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Abstract. Despite the undisputed prominence of inheritance as the fundamental
reuse mechanism in object-oriented programming languages, the main variants —
single inheritance, multiple inheritance, and mixin inheritance — all suffer from
conceptual and practical problems. In the first part of this paper, we identify and
illustrate these problems. We then presenttraits, a simple compositional model
for structuring object-oriented programs. A trait is essentially a group of pure
methods that serves as a building block for classes and is a primitive unit of
code reuse. In this model, classes arecomposedfrom a set of traits by specifying
glue codethat connects the traits together and accesses the necessary state. We
demonstrate how traits overcome the problems arising from the different vari-
ants of inheritance, we discuss how traits can be implemented effectively, and we
summarize our experience applying traits to refactor an existing class hierarchy.
Keywords: Inheritance, mixins, multiple inheritance, traits, reuse, Smalltalk

1 Introduction

Although single inheritance is widely accepted as thesine qua nonof object-orientation,
programmers have long realized that single inheritance is not expressive enough to fac-
tor out common features (i.e., instance variables and methods) shared by classes in a
complex hierarchy. As a consequence, language designers have proposed various forms
of multiple inheritance [7, 23, 29, 35, 41], as well as other mechanisms such as mixins
[3, 10, 18, 27, 32], that allow classes to be composed incrementally from sets of features.

Despite the passage of nearly twenty years, neither multiple inheritance nor mixins
have achieved wide acceptance [44]. Summarizing Alan Snyder’s contribution to the
inheritance panel discussion at OOPSLA ’87, Steve Cook wrote:

“Multiple inheritance is good, but there is no good way to do it.” [11]

The trend seems to be away from multiple inheritance; the designers of recent languages
such as Java and C# decided that the complexities introduced by multiple inheritance
far outweighed its utility. It is widely accepted that multiple inheritance creates some
serious implementation problems [14, 43]; we believe that it also introduces serious
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conceptualproblems. Our study of these problems has led us to the present design for
traits.

Although multiple inheritance makes it possible to reuse any desired set of classes,
a class is frequently not the most appropriate element to reuse. This is because classes
play two competing roles. A class has a primary role as agenerator of instances: it
must therefore be complete. But as aunit of reuse, a class should be small. These prop-
erties often conflict. Furthermore, the role of classes as instance generators requires that
each class have a unique place in the class hierarchy, whereas units of reuse should be
applicable at arbitrary places.

Moon’s Flavors [32] were an early attempt to address this problem: Flavors are
small, not necessarily complete, and they can be “mixed in” at arbitrary places in the
class hierarchy. More sophisticated notions of mixins were subsequently developed
by Bracha and Cook [10], Mens and van Limberghen [27], Flatt, Krishnamurthi and
Felleisen [18], and Ancona, Lagorio and Zucca [3]. These approaches all permit the pro-
grammer to create components that are designed for reuse, rather than for instantiation.
However, as we shall show, they can have a negative influence on understandability.

Mixins use the ordinary single inheritance operator to extend various base classes
with the same set of features. However, although this inheritance operator is well-suited
for deriving new classes from existing ones, it is not appropriate for composing reusable
building blocks. Specifically, inheritance requires that mixins be composed linearly; this
severely restricts one’s ability to specify the “glue code” that is necessary to adapt the
mixins so that they fit together.

In our proposal, lightweight entities calledtraits serve as the primitive units of code
reuse. The design of traits started with the observation that the conflict between reuse
and understandability is more apparent than real. In general, we believe that under-
standing a program is easier if it is possible to view the program in multiple forms.
Even though a class may have beenconstructedby composing small traits in a com-
plex hierarchy, there is no need to require that it beviewedin the same way. It should
be possible to view the classeither as a flat collection of methodsor as a composite
entity built from traits. The flattened view promotes understanding; the composite view
promotes reuse. There is no conflict so long as both of these views can coexist, which
requires that composition be used only as a structuring tool and haveno effect on the
meaning of the class.

Traits satisfy this requirement. They provide structure, modularity and reusability
within classes, but they can be ignored when one considers the relationships between
one classeand another. Traits provide an excellent balance between reusability and un-
derstandability, while enabling better conceptual modeling. Moreover, because traits
are concerned solely with the reuse of behaviour and not with the reuse of state, they
avoid the implementation difficulties that characterize multiple inheritance and mixins.

Traits have the following properties.

– A trait providesa set of methods that implement behaviour.
– A trait requiresa set of methods that serve as parameters for the provided behaviour.
– Traits do not specify any state variables, and the methods provided by traits never

access state variables directly.
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– Classes and traits can be composed from other traits, but the composition order is
irrelevant. Conflicting methods must beexplicitly resolved.

– Trait composition does not affect the semantics of a class: the meaning of the class
is the same as it would be if all of the methods obtained from the trait(s) were
defined directly in the class.

– Similarly, trait composition does not affect the semantics of a trait: a composite trait
is equivalent to aflattenedtrait containing the same methods.

A class can be constructed by inheriting from a superclass, and adding a set of traits,
the necessary state variables and the required methods. These methods representglue
that specifies how the traits are connected together and how conflicts are resolved. This
approach allows a class to be decomposed into sets of coherent features —i.e., traits—
and factors out the glue code that connects the features together. Because the semantics
of a method is independent of whether it is defined in a trait or in a class that uses the
trait, it is always possible toflattena composite trait structure at any level.

The contributions of this paper are the identification of the problems associated
with multiple inheritance and mixins, and the introduction of traits as a composition
model that solves these problems. We proceed as follows: in section 2 we describe the
problems of multiple inheritance and mixins, and in section 3 we introduce traits and
illustrate their use on some small examples. In section 4 we discuss the most important
design decisions and evaluate traits against the problems we identified in section 2. In
section 5 we present our implementation of traits. In section 6 we summarize the results
of a realistic application of traits: a refactoring of the Smalltalk-80 collection hierarchy.
We discuss related work in section 7. We conclude the paper and indicate future work
in section 8.

2 Reusability Problems with Inheritance

Inheritance is commonly regarded as one of the fundamental features of object-oriented
programming, but at the same time, inheritance is also a mechanism with many compet-
ing meanings and interpretations [44]. Over the years, researchers have developed var-
ious inheritance models including single inheritance, multiple inheritance, and mixin
inheritance. In this section, we give a brief overview of these models and point out their
conceptual and practical shortcomings with respect to reusability. In particular we de-
scribe specific problems of mixin composition that have not been identified previously
in the literature.

Note that this section is focused on reusability issues. Other problems with inheri-
tance such as implementation difficulties [14, 43] and conflicts between inheritance and
subtyping [2, 25, 26] are outside the scope of this paper.

Single Inheritanceis the simplest inheritance model; it allows a class to inherit from at
most one superclass. Although this model is well-accepted, it is not expressive enough
to allow the programmer to factor out all the common features shared by classes in a
complex hierarchy. Hence single inheritance sometimes forcescode duplication. Note
that extending single inheritance with interfaces as promoted by Java addresses the
issues of subtyping and conceptual modeling, but does nothing to avoid the need to
duplicate code.
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Multiple Inheritanceenables a class to inherit features from more than one parent class,
thus providing the benefits of better code reuse and more flexible modeling. However,
multiple inheritance uses the notion of a class in two competing roles: the generator of
instances and the unit of code reuse. This gives rise to the following difficulties.

Conflicting features. With multiple inheritance, ambiguity can arise when conflicting
features are inherited along different paths [17]. A particularly troublesome sit-
uation is the “diamond problem” [10, 38] (also known as “fork-join inheritance”
[33]), which occurs when a class inherits from thesamebase class via multiple
paths. Since classes are instance generators, they must all provide some minimal
common features (e.g., the methods=, hash, and asString), which are typically
inherited from a common root class such asObject. Thus, when several of these
classes are reused, the common features conflict.
There are two kinds of conflicting feature:methodsandstate variables. Whereas
method conflicts can be resolved relatively easily (e.g., by overriding), conflicting
state is more problematic. Even if the declarations are consistent, it is not clear
whether conflicting state should be inherited once or multiply [34].

Accessing overridden features.Since identically named features can be inherited from
different base classes, a single keyword (e.g., super ) is not enough to access inher-
ited methods unambiguously. For example, C++ [42] forces one to explicitly name
the superclass to access an overridden method; recent versions of Eiffel [29] suggest
the same technique1. This tangles class references with the source code, making the
code fragile with respect to changes in the architecture of the class hierarchy. Ex-
plicit class references are avoided in languages such as CLOS [40] that impose a
linear order on the superclasses. However, such a linearization often leads to un-
expected behaviour [15, 16] and violates encapsulation, because it may change the
parent-child relationships among classes in the inheritance hierarchy [38, 39].

Factoring out generic wrappers. Multiple inheritance enables a class to reuse fea-
tures from multiple base classes, but it does not allow one to write a reusable entity
that “wraps” methods implemented in as-yet unknown classes2.
This limitation is illustrated in figure 1. Assume that classA contains methodsread
andwrite that provide unsynchronized access to some data. If it becomes necessary
to synchronize access, we can create a classSyncA that inherits fromA and wraps
the methodsread andwrite. That is,SyncA definesread andwrite methods that call
the inherited methods under control of a lock (see figure 1a).
Now suppose that classA is part of a framework that also contains another classB
with read andwrite methods, and that we want to use the same technique to create a
synchronized version ofB. Naturally, we would like to factor out the synchroniza-
tion code so that it can be reused in bothSyncA andSyncB.
With multiple inheritance, the natural way to share code among different classes
is to inherit from a common superclass. This means that we should move the syn-

1 The ability to access an overridden method using the keywordprecursor followed by an
optional superclass name was added to Eiffel in 1997 [29]. In earlier versions of Eiffel, access
to original methods required repeated inheritance of the same class [28].

2 In C++ and Eiffel, parameterized structures such as templates [42] and generic classes [28]
compensate for this limitation.
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Fig. 1. In (a), the synchronization code is implemented in the subclassSyncA. In (b) we show
an attempt to reuse the synchronization code in bothSyncA and SyncB. However, this does
not work because the methods inSyncReadWrite cannot refer to theread andwrite methods
defined inA andB. In (c), we show how the synchronization code can be reused, but this still
requires the duplication of four methods inSyncA andSyncB.

chronization code into a classSyncReadWrite that will become the superclass of
both SyncA andSyncB (see figure 1b). Unfortunately this cannot work, because
super-sends are statically resolved. The super-sends in theread andwrite methods
of SyncReadWrite cannot possibly refer in one case to methods inherited fromA
and in the other case to methods inherited fromB.
It is possible to parameterize the methods inSyncReadWrite by using self sends of
abstract methods rather than explicit super sends. These abstract methods will be
implemented by the subclass (see figure 1c). However, this still requires duplication
of methods in each subclass. Furthermore, avoiding name clashes between the syn-
chronized and unsynchronized versions of theread andwrite methods makes this
approach rather clumsy, and one has to make sure that the unsynchronized methods
arenot publicly available inSyncA andSyncB.

Mixin Inheritance. A mixin is a subclass specification that may be applied to various
parent classes in order to extend them with the same set of features. Mixins allow the
programmer to achieve better code reuse than single inheritance while maintaining the
simplicity of the inheritance operation. However, although inheritance works well for
extending a class with a single orthogonal mixin, it does not work so well for compos-
ing a class from many mixins. The problem is that usually the mixins do notquite fit
together,i.e., their features may conflict, and that inheritance is not expressive enough
to resolve such conflicts. This problem manifests itself under various guises.
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Fig. 2.The code that interconnects the mixins is specified in the mixinMBorder. The composite
entity MyRectangle cannot access the implementations ofasString in the mixin MColor and
the classRectangle. The classes with+ in their names are intermediaries generated by applying
mixins.

Total ordering. Mixin composition is linear: all the mixins used by a class must be in-
herited one at a time. Mixins appearing later in the order overrideall the identically
named features of earlier mixins. When we wish to resolve conflicts by selecting
features from different mixins, we may find that a suitable total order does not exist.

Dispersal of glue code.With mixins, the composite entity is not in full control of the
way that the mixins are composed: the conflict resolution code must be hardwired
in the intermediate classes that are created when the mixins are used, one at a time.
Obtaining the desired combination of features may require modifying the mixins,
introducing new mixins, or, sometimes, using the same mixin twice.
Dispersal is illustrated in figure 2, where a classMyRectangle uses two mixins
MColor and MBorder that both provide a methodasString. The implementations
of asString in the mixins first call the inherited implementation and then extend
the resulting string with information about their own state. When we compose the
two mixins to make the classMyRectangle, we can choose which of them should
come first, but we cannot specify how the different implementations ofasString
are glued together. This is because the mixins must be added one at a time: in
Rectangle + MColor + MBorder we can access the behaviour ofMBorder and the
mixedbehaviour ofRectangle + MColor, but not the original behaviour ofMColor
andRectangle. Thus, if we want to adapt the way the implementations ofasString
are composed (e.g., changing the separation character between the two strings), we
need to modify the involved mixins.

Fragile hierarchies. Because of linearity and the limited means for resolving conflicts,
the use of multiple mixins results in inheritance chains that are fragile with respect
to change. Adding a new method to one of the mixins may silently override an
identically named method of a mixin that appears earlier in the chain. Furthermore,
it may be impossible to reestablish the original behaviour of the composite without
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adding or changing several mixins in the chain. This problem is especially critical
if one modifies a mixin that is used in many places across the class hierarchy.
As an illustration, suppose that in the previous example (see figure 2) the mixin
MBorder does not initially define a methodasString. This means that the imple-
mentation ofasString in MyRectangle is the one specified byMColor. Now sup-
pose that the methodasString is subsequently added to the mixinMBorder. Be-
cause of the total order, this new method overrides the implementation provided by
MColor. Worse, the original behaviour of the composite classMyRectangle cannot
be reestablished without changing several more mixins.

3 Traits

We propose a compositional model as a solution to the problems illustrated in the pre-
vious section. Our model is based on lightweight entities calledtraits, which serve as
the basic building blocks for classes and the primitive units of code reuse. Thus, traits
satisfy the needs for structure, modularization and reusabilitywithin a class.

Traits, and all the examples given in this paper, are implemented in the Squeak
dialect of Smalltalk-80 [22], but we believe that the same concept could also be applied
to other single inheritance languages (see section 8). In the remainder of this section,
we present traits in detail using a running example. We show how classes are composed
from traits, how traits are composed from other traits, and how naming conflicts are
resolved. Space constraints prevent us from giving a formal specification of traits and
the composition operations; this is available in a companion paper [37].

3.1 Running Example and Notational Conventions

Suppose that we want to represent graphical objects such as circles or squares that can
be drawn on a canvas. We will use traits to structure the classes and factor out the
reusable behaviour. We focus on the representation of circles, but the same techniques
can be applied to the other classes.

In the examples, trait names start with the letter T, and class names do not. Because
the traits are implemented in Squeak, we present the code in Smalltalk. The notation
ClassName>>methodName indicates that the methodmethodName is defined in the
classClassName.

3.2 Specifying Traits

A trait contains a set of methods that implement the behaviour that itprovides. In gen-
eral, a trait mayrequire a set of methods that serve as parameters for the provided
behaviour. Traits cannot specify any state, and never access state directly. Trait meth-
ods can access state indirectly, using required methods that are ultimately satisfied by
accessors (getter and setter methods).

The purpose of traits is to decompose classes into reusable building blocks by pro-
viding first-class representations for the different aspects of the behaviour of a class.
Note that we use the term “aspect” to denote an independent, but not necessarily cross-
cutting, concern. Traits differ from classes in that they do not define any kind of state,
and that they can be composed using mechanisms other than inheritance.
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Fig. 3. The traitsTDrawing andTCircle with provided methods in the left column and required
methods in the right column.

Example.In our example, each graphical object can be decomposed into two aspects —
its geometry, and the way that it is drawn on a canvas. In case of a circle, we represent
the geometry with the traitTCircle and the drawing behaviour with the traitTDrawing.

Figure 3 shows these traits in an extension to UML. For each trait, the left column
lists the provided methods and the right column lists the required methods. The trait
TDrawing provides the methodsdraw, refreshOn:, andrefresh, and it is parameterized by
the required methodsbounds anddrawOn:. The code implementing this trait is shown
below. The existence of the requirements is captured by methods (shown in italics) with
bodyself requirement.

Trait named: #TDrawing uses: {}

draw bounds
↑ self drawOn: World canvas self requirement

refresh drawOn: aCanvas
↑ self refreshOn: World canvas self requirement

refreshOn: aCanvas
aCanvas form

deferUpdatesIn: self bounds
while: [self drawOn: aCanvas]

The traitTCircle represents the geometry of a circle; it contains methods such asarea,
bounds, circumference, scaleBy:, =, <, and<=. TCircle requires methodscenter, center:,
radius, andradius:, which parameterize its behaviour.

3.3 Composing Classes from Traits

Traits are a completely backward-compatible with single inheritance. In particular, trait
composition complements, rather than subsumes, single inheritance. Whereas inheri-
tance is used to derive one class from another, traits are used to achieve structure and
reusabilitywithin a class definition. We summarize this relationship with the equation

Class = Superclass + State + Traits + Glue
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Fig. 4.The classCircle is composed from the traitsTCircle andTDrawing. The requirement for
TDrawing>>bounds is fulfilled by the traitTCircle. All the other requirements are fulfilled by
accessor methods specified by the class.

This means that a class is derived from a superclass by adding the necessary state vari-
ables, using a set of traits, and implementing theglue methodsthat connect the traits to-
gether and serve as accessors for the state variables. In order for a class to becomplete,
all the requirements of the traits must be satisfied,i.e., methods with the appropriate
names must be provided. These methods can be implemented in the class itself, in a
direct or indirect superclass, or by another trait that is used by the class.

Trait composition enjoys theflattening property. This property says that the seman-
tics of a class defined using traits is exactly the same as that of a class constructed
directly from all of the non-overridden methods of the traits. So, if classA is defined
using traitT, andT defines methodsa andb, then the semantics ofA is the same as it
would be ifa andb were defined directly in the classA. Naturally, if the glue code of
A defines a methodb directly, then thisb would override the methodb obtained from
T. Specifically, the flattening property implies that the keywordsuper has no special
semantics for traits; it simply causes the method lookup to be started in the superclass
of the class thatusesthe trait.

Another property of trait composition is that the composition order is irrelevant, and
hence conflicting trait methods must be explicitly disambiguated (cf. section 3.5). Con-
flicts between methods defined in classes and methods defined by incorporated traits
are resolved using the following two precedence rules.
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– Class methods take precedence over trait methods.
– Trait methods take precedence over superclass methods.This follows from the flat-

tening property, which states that trait methods behave as if they were defined in
the class itself.

Example.As illustrated in figure 4 and by the class definition hereafter, we create the
classCircle by composing the traitsTCircle andTDrawing. The traitTDrawing requires
the methodsbounds anddrawOn:. The traitTCircle provides a methodbounds, which
already fulfills one of the requirements. Therefore, the classCircle has to provide only
the methodscenter, center:, radius, and radius: for the trait TCircle and the method
drawOn: for the traitTDrawing.

The methodscenter, center:, radius, andradius: are simply accessors to two instance
variables. The methoddrawOn: draws a circle on the canvas that is passed as the argu-
ment. In addition, the class also implements a method for initializing the two instance
variables.

Object subclass: #Circle
instanceVariableNames: ' center radius'
uses: { TCirle . TDrawing }

initialize
center := 0@0.
radius := 50

center center: aPoint
↑ center center := aPoint

radius radius: aNumber
↑ radius radius := aNumber

drawOn: aCanvas
aCanvas fillOval: self bounds

color: Color black

3.4 Composite Traits

In the same way that classes are composed from traits, traits can be composed from
other traits. Unlike classes, most traits are not complete, which means that they do not
define all the methods that are required by their subtraits. Unsatisfied requirements of
subtraits simply become required methods of the composite trait. Again, the composi-
tion order is not important, and methods defined in the composite trait take precedence
over the methods of its subtraits.

Even in case of multiple levels of composition, the flattening property remains valid.
The semantics of a method does not depend on whether it is defined in a trait or in an
entity that directly or indirectly uses that trait (cf. section 4.1).

Example. The traitTCircle contains two different aspects: comparison operators and
geometric functions. In order to separate these aspects and improve code reuse, we
redefine this trait as the composition of the traitsTMagnitude andTGeometry as shown
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in figure 5(a). In addition, the traitTMagnitude is specified as a composite trait; it uses
the traitTEquality, which requires the methodshash and=, and provides the method
∼=. The traitTMagnitude itself requires<, and provides methods such asmax:, <=,
between:and:, and>=. Note thatTMagnitude does not provide any of the methods
required by its subtraitTEquality; this means that the requirements ofTEquality are
propagated as requirements ofTMagnitude. Finally, as shown below, theTraitTCircle is
composed from the traitsTMagnitude andTGeometry. TCircle defines the methods=,
hash, and< required by the traitTMagnitude. Below we show only the definition of
TCircle. The first line of this definition contains thecomposition clause, which specifies
thatTCircle uses the subtraitsTMagnitude andTGeomery.

Trait named: #TCircle uses: { TMagnitude . TGeometry }

= other
↑ self radius = other radius and: [self center = other center]

hash
↑ self radius hash and: [self center hash]

< other
↑ self radius < other radius

3.5 Conflict Resolution

A conflict arises if and only if we combine two traits providing identically named meth-
ods that do not originate from the same trait. In particular, this means that if thesame
method (i.e., from the same trait) is obtained more than once via different paths, there
is no conflict. This rule is semantically sound because traits cannot specify state (cf.
section 4.1).

Based on the trait composition rules presented in section 3.3, method conflicts must
be explicitly resolved by defining a method in the class or in the composite trait. Trait
composition enforces this by overriding the conflicting methods with a special marker
method that indicates a method conflict. This guarantees that the conflict is resolved
on the level of the composite, and not by another subtrait that happens to provide an
appropriately named method. This behaviour makes trait composition associative as
well as commutative.

To grant access to conflicting methods (and thereby avoid duplicating them), traits
support analias operation. Aliases are used to make a trait method available under
another name; this is particularly useful if the original name is excluded by a conflict.
Aliases are discussed further in section 4.1.

Trait composition also supportsexclusion, which allows one to avoid a conflict be-
fore it occurs. The composition clause allows a programmer to exclude methods from
a trait when it is composed. This suppresses these methods and allows the composite
entity to acquire the otherwise conflicting implementation provided by another trait.

Example.Colored circles must contain color behaviour. To make this behaviour reusable,
we define it in the traitTColor shown in figure 5(b). This trait provides the usual color
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Fig. 5.Figure (a) shows how a traitTCircle is composed from a traitTGeometry and a composite
trait TMagnitude, which contains the subtraitTEquality. Note that the provided services of
the subtraits are propagated to the composite trait (e.g., max:, ∼=, andarea), and similarly,
the unsatisfied requirements of the subtraits (e.g., center andradius:) are turned into required
methods of the composite trait. In (b), we again use the traitTEquality to specify the comparison
behaviour of the traitTColor. Figure (c) shows how a classCircle is specified by composing the
traitsTCircle, TColor, andTDrawing.

methods such asred, green, saturation, etc. Because colors can also be tested for equal-
ity, TColor uses the traitTEquality, and implements the required methods= andhash as
shown below.

Trait named: #TColor uses: { TEquality }

hash = other
↑ self rgb hash ↑ self rgb = other rgb
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When the traitTColor is incorporated into the classCircle, a conflict arises because the
traitsTColor andTCircle provide different implementations for the methods= andhash,
as shown in figure 5(c). Note that the method∼= does not give rise to a conflict because
in both TCircle andTColor the implementation originates from the same trait, namely
TEquality.

Figure 5(c) shows that the conflicting methods are excluded and thereby turned into
requirements that have to be implemented in the classTCircle to make it complete. In
the code shown below, we define the method= so that two colored circles are equal if
and only if they have the same geometrical properties and the same color. To avoid code
duplication, we specify aliasescircleEqual:, circleHash, colorEqual:, andcolorHash for
the conflicting methods and use them to define the semantics of the composite.

Object subclass: #Circle
instanceVariableNames: ' center radius rgb'
uses: { TCircle @ {#circleHash -> #hash. #circleEqual: -> #=} .

TDrawing .
TColor @ {#colorHash -> #hash. #colorEqual: -> #=} }

hash = anObject
↑ self circleHash ↑ (self circleEqual: anObject)

bitXor: self colorHash and: [self colorEqual: anObject]

Alternatively, we might decide that equality of colored objects is independent of their
color and takes into account only their geometrical properties. In this case, we could
remove the conflicting methods= andhash from TColor. This avoids the conflicts and
has the effect that the classCircle simply uses the comparison behaviour provided by
the traitTCircle. The corresponding composition clause is as follows.

Object subclass: #Circle
instanceVariableNames: ' center radius rgb'
uses: { TCircle . TDrawing − {#=. #hash} . TColor }

4 Discussion and Evaluation

In this section, we discuss some design decision that significantly influenced the proper-
ties of traits. We focus on reusability and understandability of programs that are written
using traits. Finally, we present an evaluation of traits against the reusability problems
discussed in section 2.

4.1 Design Decisions

Traits were designed with other reusability models in mind: we tried to combine their
advantages, while avoiding their disadvantages. Here, we discuss the most important
design decisions.

Untangling Reusability and Classes.Although they are inspired by mixins, traits
are a new concept. They are a finer-grained unit of reuse than a class and are not tied
to a specific place in the inheritance hierarchy. We believe that these two properties
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are essential for improving code reuse and conceptual modeling. Fine-grained reuse
is important because the gulf that lies between entire classes and individual methods
is too wide. Traits allow classes to be built by composing reusable behaviours rather
than by implementing a large and unstructured set of methods. Hierarchy independence
is important because it maximizes reusability. Because classes have a primary role as
instance generators they must be complete, and are thus typically embedded in a hierar-
chy. This very property makes classes inapproprate for the secondary role that they are
made to play in conventional languages: reusable method repositories [5].

Single Inheritance and the Flattening Property. Rather than replacing single inheri-
tance, we decided to extend it with trait composition. These two operations are similar
but complementary and work together nicely.

Single inheritance lets one reuse all the features (i.e., methods and state variables)
that are available in a class. If a class can inherit only from a single superclass, inherit-
ing state does not cause complications, and a simple keyword (e.g., super ) is enough to
access overridden methods. This mechanism for accessing inherited features is conve-
nient, but it also gives semantics to the place of a method in the inheritance hierarchy.

Trait composition operates at a finer granularity than inheritance; it is used to mod-
ularize the behaviour definedwithin a class. As such, trait composition is designed to
compose only behaviour and not state. In addition, trait composition enjoys the flatten-
ing property, which means that it does not assign any semantics to the place where a
method is defined.

The flattening property combines with single inheritance to demonstrate that traits
are a logical evolution of the single inheritance paradigm. A system based on traits
naturally allows one to write and execute traditional single inheritance code. Moreover,
with appropriate tool support, it also allows one toview and editclasses that are built
from thousands of deeply composed traits inexactlythe same way as one would if they
were implemented without using traits at all.

Aliasing. Many multiple inheritance implementations provide access to overridden
features by requiring the programmer to explicitly name the defining superclass in
the source code. C++ uses the scope operator:: , whereas Eiffel uses the keyword
precursor . With traits, we chose method aliasing in preference to placing named trait
references in method bodies; this avoids the following problems.

– Named trait references contradict theflattening property, because they prevent the
creation of a semantically consistent flattened view without adapting these refer-
ences in the method bodies.

– Named trait references require the trait structure to be hardcoded in all the meth-
ods that use them. This means that changing the trait structure, or simply moving
methods from one trait to another, potentially invalidates many methods.

– Named trait references would require an extension of the syntax of the underlying
single inheritance language.

Method aliasing avoids all of these problems. It works with the flattening property
because the flattening process can simply introduce a new name for the aliased method
body.
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Although there are some similarities between aliasing and method renaming as pro-
vided by Eiffel, there are also essential differences. Whereas aliasing just establishes an
alternative name without affecting the original one, with renaming the original method
name becomes undefined. As a consequence, method renaming must change all the
references to the old name in other methods so that they refer to the new one. In con-
trast, aliasing has no effect on any references in other methods: requiring that they are
changed would violate the flattening property.

Unintentional Naming Conflicts With traits, as with any other name-based approach
to composing software features, unintentional naming conflicts may arise. For exam-
ple, consider a Java class that should implement two interfaces, where each of these
interfaces specifies a method withprecisely the same name(and signature), but with
different semantics.

At present, traits offer no real solution to this problem — when two traits are com-
posed, it may be that each requires a semantically different method that happens to
have the same name. Aliases alleviate the problem only to a small extent. In our view, a
complete solution requires both good refactoring tools and explicit namespaces [1, 4].

Conflict Strategies and the Diamond Problem Although traits are based on single
inheritance, a form of diamond problem may arise when features from the same trait
are obtained multiple times via different paths. For example, consider a traitX that uses
two traitsY1 andY2, which in turn both use the traitZ.

Since traits contain no state, the most nefarious diamond problem does not arise.
Nevertheless, in our example, a methodfoo provided byZ will be obtained byX twice.
The key language design question is:should this be considered a conflict?

As explained in section 3.5, we decided that there should be no conflict if thesame
method is obtained more than once via different paths. This “same-operation excep-
tion”, as it is called by Snyder [38], has the advantage of having a simple, intuitive
semantics, but it can lead to surprises if the underlying traits are changed. Suppose that
trait Y2 is re-implemented so that it no longer usesZ but still supports the same behavior
(e.g., the methodZ>>foo is copied to the traitY2). This causes a conflict because trait
X now obtains twodifferentmethodsfoo. Thus, what may have appeared to be a strictly
internalchange to traitY2 is visible to one of its clients.

Although it may seem that this situation will lead to fragile hierarchies, we argue
that it does not. WhenY2 re-implementsfoo, it is changing what it provides to its clients
in a way that is less severe, but just as significant, as when it adds or removes methods.
Any of these changes may introduce naming conflicts. However, the resulting conflict
is a purelylocal matter, that is, it can be corrected by thedirect clientsof Y2 alone.X
can easily resolve the resulting conflict by suppressing onefoo or the other.

Let us examine two alternatives to our current rule. One alternative is forX to “au-
tomatically” obtain either onefoo or the other, as happens with linearly-ordered mixins.
The problem with this is that the change toY2 would give the programmer no feedback,
even though the semantics of X might have changed.

The alternative suggested by Snyder is to abandon the “same-operation exception”,
and announce a conflict even if thesamemethod is obtained multiple times [38]. In
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our example, this means that there would already be a conflict in the original scenario,
and that the programmer mustarbitrarily decide which of the twofoo methods should
be available inX. We argue that this is more dangerous, because a later change to the
foo provided by eitherY1 or Y2 will not be signalled as having a possible consequence
on X. With the current approach, the conflict is signalled at precisely the point in time
when it arises, which is when the programmer is able to make an informed resolution.

4.2 Evaluation Against the Identified Problems

In section 2 we identified a set of conceptual and practical reusability problems that
are associated with various forms of inheritance. The design of traits was significantly
influenced by the attempt to solve these problems. In the following, we present a point
by point evaluation of the results.

Conflicting features. Traits avoid state conflicts entirely by forbidding traits from ex-
pressing state. Method conflicts may be resolved within traits by explicitly selecting
one of the conflicting methods, but more commonly conflicts are resolved in classes
by overriding conflicts. In general, fewer conflicts arise than with multiple inheri-
tance, because traits tend to remain lean, focussing on a small set of collaborating
features.

Accessing overridden/conflicting features.Because traits are an extension of single
inheritance,classescan still access overridden features by means ofsuper calls.
However, sometimes atrait needs to access a conflicting feature,e.g., in order to
resolve the conflict. These features are accessed by aliases, rather than by explicitly
naming the trait that provides the desired feature. This leads to more robust trait
hierarchies, since aliases remainoutsidethe implementations of methods. Contrast
this approach with multiple inheritance languages in which one must explicitly
name the class that provides a method in order to resolve an ambiguity. The aliasing
approach both avoids tangled class references in the source code, and eliminates
code that is hard to understand and fragile with respect to change.

Factoring out generic wrappers. Generic wrappers, such as the synchronization wrap-
pers discussed in section 2, can be expressed easily with traits. In fact, solution (b)
in figure 1 would work ifSyncReadWrite were a trait, sincesuper in a trait is
just a placeholder for the superclass of the class that will actually use that trait. If
SyncA is defiend to be a subclass ofA andSyncB a subclass ofB, and both use trait
SyncReadWrite, then thesuper send in the trait’sread andwrite methods will be
statically bound toA or B when the trait is used to define the class. Other kinds of
generic wrappers can be defined in much the same way.

Total ordering. Trait composition is symmetric, so ordering is irrelevant. However,
trait composition can be productively combined with inheritance to obtain a large
variety of different partially ordered compositions. The basic idea is that if we want
a classC to use two traitsT1 andT2 in that order, we first introduce a superclass
C′ that usesT1, and then we defineC to inherits fromC′ and useT2. This has the
consequence that the methods inT2 override the methods inT1. This strategy has
proved itself in practice when we refactored the Smalltalk collection hierarchy (see
section 6 and figure 6).
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Dispersal of glue code.When traits are combined, the glue code is always located in
the combining entity, reflecting the idea that the combining entity is in complete
control of plugging together the components that implement its aspects. This prop-
erty nicely separates the glue code from the code that implements the different
aspects, and it makes a class easy to understand, even if it is composed from many
different components.

Fragile hierarchies. Any hierarchical approach to composing software is bound to be
fragile with respect to certain kinds of change: if a feature that is used by many
clients changes, the change will clearly impact all the clients. The important ques-
tion is: how severely will the change impact the features of direct and indirect
clients? Do we need to change implementations, or only glue code? Will there be a
ripple effect throughout the entire hierarchy due to apparently innocuous changes?
Adding or deleting methods provided by a trait may well impact clients by intro-
ducing new conflicts or requirements, but ripple effects are generally avoided. A
direct client can generally resolve a conflict without reimplementing any features.
Furthermore, if the direct client can preserve the interface it provides, no ripple
effect will occur.

5 Implementation

Traits as described in this paper are implemented in Squeak [22], an open-source di-
alect of Smalltalk-80. Our implementation consists of two parts: an extension of the
Smalltalk-80 language and an extension of the programming tools.

5.1 Language Extension

To add traits to Squeak, we extended the implementation of a class to include an ad-
ditional instance variable to contain the information in the composition clause. This
variable defines the traits used by the class, including any exclusions and aliases. In
addition, we introduced a representation for traits, which are essentially stripped down
classes that can define neither state nor a superclass. When a classC uses a traitT,
the method dictionary ofC is extended with an entry for all the methods inT that are
not overridden byC. For an alias, we add to the method dictionary a second entry that
associates the new name with the aliased method. Since compiled methods in traits do
not usually depend on the location where they are used, the bytecode for the method
can be shared between the trait that defines the method and all the classes and traits that
use it. However, methods using the keywordsuper store an explicit reference to the
superclass in their literal table. So we need to copy those methods and change the entry
for the superclass appropriately. This copy could be avoided by modifying the virtual
machine to computesuper when needed.

In Smalltalk, classes are first-class objects; every class is instance of a metaclass
that defines the shape and the behaviour of its singleton instance [19]. In our implemen-
tation, we support this concept by introducing the notion of ametatrait; a metatrait can
be associated with every trait. When a trait is used in a class, the associated metatrait (if
there is one) is automatically used in the metaclass. Note that a trait without a metatrait
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can be applied to both classes and metaclasses. To preserve metaclass compatibility [8,
20], metatraits are automatically generated for traits that send messages to the metalevel
using the pseudo-messageclass.

Because traits are simple and completely backwards compatible with single inher-
itance, implementing traits in a reflective single inheritance language like Squeak is
unproblematic. The fact that traits cannot specify state is a major simplification. We
avoid most of the performance and space problems that occur with multiple inheri-
tance, because these problems are related to compiling methods without knowing the
indices of the instance variables in the object [14].

Our implementation requires no duplication of source code, and byte code is du-
plicated only if it includes sends tosuper . A program with traits shows essentially the
same performance as a corresponding single inheritance program where all the methods
provided by traits are implemented directly in the classes using the traits. This is espe-
cially remarkable because our implementation did not make any changes to the Squeak
virtual machine. There may be a small performance penalty resulting from the use of
accessor methods, but such methods are in any case widely used because they improve
maintainability. JIT compilers routinely inline accessors, so we feel that requiring their
use is entirely justifiable.

5.2 Programming Tools

Besides an extension of the language, our implementation also includes an extension
of the programming tools,i.e., the Smalltalk browser. In the following, we give a brief
overview of this extended browser; a more detailed description can be found in a com-
panion paper [36].

For each class (and each trait), the browser shows the various traits from which
it is composed. The flattening property allows the browser to flatten this hierarchical
structure at any level. In addition, the browser shows the programmer theprovided
and requiredmethods, theoverriddenmethods, and theglue methods, which specify
how the class meets the requirements of its component traits. These features help the
programmer to work with different views of the code. On the one hand, the programmer
can work with the code in a flattened view, where a class consists of an unstructured
set of methods and it does not matter whether the class is built from traits and whether
a method is defined in a trait or in the class itself. On the other hand, the programmer
can work in a composition view, where he sees how the responsibilities of the class
are decomposed into several traits and how these traits are glued together in order to
achieve the required behaviour. This view is especially valuable because it allows a
user to understand a class by knowing the involved traits and understanding the glue
methods.

As in standard Smalltalk, the browser supports incremental compilation. Whenever
a trait method is added, changed or excluded, all the users of that trait are instanta-
neously updated. The modifications are also analyzed to infer the set of required meth-
ods. If a modification causes a new conflict or an unspecified requirement anywhere in
the system, the affected classes and traits are automatically added to a “to do” list.

Our implementation features several tools that support the programmer in compos-
ing traits and generating the necessary glue code. Required methods that correspond to
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instance variable accessors are generated on request. Conflict elimination is also semi-
automated. The programmer is presented with a list of alternative implementations;
choosing one of these automatically generates the composition clause that excludes the
others, and thus eliminates the conflict.

6 An Application of Traits

As a realistic evaluation of their usability, we used traits to refactor the Smalltalk-80
collection hierarchy as it is implemented in Squeak 3.2. In this section, we summa-
rize the results of this work; interested readers are referred to a companion paper that
contains more details [6].

The core classes of the Smalltalk-80 collection hierarchy have been improved over
more than 20 years and are often considered a paradigmatic example of object-oriented
programming. Each kind of collection can be characterized by properties such as being
explicitly ordered (e.g., Array), implicitly ordered (e.g., SortedCollection), unordered
(e.g., Set), extensible (e.g., Bag), immutable (e.g., String), keyed (e.g., Dictionary), or
element-wise comparable (e.g., using identity or a higher-level comparison operator).

However, single inheritance is not expressive enough to model such a diverse set
of related classes that share many different properties in various combinations. Conse-
quently, the implementors of the hierarchy were forced to duplicate code or to move
methods higher in the hierarchy and then disable them in the subclasses to which they
do not apply [12].

We solved these problems by creating traits for the different collection properties
and combining them to build the required collection classes. In order to achieve maxi-
mum flexibility, we separated the properties specifying the implementation of a collec-
tion from the properties specifying the interface. This allowed us to freely combine dif-
ferent interfaces (e.g., “sorted-extensible interface” and “sorted-extensible-immutable
interface”) with any of the suitable implementations (e.g., “linked-list implementation”
and “array-based implementation”). We use inheritance to partially order the traits; opti-
mized methods in the more specific implementation traits take precedence over generic
methods provided by the more general interface traits.

In addition to the traits that were necessary to achieve a sound hierarchy and avoid
code duplication, we used additional subtraits to structure the code more finely. These
subtraits allow us to reuse parts of the code outside of the collection hierarchy. As an
example, we introduced traits representing the behaviour “emptiness” (which requires
size and providesisEmpty, notEmpty, ifEmpty:, etc.) and “enumeration” (which requires
do: and providescollect:, select:, detect:, etc.).

Although some of the collection classes are now built as the composition of as many
as 22 traits, the flattening property combined with the our programming tools means that
this does not impair understandability. If the trait structure is not useful for a particualr
task, it is always possible to work with the hierarchy as if it were implemented with
ordinary single-inheritance.

Figure 6 shows the refactored hierarchy for 21 of the more common collection
classes. Besides the class name, the figure also shows the traits that each class uses.
However, it does not show that each of these traits has many subtraits. The abstract
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Fig. 6. The refactored collection hierarchy. Classes with italicized names are abstract; below the
class name we show the traits that are used by the class directly.

classCollection is at the top; it provides a small amount of general behaviour for all col-
lections. Then we have a layer of abstract classes that provide different combinations
of traits that represent interface properties. At the bottom, we have concrete classes that
use traits to provide implementations.

In total, these classes use 48 different traits and implement 567 methods. This is just
over 10% fewer methods than in the original implementation. In addition, the code for
the trait implementation is 12% smaller than the original. This is especially remarkable
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because another 9% of the methods in the original implementation are implemented
“too high” in the hierarchy, specifically to enable code sharing. With inheritance, the
penalty for implementing a method too high is the repeated need to cancel inherited
behaviour in subclasses where that behaviour does not make sense. In the trait imple-
mentation, there is no need to resort to this tactic.

7 Related Work

In the section 2 we have shown how multiple inheritance and mixins attempt to pro-
mote code reuse, and the problems that these approaches encounter. In this section we
compare traits to some other approaches to structuring complex artifacts.

There are several other models that use entities called “traits” to share and reuse
implementation. One of them is the prototype-based language Self [45]. In Self, there
is no notion of class; each object conceptually defines its own format, methods, and
inheritance relations. Objects are derived from other objects by cloning and modifica-
tion. In addition, Self also has the notion oftraits objectsthat serve as repositories for
sharing behaviour and state among multiple objects. One or more traits objects can be
dynamically selected as the parent(s) of any object. Selector lookups unresolved in the
child are passed to the parents; it is an error for a selector to be found in more than one
parent.

The programming language Mesa, used for implementing the software for the Xe-
rox Star workstation, also provided entities calledtraits as an approach to multiple
inheritance [13]. This approach has more in common with other multiple inheritance
approaches than with the trait model presented in this paper. Some of the main dif-
ferences from our model are that the Star traits have a different semantics regarding
inheritance, have different conflict resolution capabilities, carry state, and allow multi-
ple implementations for a single method.

The Larch family of specification languages [21] is also based on a construct called a
trait; the relationship turns out to be more than name deep. Larch traits are fragments of
specifications that can be freely reused at fine granularity. For example, it is possible to
define a Larch trait such asIsEmpty that adds a single operation to an existing container
data-type. There are, of course, significant differences, since our traits are not intended
to be used to prove properties of programs, and adding a trait to a class does not formally
constrain the behavior of existing methods.

The Jigsaw modularity framework, developed by Bracha in his doctoral dissertation
[9], defines module composition operators merge, override, copy·as and restrict that are
strikingly similar to the sum, override, alias and exclusion operators on traits. For ex-
ample, Bracha’s merge, like our sum, is commutative. Although there are differences
in the details of the definitions (for example, in how conflicts are handled), the more
significant differences are in motivation and setting. Jigsaw is intended as a complete
framework for module manipulation in the large, and makes assumptions appropriate
to that setting: namespaces, declared types and requirements, full renaming, and se-
mantically meaningful nesting. Traits are intended to supplement existing languages by
promoting reuse in the small, and consequently do not define namespaces, do not de-
clare types, infer their requirements, do not allow renaming, and do not give a meaning
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to nesting. The Jigsaw operation set also aims for completeness, whereas in the design
of traits we explicitly gave up completeness for simplicity. Nevertheless, the similarity
of the core operation sets is encouraging, given that they were defined independently.

Caesar’s collaboration interfaces are similar to traits in that they include the dec-
laration ofexpectedmethods,i.e., those that classes must provide when bound to an
interface [31]. Thus, Caesar’s interface concept can simulate traits by binding an inter-
face to a class and then combining it with a specific implementation. However, Caesar
has no special compositional construct for dealing with conflicts. Instead, Caesar is de-
signed to use one of the conflict resolution strategies known from multiple inheritance
languages such as C++, leading to problems similar to those described in section 2.
Moreover, Caesar is based on explicit wrappers, which can be costly at runtime, while
the semantics of traits is compatible with single inheritance and does not create a run-
time penalty.

Mezini proposed an approach to behavior composition in a class-based environment
that is based on the encapsulated object model of class-based inheritance, but introduces
an explicit combination layer between objects and classes [30]. The behavior definition
of an evolving object is dispersed between a class that provides the standard behavior of
the object and a set of mixin-like software modules, called adjustments. One of the main
differences from traits is that Mezini’s approach is more dynamic and complex. In fact, a
combiner-metaobject is associated with each evolving object, responsible for the com-
positional aspects of the object’s behavior. This means that the combiner-metaobject
uses the adjustments to define the environment in which to evaluate the messages sent
to the object.

Delegation (also known as “object-based inheritance”) is another form of compo-
sition that side-steps many of the problems related to class-based inheritance [24]. In
contrast to traits, delegation is designed to supportdynamiccomponent adaptation.

8 Conclusions and Future Work

This paper has introduced traits, a simple compositional model for building and struc-
turing object-oriented programs. Traits are composed using a set of operators — sym-
metric combination, exclusion, and aliasing — that are carefully designed so that they
allow a fair amount of composition flexibility without being subject to the problems and
limitations that we have identified for mixins and multiple inheritance.

Thanks to the favorable composition properties, traits are an ideal extension for sin-
gle inheritance languages. Traits are completely backwards compatible with Smalltalk
and do not require modifying or extending the method syntax of the underlying lan-
guage. Furthermore, the flattening property guarantees optimal understandability of the
resulting code, because it is always possible to both view and edit the code as if it were
written using single inheritance.

Having the right programming tools has proven to be crucial for giving the program-
mer the maximum benefit from traits. In our Squeak-based implementation, we changed
the browser so that it allows the programmer to switch seamlessly between the different
views and emphasizes the glue methods that define how the traits are connected.
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We successfully used traits for refactoring the collection hierarchy, which is a strong
indication for the usability of traits for realistic and non-trivial problems. It also showed
that traits are suitable for modularizing classes that are already built, and that they raise
the level of abstraction when building new classes. As we worked with the refactored
hierarchy, we were impressed with the power of the flattening property, which made
understanding classes that are built from composite traits quite a simple matter.

As future work we would like to (1) evaluate the impact of the introduction of
namespaces and encapsulation on the flattening property, (2) consider the effects of
allowing traits to specify state variables, (3) extend trait composition so that it can
replace inheritance, (4) evaluate the possibility of using traits to modify the behaviour
of individual instances at run-time, (5) develop a type systems for traits and identify
the relationships between traits and interfaces, and (6) further explore the application
of traits to the refactoring of complex class hierarchies.

We also plan to consider how best to add traits to Java, where both the type system
and the syntax make the simple approach that works so well for Smalltalk more prob-
lematic. For example, the type of a method in a trait may depend on the class in which it
is eventually used; Java’s current type system cannot express this. There are also some
annoying syntactic problems, such as the name of a constructor being the same as the
name of the class: what should be the name of a constructor in a trait? However, we be-
lieve that these problems can be overcome without making major changes to the spirit
of Java.
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