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Abstract

Isotonic regression is the problem of fitting data to order constraints. We demonstrate
that the isotonic regression of a finite set of numbers Y can be obtained by decomposing
Y into subsets, performing parallel isotonic regressions on each subset, then performing
a trivial isotonic regression on the resulting combined set. Numerical experiments
confirm the efficacy of this approach.
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1 Introduction

Given a finite set of real numbers, Y = {y1,...,9,}, the problem of isotonic regression with
respect to a complete order is the following quadratic programming problem:

n
. . . 2
minimize g wi(x; — y;)
=1

subject to rp < <y,

where the w; are strictly positive weights. Many important problems in statistics and other
disciplines can be posed as isotonic regression problems. Comprehensive surveys of this
subject were made by Barlow, Bartholomew, Bremner, and Brunk [1] and by Robertson,
Wright, and Dykstra [5] in their respective monographs.

The fundamental concern of the present report is revealed by considering a simple exam-
ple. Suppose that {1,3,2,4,5,7,6,8} is the given set of real numbers, and that the weights
are all identically one. This set is almost isotonic; however, {3,2} and {7,6} violate the
requirement that the numbers are nondecreasing. The antidote to this difficulty is very
simple: replacing each “block” of “violators” with the average of the numbers in the block
produces {1,2.5,2.5,4,5,6.5,6.5,8}, which turns out to be the unique solution of the iso-
tonic regression problem. This is an example of the well-known “Pool Adjacent Violators”
algorithm.

What is intriguing about this very simple example is that the two computations required
to produce the isotonic regression do not depend on each other and could be performed
simultaneously. Furthermore, this property appears to be a characteristic of the isotonic
regression problem itself, not of the algorithm used to solve it. Whatever the computational
algorithm that is employed, it is obvious that the isotonic regressions of the subsets {1, 3,2,4}
and {5,7,6,8} are easily combined to produce the isotonic regression of the entire set. It
is this observation that motivates the rigorous derivation of a foundation for using parallel
computation to solve isotonic regression problems.

2 A Decomposition Theorem

To attain the necessary rigor, we exploit a famous and very elegant characterization of the
solution to the isotonic regression problem. Let W; = >2{_; w;, let Fy denote the point
(0,0), and let P; denote the point (W}, 37, w;y;), for j = 1,...,n. We interpret P,..., P,
as points in the graph of a function, which we extend to the interval [0, W,] by linear
interpolation. Both the function and its graph are called the cumulative sum diagram (CSD)
of the isotonic regression problem.

The greatest convex minorant (GCM) of a function f is the convex function defined by

GCM]If] = sup {¢é : ¢ convex, ¢ < f}.

It is a well-known and beautiful result that the isotonic regression problem is solved by
taking 27 to be the left derivative of GCM[CSD] at W;. Thus, theorems about isotonic
regressions can be stated and proved as theorems about greatest convex minorants.



The particular theorem on which the ideas in this report are based is quite elementary,
yet it has profound implications for parallel computation. Suppose that we decompose the
set Y into Y; @ Y, where Y1 = {y1,...,yx} and Y5 = {yx41,...,9.}. Analogously, we can
decompose a function f with domain [0, W,] into f; @ fs, where f; is the restriction of f
to [0, Wi] and f; is the restriction of f to (W, W,]. Then the following result is easily
demonstrated.

Theorem 1 GCM[ GCM[fi] & GCM[f,] | = GCM|f]

Proof: Because this result is of fundamental importance to this report, we provide a detailed
proof.
Since GCM|[fi] < f1 and GCM][fs] < fa,

GOCM[fi]@ GCM[f,] < i fa=f.
It follows that, if ¢ < GCM][f1] & GCM][f,], then ¢ < f, and hence that
GOM[ GCMf] & GOMIf]] < GOMI) 1)

Conversely, suppose that ¢ < f is convex and write ¢ = ¢ B ¢3. Then ¢; < f; and
b2 < fa,80 1 < GCM|f1] and ¢y < GCM|[f,]. It follows that ¢ < GCM|f,] ® GCM][f,],
and hence that

GOM[f] < GCM[GCM[fi] & GCM[f] . (2)

Combining inequalities (1) and (2) gives the desired result. O

3 Implications for Parallel Computation

If one takes the function f to be the C'S'D for the isotonic regression problem, then Theorem 1
states the following: decomposing Y into Y; @& Y5, performing separate isotonic regressions on
Y; and Y5, and then performing a final isotonic regression on the combined result, produces
the isotonic regression on Y. Because the separate isotonic regressions on Y; and Y; can be
performed simultaneously, parallel computations of isotonic regressions will be desirable if
the final isotonic regression on the combined result is easy to compute. In point of fact, this
is the case.

Suppose that Y] satisfies y; < -+ < yi and Y; satisfies yrp1 < -0 < y. Wy < ypaq,
then Y is isotonic. If Y is not isotonic, then it must be because some of the largest numbers
in Y] exceed some of the smallest numbers in Y;. The antidote to this difficulty is to
identify this central block of offending numbers and to replace each of these numbers with
the weighted average of the block. (This is just the Pool Adjacent Violators algorithm again.)
To accomplish this, let

m = min {7 :y; > Yrt1},
M = max {i:y; <y},

and

M M
y = szyz/ sz
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Then, replacing y; with y for ¢« = m,..., M gives the isotonic regression of Y. Thus, if
one decomposes the isotonic regression problem and performs two smaller, separate isotonic
regressions, it becomes fairly simple to obtain the solution to the original problem.

By now it should be apparent that what is being proposed in this report is not a new,
parallel algorithm for isotonic regression that will compete with existing algorithms. Rather,
it is the isotonic regression problem itself that has been parallelized. (An instructive analogy
is the familiar exercise of sorting a list of numbers by subdividing the list, sorting each sublist,
then interweaving the sorted sublists.) Because the problem itself has been parallelized,
any isotonic regression algorithm can be used to compute the separate isotonic regressions
assigned to separate processors. The efficiency of various isotonic regression algorithms has
been discussed by Best and Chakravarti [2]. A very fast formulation of the Pool Adjacent
Violators algorithm was provided by Grotzinger and Witzgall [3].

In light of the preceding arguments, we are virtually assured that a parallel approach to
isotonic regression will speed up computation when n is sufficiently large. This phenomenon
is demonstrated in Section 4. Notice, however, that we should not expect that the most
efficient strategy will necessarily be the one that uses the largest number of processors, since
the more that the original problem is decomposed, the more difficult it becomes to obtain
the final solution from the separate isotonic regressions. As an extreme example of this
limitation, one might decompose Y into n subsets of singleton values, in which case nothing
whatsoever has been accomplished. Furthermore, the more that the original problem is
decomposed, the greater the communication costs of parallelization. Hence, it is impossible
to anticipate the most efficient decomposition strategy.

4 Numerical Experiments

To obtain a suite of isotonic regression problems, we imagined the problem of measuring
the viscosity of a fluid at different temperatures. This problem motivates the models that
we describe, although ultimately we are more concerned with varying conditions that might
affect computational performance than with faithfully modelling physical reality.

Viscosity is a nonincreasing function of temperature; however, due to measurement error,
the observed viscosities may not be nonincreasing when ordered by temperature. In this case,
one might want to replace the vector of observed viscosities with the nearest vector that is
nonincreasing when ordered by temperature. This can be posed as an isotonic regression
problem with unit weights.

As have Kearsley [4] and others, we assumed that viscosity (1) is exponentially dependent
on temperature (7'):

n = noexp(—al).
For our experiments, we set 7o = 1 and o = 10~*. Then, in order to obtain an increasing
function, we set
y = f(t) =100 — no exp(—at)
and computed y, = f(tx) at n = 10° equally-spaced grid points in the interval [0, 100]. The
resulting set Y of n increasing numbers was perturbed in various ways to obtain the data sets

that we subjected to isotonic regression. Each of ten strategies for perturbing the original
set of numbers was replicated R = 5 times, resulting in a total of fifty data sets.
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Let 0 = log(2)/1.95996 be fixed. In what follows, whenever we perturb a value yy,
we do so by replacing yr with yiexp(oz), where z is a standard normal deviate. This
multiplicative model of measurement error was constructed so that approximately 95 percent
of the perturbed values would be at least one half and no more than twice the replaced value.

The following loops describe our perturbation strategies. In each case, the intent was to
perturb P values in the form of B blocks of length L.

For R =1 to 5 repetitions:

1. Perturb each of the n values in the original data set Y to obtain data set Y1000.R.
2. For P = .49n, .25n,.0ln and L = 1,v/P, P:

(a) Randomly select B = P/L numbers from {1,...,n/L} without replacement.
Call these numbers sq,...,sg.

(b) Let # = n/P. Fori =1,...,Band j =0,...,L — 1, let k = ns; + j and
perturb each original value y.

(c) Denote the resulting data set by Y0ppl.R, where pp = 100P/n and

[ =2log(L)/log(P).

For example, the data set produced on the fourth repetition of the case for

which P = .49n and L = /P is denoted by Y0491.4.

Thus, we generated five data sets (Y1000) in which all values were perturbed, fifteen data sets
(Y0491) in which 49 percent of the values were perturbed, fifteen data sets (Y0251) in which
25 percent of the values were perturbed, and fifteen data sets (Y001l) in which 1 percent
of the values were perturbed. Furthermore, in each of the cases that P = .49n,.25n,.0ln
of the values were perturbed, we generated five data sets (YOpp0) in which we perturbed P
isolated values, five data sets (YOppl) in which we perturbed VP blocks of /P consecutive
values, and five data sets (YOpp2) in which we perturbed one block of P consecutive values.
This allowed us to investigate the effect of different data structures on the efficacy of parallel
computation.

Each of the fifty data sets was submitted to six isotonic regressions on the Intel Touch-
stone Delta parallel computing system at the California Institute of Technology. These
regressions used respectively A = 1,2,4,8,16,32 of the Delta’s processors. For each regres-
sion, the data set was decomposed into A subsets of (approximately) equal size. Each subset
was simultaneously sent to a separate processor, where its isotonic regression was computed
using Grotzinger’s and Witzgall’s [3] formulation of the Pool Adjacent Violators algorithm.
As soon as the isotonic regressions of two consecutive subsets were computed, the combined
result was sent to one of the available processors, which then computed the combined iso-
tonic regression by means of the device described in Section 3. This process was continued
until the isotonic regression of the entire data set was obtained. The elapsed time from
job submission to completion was measured by the Delta’s intrinsic timer. The results are
summarized in Table 1.

Table 1 exhibits several striking features. First, the variations in times produced by
R = 5 replications are extremely small relative to the magnitudes of the times. In retrospect



Table 1: Sample means and standard deviations (y £ s,) of elapsed times in milliseconds for
five repetitions of ten isotonic regression experiments.

Data Number of Processors

Sets 1 2 4 8 16 32
Y1000 | 2278 £93 1376 £22 1158 £16 9307 1062 4+25 1058 & 15
Y0490 | 2406 £ 142 1416 £5 1182 +4 938 +£8 1062+4 1068 +8
Y0491 | 2376 £ 180 1436 £29 1208 £50 958 £19 1060 £+ 14 1080 & 27
Y0492 | 2370 £ 171 1378 £8  11524+8 922+4 1032+4 1036 + 15
Y0250 | 2396 £54 1386 +£9 1144 £ 11 944 +£48 1040 £ 14 1040 £+ 12
Y0251 | 2298 £ 128 14107 1174 4+5 9365 1058 +4 1052 +4
Y0252 | 2330 £95 1406 £9 11724+4 942+4 1066 +9 1058 +4
Y0010 | 2232 £30 1378 £4 1150+ 7 922+4 1034+5 1032+8
Y0011 | 2368 £156 1410 £10 1188 +24 9400 1062+4 1062 +4
Y0012 | 2380 £ 152 1418 £8 1184 +22 944 +£5 1068 £18 1070 £+ 12

this is not surprising: each data set contains a very large number of independent errors,
so that one should expect that most data sets constructed in accordance with a specific
perturbation strategy will be quite similar.

Second, there is very little variation in mean timing profiles between the ten perturbation
strategies. This suggests that the phenomena described below are not unique to a particular
data structure.

As anticipated, it is apparent that some degree of parallelization decreases the time
required to perform an isotonic regression. For the 50 data sets that we considered, the time
required by A = 2 processors divided by the time required by A = 1 processor ranged from a
minimum of 53.2% to a maximum of 65.9%, with a median of 60.3%. The time required by
A =4 processors divided by the time required by A = 1 processor ranged from a minimum
of 44.9% to a maximum of 54.8%, with a median of 50.1%. The time required by A = 8
processors divided by the time required by A = 1 processor ranged from a minimum of 35.7%
to a maximum of 43.5%, with a median of 40.5%. Thus, there is compelling evidence that,
for n = 10° and these types of data sets, using A = 8 processors is more efficient than using
A =4,2,1 processors.

For A = 16,32 processors, the communication costs of the parallelization strategy begin
to dominate and the times are actually slower than for A = 8 processors. This phenomenon
was also anticipated. With larger data sets, we know that we can take advantage of additional
processors, but the tradeoff between n and the optimal A must be empirically determined
for the data structures and parallel computing system of interest.

Finally we note that, although the proportional improvements in efficiency produced
by parallel processing are impressive, the absolute times for serial processing are small. At
present, it is difficult to forsee applications involving isotonic regressions on data sets so large
that the absolute savings in time will warrant parallel computation. Perhaps that day will
come; for now, our primary interest in parallelizing isotonic regression is for the pedagogical
value of so doing. In our view, isotonic regression is a remarkably simple and elegant example
of a problem for which mathematical theory virtually guarantees that parallelization will be



beneficial.
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