body" />

 <xenc:DataReference URI="#enc_Header2" />

 ...

 </xenc:ReferenceList>

 </wsse:Security>

 </S:Header>

 <S:Body>

 <xenc:EncryptedData Id="enc_Body">

 ...

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#InitiatorEncryptedKey" />

Page 90 of 90

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </xenc:EncryptedData>

 </S:Body>

</S:Envelope>

	Web Services Security Policy Language (WS-SecurityPolicy)
	July 2005
	Authors
	Copyright Notice
	Abstract
	Composable Architecture
	Status
	Table of Contents
	1. Introduction
	1.1 Example

	2. Terminology and Notation
	2.1 Terminology
	2.2 Namespaces
	2.3 Notational Conventions
	2.4 Schema Files
	2.5 Compliance

	3. Security Policy Model
	3.1 Security Assertion Model
	3.2 Nested Policy Assertions
	3.3 Security Binding Abstraction

	4. Policy Considerations
	4.1 Nested Policy
	4.1.1 Nesting Policy Elements
	4.1.2 Nested Policy Assertions
	4.1.3 Nesting Policy Processing Rules
	4.1.4 Nested Policy Normalization Worked Example
	4.1.5 Nested Policy Intersection Worked Example

	4.2 Policy Subjects

	5. Protection Assertions
	5.1 Integrity Assertions
	5.1.1 SignedParts Assertion
	5.1.2 SignedElements Assertion

	5.2 Confidentiality Assertions
	5.2.1 EncryptedParts Assertion
	5.2.2 EncryptedElements Assertion

	5.3 Required Elements Assertion
	5.3.1 RequiredElements Assertion

	6. Token Assertions
	6.1 Token Inclusion
	6.1.1 Token Inclusion Values

	6.2 Token Properties
	6.2.1 [Derived Keys] Property

	6.3 Token Assertions
	6.3.1 UsernameToken Assertion
	6.3.2 IssuedToken Assertion
	6.3.3 X509Token Assertion
	6.3.4 KerberosToken Assertion
	6.3.5 SpnegoContextToken Assertion
	6.3.6 SecurityContextToken Assertion
	6.3.7 SecureConversationToken Assertion
	6.3.8 SamlToken Assertion
	6.3.9 RelToken Assertion
	6.3.10 HttpsToken Assertion

	7. Security Binding Properties
	7.1 [Algorithm Suite] Property
	7.2 [Timestamp] Property
	7.3 [Protection Order] Property
	7.4 [Signature Protection] Property
	7.5 [Token Protection] Property
	7.6 [Entire Header and Body Signatures] Property
	7.7 [Security Header Layout] Property
	7.7.1 Strict Layout Rules

	8. Security Binding Assertions
	8.1 AlgorithmSuite Assertion
	8.2 Layout Assertion
	8.3 TransportBinding Assertion
	8.4 SymmetricBinding Assertion
	8.5 AsymmetricBinding Assertion

	9. Supporting Tokens
	9.1 SupportingTokens Assertion
	9.2 SignedSupportingTokens Assertion
	9.3 EndorsingSupportingTokens Assertion
	9.4 SignedEndorsingSupportingTokens Assertion
	9.5 Example

	10. WSS: SOAP Message Security Options
	10.1 Wss10 Assertion
	10.2 Wss11 Assertion

	11. WS-Trust Options
	11.1 Trust10 Assertion

	12. Security Considerations
	13. Acknowledgements
	14. References
	Appendix A - Assertions and WS-PolicyAttachment
	A.1 Endpoint Policy Subject Assertions
	A.1.1 Security Binding Assertions
	A.1.3 Token Assertions
	A.1.4 WSS: SOAP Message Security 1.0 Assertions
	A.1.5 WSS: SOAP Message Security 1.1 Assertions
	A.1.6 Trust 1.0 Assertions

	A.2 Operation Policy Subject Assertions
	A.2.1 Supporting Token Assertions

	A.3 Message Policy Subject Assertions
	A.3.1 Supporting Token Assertions
	A.3.2 Protection Assertions

	A.4 Assertions With Undefined Policy Subject
	A.4.1 General Assertions
	A.4.2 Token Usage Assertions
	A.4.3 Token Assertions
	A.4.4 WSS: SOAP Message Security 1.0 Assertions
	A.4.5 WSS: SOAP Message Security 1.1 Assertions
	A.4.6 Trust 1.0 Assertions

	Appendix B – Issued Token Policy
	Appendix C – Strict Security Header Layout Examples
	C.1 Transport Binding
	C.1.1 Policy
	C.1.2 Initiator to Recipient Messages
	C.1.3 Recipient to Initiator Messages

	C.2 Symmetric Binding
	C.2.1 Policy
	C.2.2 Initiator to Recipient Messages
	C.2.3 Recipient to Initiator Messages

	C.3 Asymmetric Binding
	C.3.1 Policy
	C.3.2 Initiator to Recipient Messages
	C.3.3 Recipient to Initiator Messages

