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Abstract
We study the use of predictions by multiple ex-
perts (such as machine learning algorithms) to
improve the performance of online algorithms. In
particular, we consider the classical rent-or-buy
problem (also called ski rental), and obtain algo-
rithms that provably improve their performance
over the adversarial scenario by using these pre-
dictions. We also prove matching lower bounds
to show that our algorithms are the best possible,
and perform experiments to empirically validate
their performance in practice.

1. Introduction
Uncertainty plays a central role in many scenarios where
an optimizer is faced with the decision between two alter-
natives with very different costs. The first alternative has
a recurring small cost (“rent”) while the second alternative
presents a large cost upfront (“buy”) but nothing thereafter.
While long term use justifies the large cost to buy, renting
is the preferred option for short term use. The uncertainty
arises in the length of use, which is typically not known
in advance. These decisions arise in our everyday lives,
such as in deciding whether to buy a house or rent. The
same question arises in much larger contexts, such as in a
corporate decision of whether to invest in a new data center
or rent space in an existing one. In optimization, such prob-
lems constitute the rent-or-buy question, and are modeled
as the widely-studied ski rental problem (Karlin et al., 1994;
Lotker et al., 2008; Khanafer et al., 2013; Kodialam, 2014).

Two popular paradigms for dealing with uncertainty are
online algorithms (Borodin & El-Yaniv, 1998) that are de-
signed to work without knowing the input to the problem in
advance, and machine learning that makes future predictions
by fitting a model to prior data. Recent work has begun to
incorporate machine learned predictions into the design of
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online algorithms (Medina & Vassilvitskii, 2017; Lykouris
& Vassilvitskii, 2018; Kumar et al., 2018; Mitzenmacher,
2018) to improve their performance. The goal is to incor-
porate the ML predictions in a manner that improves the
performance of the online algorithm if the predictions are
accurate (a design goal called consistency), but not degrade
it significantly if the predictions are inaccurate (a design
goal called robustness). Note that these properties are en-
sured by the algorithm without any knowledge of the quality
of the predictions.

While the previous studies focused on using prediction in-
puts from a single ML algorithm or expert, we study the
more general setting where we get predictions from multiple
experts. This is often the case in practice, where different
ML algorithms use a variety of models and techniques to
arrive at different sets of predictions for the future. Indeed,
the problem of combining predictions from multiple experts
to obtain a policy that matches the performance of the best
expert has been extensively studied in the context of online
learning (Jacobs et al., 1991; Chen et al., 1999; Hansen,
1999; Masoudnia & Ebrahimpour, 2014). In this paper, we
study the use of multiple predictions to improve the per-
formance of online algorithms, namely for the classical ski
rental problem. Our goal is to match the performance of
the best expert, while also ensuring that the algorithm does
not degrade significantly compared to the worst-case perfor-
mance of the best online algorithm if all the experts have
large prediction errors.

The ski rental problem. In the ski rental problem, a skier
needs to decide between buying skis at cost b and renting
them at the cost of 1 per day. It is easy to see that if the
ski season last more than b days, then the skier should buy
skis at the start of the season; else, she should rent skis
throughout the season. But, the skier does not know the
length of the ski season in advance, and only learns it once
the season ends. It is well-known that the best deterministic
strategy for the skier is to rent for b days and buy after that
if the ski season continues longer. This algorithm achieves a
competitive ratio of 2.1 Our goal is to use experts (e.g., ML
algorithms) that provide estimates of the length of the season
to improve the performance of this online algorithm. The

1The competitive ratio of an online algorithm is the worst case
ratio of the algorithm’s cost to the optimal cost.
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ski-rental problem (Karlin et al., 1994; Lotker et al., 2008;
Khanafer et al., 2013; Kodialam, 2014) and its many vari-
ations such as TCP acknowledgment (Karlin et al., 2003),
the parking permit problem (Meyerson, 2005), and snoopy
caching (Karlin et al., 1988) model the rent or buy question
that is at the heart of decision making in many different
settings, and have consequently been extensively studied in
the literature.

Consistency and Robustness. Following (Lykouris & Vas-
silvitskii, 2018; Kumar et al., 2018), we use the notions of
consistency and robustness to evaluate our algorithms. We
say that an algorithm alg is α-consistent if alg ≤ α · opt
provided at least one of the k experts provides the correct
prediction. (Note that the algorithm does not know the iden-
tity of the correct predictor.) More generally, if the best
expert has a prediction error of ∆, i.e., the absolute differ-
ence between her prediction and the actual outcome is ∆,
then an α-consistent algorithm ensures alg ≤ α · (opt+ ∆).
For robustness, we use the standard notion of competitive
ratio: i.e., an algorithm is β-robust if for all outcomes,
alg ≤ β · opt. We call α and β the consistency factor and
robustness factor respectively. Observe that the classical
online algorithm that does not use predictions has consis-
tency and robustness factors of 2. Our goal is to improve the
consistency factor without degrading the robustness factor
significantly.

Related work. Our study borrows the concepts of robust-
ness and consistency from (Lykouris & Vassilvitskii, 2018)
and motivation for a thorough understanding of the ski-
rental problem with predictions from (Kumar et al., 2018).
The former considered the online caching problem with
predictions. It extends the Marking algorithm to incorpo-
rate predictions ensuring both robustness and consistency.
The latter extends the models to analyze non-clairvoyant
scheduling using predictions of the job lengths. As noted
above, we differ from these studies in one significant way by
considering predictions from multiple experts which makes
the problem considerably more challenging. Moreover, we
obtain matching upper and lower bounds for our setting,
thereby deriving the precise values of the optimal consis-
tency and robustness factors.

Other well-studied models of computation under uncertainty
include robust optimization (e.g., (Kouvelis & Yu, 2013))
and stochastic optimization (e.g., (Bubeck & Slivkins, 2012;
Mirrokni et al., 2012; Mahdian et al., 2012)). While the for-
mer focuses on providing provable guarantees for solutions
to particular realizations of uncertain input, the latter gener-
ally aims to provide provably good algorithms for stochastic
input or input from some known distributions. In contrast,
in our study, we make no assumptions on the input.

Our Contributions. Our main contribution in this paper is
to develop algorithms that achieve consistency and robust-

ness for the ski rental problem in the presence of predictions
provided by multiple experts.

• We first consider the idealized scenario where the best
expert makes the correct prediction. For every value
of k, we precisely obtain the best deterministic consis-
tency ratio achievable in this setting by giving matching
upper and lower bounds. We also show that similar
techniques lead to tight results for randomized algo-
rithms as well. (Section 2)

• Next, we extend the above analysis to show that
a slightly modified version of this algorithm also
achieves the best consistency ratio in the more real-
istic scenario of non-zero prediction errors. (Section 3)

• We then incorporate robustness into our algorithm. We
slightly modify the algorithm such that it continues to
have a consistency ratio that almost matches the opti-
mal value, but also guarantees robustness in the form of
a worst-case competitive ratio that is only marginally
worse than 2, which is the best ratio in the absence of
expert advice.

• Finally, we evaluate these algorithms experimentally
and show that for natural models of prediction error,
our algorithms achieve near-optimal competitive ratios.
We also demonstrate the benefits of using multiple
experts over a single expert, and empirically prescribe
the “right” number of ML predictions to use in this
setting.

The Benefit of Using Multiple Experts: Lowering Pre-
diction Error. We close this section by justifying the use
of multiple experts in our setting. In particular, we show
that even the use of two experts significantly reduces the
prediction error compared to a single expert, thereby com-
pensating for the slightly weaker consistency bounds. To
illustrate the dependence of the prediction error on the num-
ber of experts, let us consider a simple setting where the
prediction of an input parameter made by each individual
expert has an independent, additive Gaussian noise given by
the standard normal variateN (0, 1). If there is only a single
expert, then the prediction error is given by the half-normal
distribution

f(x) =

√
2

π
exp

(
−x

2

2

)
for 0 ≤ x <∞

whose mean is
√

2
π . Now, consider the setting of two ex-

perts, and let X1 and X2 be their respective prediction er-
rors, which are independent half normal variates. Since the
algorithm competes with the best expert, the overall pre-
diction error of this ensemble of two experts is given by
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min(X1, X2) which is distributed as follows:
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The mean prediction error is then given by
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. Therefore, for independent
standard Gaussian noise, the mean prediction error de-
creases by a factor of

√
2

2(
√

2−1)
≈ 1.707 when a single expert

is supplemented with a second independent expert. Adding
more experts decreases the mean prediction error further.
A simple analysis, which we also empirically verify in our
experiments later, shows that the prediction error rapidly
decreases up to around 3 − 5 experts and then decreases
slowly thereafter (to the eventual limiting value of 0). This
suggests that it might be sufficient to use 3− 5 ML predic-
tors in many practical scenarios for lowering the prediction
error to a small value.

2. Ideal Prediction Scenario: An Expert with
Zero Prediction Error

In this section, we design algorithms for the ski-rental prob-
lem in the idealized scenario where the best expert predicts
the input correctly. This is an easy case for the single expert
scenario treated previously in the literature: since the pre-
diction of the solitary expert must be correct, the problem
is equivalent to the corresponding offline problem where
the input is known to the algorithm. But, as the number
of experts increases, this increases the uncertainty in the
input since the algorithm has to choose from a larger set
of different predictions, only one of which is correct. Note
that the identity of the correct expert is unknown to the
algorithm. Hence, the consistency ratio of the algorithm
gradually worsens from 1 for a single expert to the eventual
limiting value of 2 with an infinite number of experts (which
is equivalent to the worst-case online setting as discussed
earlier). Our goal is to find the best algorithm if there are k
experts providing advice, for any finite k.

Even if there are only two experts, the situation is already
somewhat complicated. In this case, the algorithm does not
know which of the experts is making the accurate prediction.
Let us call their respective predictions a1 and a2. There are
three possible scenarios:

• Both a1 ≥ b and a2 ≥ b: In this case, irrespective
of which expert is correct, the algorithm has a unique
optimal strategy, that of buying at time 0. Clearly,
alg = opt.

• Both a1 < b and a2 < b: Again, irrespective of which
of expert is correct, the algorithm has a unique optimal
strategy of always renting. As in the previous case, we
get alg = opt.

• a1 < b but a2 ≥ b: This is the interesting case, since
the two experts are providing predictions that would
make the algorithm behave differently. The first expert
is advising the algorithm to always rent while the sec-
ond expert is suggesting that the algorithm should buy
at time 0. Our first observation is that neither of these
two strategies, by themselves, yields a bounded consis-
tency factor. If the algorithm decides to rent always,
and the second expert is correct, then alg = a2 while
opt = b, which has an unbounded ratio. On the other
hand, if the algorithm decides to buy at time 0 and
the first expert is correct, then alg = b and opt = a1,
which also has an unbounded ratio.

To get some intuition for our algorithm, let us consider
two extreme cases. For both cases, assume that a2 >>
b, say a2 > 2b. First, consider the scenario where
a1 = b−ε (think of ε > 0 as a small number compared
to b). In this case, if the algorithm decides to rent till
a1, and the second expert turns out to be correct, then
alg ≥ min(a1 + b, a2) = 2b − ε irrespective of the
algorithm’s strategy after time a1. Since opt = b, the
consistency ratio is ≈ 2 and the algorithm fails to take
advantage of the learned advice it receives from the
two experts. Therefore, in this case, the algorithm
should buy before a1. Since either a1 or a2 is corrects,
once the algorithm decides to buy before a1, there is no
incentive for it to buy at any time other than 0. Hence,
in this case, the algorithm should buy at time 0, which
yields a consistency ratio of b

a1
. Now, consider the

second extreme case of a1 = ε. In this case, if the
algorithm decides to buy at time 0, then alg = b. But,
opt = ε if the first expert turns out to the correct, which
makes the consistency ratio unbounded. Therefore, in
this case, the algorithm should buy at time a1 rather
than at time 0, which has a consistency ratio of b+a1b .

Our general strategy is to balance these two ratios aris-
ing in the two extreme situations. More precisely, sup-
pose x is the solution to

b

x
=
b+ x

b
. (1)

The algorithm follows different strategies based on the
value of a1: if a1 ≥ x, then the algorithm buys at
time 0, whereas if a1 < x, then the algorithm rents
till time a1 and then buys if the input is larger than a1.
Note that the algorithm ignores the precise value of
a2, as long as a2 ≥ b. The following theorem is an
easy consequence of the above case analysis; hence,
we omit the proof for brevity.
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Theorem 1. For the case of zero prediction error, the
above algorithm achieves a consistency ratio of φ =√

5+1
2 = 1.618 . . . for two experts.

Remark: φ is also known as the golden ratio, and arises
in a surprisingly wide range of settings in nature and
mathematics!

Interestingly, this consistency ratio is also the best
achievable by any deterministic algorithm for two ex-
perts. To see this, consider an instance of the problem
where a1 = (φ− 1) · b and a2 = 2b. In this case, the
choices available to the algorithm are to buy at time 0
or at time a1. (Any other choice is strictly dominated
by these two choices: if the algorithm buys at a time
between 0 and a1, that is strictly worse than buying at
time 0; and, if the algorithm buys at a time after a1,
that is strictly worse than buying at time a1.) Now,
consider the following adversary strategy: if the algo-
rithm buys at time 0, then, the correct prediction is a1,
and if the algorithm buys at time a1, then the correct
prediction is a2. A simple calculation now shows that
the consistency ratio in either of these cases is φ.

Theorem 2. For the case of zero prediction error, no
deterministic algorithm can achieves a consistency
ratio that is strictly better than φ =

√
5+1
2 = 1.618 . . .

for two experts.

Our main result in this section is to generalize the algorithm
above to k experts. The algorithm first partitions the seg-
ment of the number line [0, b) into k disjoint segments using
a set of k − 1 breakpoints x1, x2, . . . , xk−1. These break-
points are derived as the solution to the following system of
equations (note that b is constant, so values of xi are derived
as fractions of b):

b

x1
=
b+ x1

x2
=
b+ x2

x3
= . . . =

b+ xk−2

xk−1
=
b+ xk−1

b
.

(2)
These equations are obtained as the natural generalization
of Eq. (1) to k > 2. To obtain a closed form solution for
this system of equations, let us denote yi := xi/b. Then,

1

y1
=

1 + y1

y2
=

1 + y2

y3
= . . . =

1 + yk−2

yk−1
= 1 + yk−1.

(3)
Solving these equations yields:

yt =

t∑
i=1

yi1 for 2 ≤ t ≤ k − 1 (4)

where y1 is given by

k∑
i=1

yi1 = 1. (5)

x0 = 0, xk = b
for i = 1 to k − 1 do
xi = b · yi (Eqs. (4) and (5))
if there is no prediction in Si = [xi−1, xi) then

Rent till xi−1 and buy at xi−1 if the input ex-
ceeds xi−1; exit

end if
end for
Rent forever

Figure 1. The algorithm for k experts with zero error

The algorithm is now defined in terms of the solutions to
these equations, and is given in Fig. 1. The algorithm parti-
tions the range [0, b) into segments [xi−1, xi) given by the
above equations. If every segment has a prediction, then
the algorithm rents forever; else, the algorithm rents till
the beginning of the first interval that does not contain any
prediction and buys at that time if the input is longer.

Before we analyze this algorithm, let us match this descrip-
tion of the algorithm with the one we previously gave for
two experts: the intuition for k = 2 will be crucial in our
analysis of the algorithm for general k. For k = 2, the sys-
tem of equations Eq. (2) reduces to a single equation, namely
Eq. (1) that we described earlier. Suppose the solution to
this equation is x; then, our algorithm for general k creates
two segments [0, x) and [x, b), and uses the following rules:

• If neither expert predicts a value in [0, x), then the
algorithm buys at time 0.

• If at least one expert predicts a value in [0, x) but nei-
ther predicts one in [x, b], then the algorithm rents till
time x and buys at x if the input is larger than x.

• If each segment [0, x) and [x, b) has exactly one ex-
pert’s advice in it, then the algorithm always rents.

First, we reconcile the superficial dissimilarities of this al-
gorithm with the one we presented earlier for two experts.

• If both predictions are smaller than b, then the previous
algorithm always rents while the new algorithm only
does so if both segments are occupied. But, if only
the first segment [0, x) is occupied, then the fact that
one of the experts’ predictions is correct implies the
input must be smaller than x. Thus, in this case, the
algorithm ends up renting always. The only case where
the two algorithms differ in their strategy is when both
experts predict a value in [x, b). In this case, the previ-
ous algorithm always rents but the new algorithm buys
at time 0. It turns out that while the former strategy



Rent-or-Buy with Expert Advice

is optimal, the latter achieves a consistency ratio no
worse than b/x, which is the overall consistency ratio
as well. Hence, either strategy can be used in this case.

• Finally, we consider the case that one of the experts
predicts a value smaller than b and the other experts
predicts a value greater than b. The algorithmic choice
then depends on the value of the first (smaller) predic-
tion. If it is larger than x, then both algorithms buy
at time 0. However, there is a difference between the
algorithms when the value of the smaller prediction is
less than x. In this case, the previous algorithm buys at
the first prediction, while our current algorithm buys at
time x. Although the strategies differ, they achieve an
identical consistency ratio of 1 +x since the prediction
can be arbitrarily close to x.

Thus, we have established that in spite of superficial dissim-
ilarities, the algorithm for k experts essentially follows the
same strategy as the algorithm for the special case of two
experts. Next, we use this intuition to derive the competitive
ratio of the general algorithm.

Theorem 3. For the case of zero prediction error, the above
algorithm achieves a competitive ratio of ηk for k experts,
where ηk is the positive real root of the following equation:

ηk =

k−1∑
r=0

η−rk . (6)

Remark. The solution to Eq. 6 is referred to as the k-acci
constant in mathematics. It is an increasing function of k,
starting at 1 for k = 1 and converging to 2 in the limit
of k going to ∞. It derives its name from the fact that it
is the limit of the ratio of two consecutive terms in the k-
acci sequence, which is a generalization of the well-known
Fibonacci sequence where the last k numbers are added
to obtain the next number of the sequence. (So, setting
k = 2 yields the Fibonacci sequence, and the corresponding
Fibonacci constant is the golden ratio φ that we encountered
in Theorem 1.)

Proof of Theorem 3. We do a case analysis. If all the seg-
ments are occupied and the algorithm chooses to rent always,
it is clear that alg = opt since all the predictions are smaller
than b. So, let us consider the scenario where the first un-
occupied segment is Si and the algorithm rents till time
xi−1 and buys at xi−1 if the input is larger. We consider
two cases. First, suppose the input is smaller than xi−1.
Then, clearly alg = opt since the input is smaller than b.
Next, suppose the algorithm buys at time xi−1. In this case,
the input exceeds xi−1. But, note that since Si is unoccu-
pied, and one of the predictions is correct, the input cannot
terminate in Si. Hence, it must be the case that the input

≥ xi, which is the start of the next segment. It follows
that alg = b + xi−1 while opt ≥ xi, which implies that
the consistency ratio is at most b+xi−1

xi
. Now, we note that

Eq. (6) is obtained by rewriting Eq (5) in terms of the ratio
ηk = b/x1 = 1/y1. Therefore, ηk given by the solution to
Eq. (2) satisfies ηk = b+xi−1

xi
for all values of i in Eq. (2).

It follows that the consistency ratio of the algorithm is given
by ηk in Eq. (6), thereby proving the theorem.

Next, we show that the above consistency ratio is the best
achievable by deterministic algorithms for every value of k,
by showing matching lower bounds.

Theorem 4. For the case of zero prediction error and k ex-
perts, no deterministic algorithm can achieve a consistency
ratio that is strictly better than ηk in Eq. (6).

Proof. The main idea in the construction of this lower
bound is the same as the lower bound sketched for the
special case of two experts in Theorem 2. Namely, we cre-
ate an instance where the choices available to the algorithm
precisely realize each of the ratios given in Eq. (2). Suppose
there are k experts, and the prediction of the ith expert, for
1 ≤ i ≤ k − 1, is given by xi = b · yi, where yi satisfies
Eqs. (4) and (5). The prediction of the kth expert is 2b. In
other words, all the predictions, except that of the last expert,
are precisely at the breakpoints that we used to define the
segments in the algorithm. First, note that if the algorithm
chooses to buy at a time that is strictly inside any of the
segments, i.e., neither at a breakpoint nor at time 0, then its
solution is strictly dominated by an alternative strategy of
buying at the breakpoint at the beginning of the segment (or
at time 0 for the first segment). This is because the actual
input cannot terminate within a segment since one of the
predictions must be correct. So, if the algorithm decides to
buy at time xi−1, i.e., at the beginning of the ith segment
for any 1 ≤ i ≤ k, then the adversary uses the following
strategy: For 1 ≤ i ≤ k, the ith expert is correct and the
actual sequence is of length xi for 1 ≤ i ≤ k − 1 and of
length 2b for i = k. Note that this choice of the adversary
realizes one of the ratios in Eq. (2) as the consistency ratio,
and hence, the consistency ratio of the algorithm cannot be
better than ηk given by Eq. (6). This completes the proof of
the lower bound.

2.1. Randomized Algorithms

Although this paper primarily focuses on deterministic al-
gorithms, we make a digression here and briefly discuss
randomized algorithms for this problem. Consider the case
of k = 2, where one of the predictions is > b and the other
prediction is x ≤ b. A randomized algorithm is simply a
probability distribution over [0, b] that defines when to buy.
First, note that this distribution is discrete wlog, concen-
trated at the values 0 and x. This is because there is no
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benefit to an algorithm to buy between 0 and x – it might as
well buy at 0 – or between x and 1 – it might as well buy at x.
Let the probability of buying at 0 be p; then the probability
of buying at x is 1 − p. There are two possible outcomes:
either the actual sequence ends at x or extends beyond b.
The value of opt in these two cases are respectively x and b.
Correspondingly, the expected cost of alg in these two cases
are respectively p · b+ (1− p)x and p · b+ (1− p)(b+ x).
Setting

p · b+ (1− p)x
x

=
p · b+ (1− p)(b+ x)

b

and solving for p gives p = x2

x2−x+1 , which is the probability
distribution used by the algorithm to decide when to buy.
Then, the ratio alg

opt = b
x2−x+1 is maximized at x = b/2 for

the range x ∈ [0, b]. Correspondingly, the maximum value
of this ratio is 4/3. The next theorem follows.

Theorem 5. For the case of zero prediction error, the above
randomized algorithm achieves a competitive ratio of 4/3
for 2 experts.

This theorem can be generalized further to more than 2
experts by using similar techniques as above, and can also
be shown to be tight in that no randomized algorithm can
perform better. We defer these results to the full version of
the paper due to space constraints.

3. Experts with Non-Zero Prediction Errors
In the previous section, we described an algorithm that ob-
tains the optimal consistency ratio for k expert predictions,
under the assumption that one of the predictions is correct.
In this section, we consider the more realistic scenario where
none of the experts is guaranteed to provide an exactly cor-
rect prediction. Naturally, the performance of our algorithm
will depend on how good the predictions are. Namely, we
define the prediction error, denoted ∆, to be the smallest
absolute difference between the prediction and the actual
outcome among all experts.

We slightly modify the partitioning of the interval [0, b) from
the previous section by defining a new set of breakpoints
z0, z1, . . . , zk as follows. First, z0 = 0 and zk = b. These
breakpoints are derived as the solution to the following
system of equations:

b

z1
=
b+ z1+z2

2

z2
= . . . =

b+ zk−2+zk−1

2

zk−1
=
b+ zk−1+b

2

b
.

(7)
The algorithm is now defined in terms of the solutions to
these equations, and is given in Fig. 2. The algorithm parti-
tions the range [0, b) into segments [zi−1, zi) given by the
above equations. If every segment has a prediction, then
the algorithm rents forever; else, the algorithm rents till

z0 = 0, zk = b
for i = 1 to k − 1 do
zi is given by Eq. (7)
if there is no prediction in [zi−1, zi) then

if i = 1 then
Buy at time 0; exit

else
Rent till zi−1+zi

2 and buy at zi−1+zi
2 if the

input exceeds zi−1+zi
2 ; exit

end if
end if

end for
Rent forever

Figure 2. The algorithm for k experts with non-zero error

the middle of the first interval that does not contain any
prediction and buys at that time if the input is longer. The
only exception is that if the first interval does not contain a
prediction, then the algorithm buys at time 0.

Note that b is a constant; hence, the values of zi are obtained
from Eq. (7) as fractions of b. Let us denote the ratio ob-
tained as the solution to Eq. (7) by γk. The proof of the
next theorem is a case analysis similar to Theorem 3, and is
hence deferred to the full version of the paper due to space
constraints.

Theorem 6. For prediction error ∆ and k experts, the al-
gorithm given in Fig. 1 satisfies

alg ≤ γk · (opt + ∆). (8)

We close this section by stating that the guarantee provided
by Theorem 6 is the best possible in terms of the ratio of

alg
opt+∆ for any deterministic algorithm. The proof, which
follows the same strategy as Theorem 4 is deferred to the
full version due to space constraints.

Theorem 7. For prediction error ∆ and k experts, if a
deterministic algorithm provides a guarantee alg ≤ ζ ·
(opt + ∆), then ζ ≥ γk.

4. A Robust and Consistent Algorithm
Although the algorithm in Fig. 1 obtains the best achievable
guarantee of alg in terms of opt and ∆, the competitive
ratio alg/opt can be unbounded for ∆ > 0. For instance,
if there is a single expert whose prediction is larger than b,
the algorithm buys at time 0. However, if the actual input is
ε > 0, then alg = b and opt = ε, resulting in a competitive
ratio of b/ε which is unbounded since ε can be arbitrarily
small. Contrast this with the best online algorithm in the
absence of any expert advice (let us call this the “no ad-
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(a) As the number of experts increases, the
competitive ratio of the consistent algo-
rithm improves significantly even for large
errors in the predictions

(b) The relative performance of the robust
and consistent algorithms

(c) The trade-off between robustness and
consistency is clearly shown as the predic-
tion error increases

Figure 3. The relative performance of the consistent, robust, and hybrid algorithms. All results are averaged over 10000 trials

vice” algorithm). This algorithm rents till time b and then
buys, yielding an alg/opt ratio of at most 2 in all scenarios.
From a conceptual perspective, this implies that while our
algorithm in Fig. 1 takes advantage of good expert predic-
tions and obtains a competitive ratio better than 2 in this
case, it suffers a worse competitive ratio than the no advice
algorithm if the predictions turns out to be inaccurate. In
this section, we desire the best of both worlds: an algo-
rithm that does much better than the no advice algorithm
on being provided good expert predictions, but does not do
much worse than the no advice algorithm if the predictions
are of poor quality. Following (Lykouris & Vassilvitskii,
2018; Kumar et al., 2018), we call this property of not de-
grading significantly compared to the no advice algorithm
robustness of the algorithm. For brevity, we will call this
the hybrid algorithm.

In this section, we will denote the consistency factor and
robustness factor by α and β respectively. To explore
algorithms that are simultaneously consistent and robust, let
us first consider the setting of a single expert k = 1. (This
analysis is the same as (Kumar et al., 2018) since it is for
a single expert, but is nevertheless useful for extending to
the more general case of multiple experts later.) In this case,
there are two possibilities:

• The prediction is < b: In this case, our algorithm from
Fig. 1 would always rent, which is clearly not robust,
e.g., in a situation where the input actually turned out
to be unboundedly large. But, this is easy to fix. We
can simply use the no advice algorithm instead, which
rents till time b and then buys if the input is ≥ b. In
this case, the algorithm continues to have a consistency
factor α = 1, while the robustness factor β = 2.

• The prediction is ≥ b: This is the trickier situation.
Here, our algorithm from Fig. 1 would buy at time
0 and achieve α = 1, but have an unbounded β. To
make the algorithm more robust, let us instead rent till

time λ · b for some “meta parameter” λ ∈ [0, 1]. If the
expert is correct, then alg = (1 + λ)b and opt = b,
yielding α = 1 + λ. (Compare this to the best value
of α, which is 1.) On the other hand, to estimate the
robustness parameter, note that the worst case scenario
for the algorithm is that the input ends immediately
after the algorithms buys at time λ · b. In this case,
alg = (1 + λ)b and opt = λ · b, thereby yielding
β = 1 + 1/λ. It is not hard to show that this is indeed
the best tradeoff achievable between α and β, but we
omit the proof for brevity and move on to the case of
multiple experts.

Now, even if the number of experts is > 1, the main modifi-
cation that ensures robustness is that the algorithm should
not buy too early. In particular, the following lemma shows
that the robustness parameter only depends on the earliest
time that the algorithm buys at.

Lemma 1. For any algorithm, if the earliest time that it
buys is λb across all possible expert predictions, then the
robustness factor β = 1 + 1/λ.

Proof. If we fix the time when an algorithm buys (say bx),
then the worst outcome is realized when the input ends
immediately after the algorithm buys. In this case alg =
b+ bx and opt = bx yielding a competitive ratio of 1 + 1/x.
Clearly, the robustness factor is then decided by the worst
competitive ratio which is achieved when the algorithm buys
the earliest, i.e., at time λ · b. The lemma follows.

In our algorithm, we will never buy in the interval [0, λb),
thereby ensuring a robustness factor of 1 + 1/λ. Given this
robustness factor, what is the best consistency factor α that
we can achieve? Recall that we would ideally like to have
α ' ηk for k experts, which is the best achievable value
by a non-robust algorithm. We use the same ideas as in
Section 2. Namely, we create breakpoints x1 through xk−1
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x0 = λb, xk = b
for i = 1 to k − 1 do
xi = b · yi (Eqs. (10) and (11)
if there is no prediction in [xi−1, xi) then

Rent till xi−1 and buy at xi−1 if the input ex-
ceeds xi−1; exit

end if
end for
Rent forever

Figure 4. The hybrid algorithm for k experts

satisfying

b+ λb

x1
=
b+ x1

x2
=
b+ x2

x3
= . . . =

b+ xk−2

xk−1
=
b+ xk−1

b
.

(9)
Denoting yi := xi/b, we have

yt =
y1(1 + yt−1)

1 + λ
for 2 ≤ t ≤ k − 1 (10)

where y1 is given by

k−1∑
i=1

(
y1

1 + λ

)i
+

yk1
(1 + λ)k−1

= 1. (11)

Using the above equations, we now define the algorithm in
Fig. 4, which is similar to the algorithm in Fig. 1 except that
it never buys before time λb.

The next theorem, which establishes the consistency parame-
ter of the algorithm, follows the proof strategy in Theorem 3
and hence, the proof is deferred to the full version.
Theorem 8. The consistency ratio of the algorithm in Fig. 4
is given by η̃k for k experts, where η̃k is the positive real
root of the following equation:

η̃ =

k−1∑
r=0

η̃−r + λ · η̃−k. (12)

Next, we show that the above consistency ratio is tight for de-
terministic algorithms by showing a matching lower bound
for every value of k. Again, the lower bound construction
follows the same structure as in Theorem 4 and hence, the
proof is deferred to the full version.
Theorem 9. For any deterministic algorithm with a robust-
ness ratio β ≤ 1 + 1/λ and k experts, the best consistency
ratio achievable is given by η̃k from Eq. (12).

5. Experiments
We test the efficacy of our algorithms via simulations. We
set the buying cost b = 1. (The actual value of b is unimpor-

tant because we can scale all values by b.) We choose the
actual outcome x to be a value uniformly drawn from [0, 2b].
We vary the number of experts from 1 to 8 and set their asso-
ciated predictions to x+ ε where ε is drawn from a normal
distribution of mean 0 and standard deviation σ. To verify
consistency and robustness of our algorithms, we vary σ
from 0 to 2. Finally, for the algorithm in Fig. 4, we consider
values of 0.1, 0.5, and 0.9 for the meta parameter λ. We
label the algorithm defined in Figure 1 consistent; it’s exten-
sion to handle non-zero prediction errors (see Section 3) as
robust; and the robust and consistent algorithm in Section 4
as hybrid. Figure 3 illustrates the relative performance of
our algorithms. We make three observations.

First, using more experts is better. The advantage of using
more experts is clearly illustrated in Figure 3(a). As the
number of experts increases, the consistent algorithm tends
to perform significantly better and does not even require
explicit robustness adjustments.

Second, the robust algorithm is useful when the prediction
error is large. The trade-off between the robust and consis-
tent algorithms is shown in Figure 3(b). As the consistent
algorithm tries to mimic the best expert, it’s performance
is closely tied to the best expert’s performance. On the
other hand, the robust algorithm does well in this range as
it does not depend on the expert’s advice at all. This is
clearly observed in Figure 3(b). The competitive ratio of the
robust algorithm stays constant even as the prediction error
increases.

Third, in the absence of any knowledge of the prediction
errors, the hybrid algorithm with the robust parameter λ
can help achieve good performance by choosing a suitable
value of λ. The performance of the hybrid algorithm for two
values of λ ∈ {0.1, 0.5, 0.9} is shown in Figure 3(c). Even
as the consistent algorithm outperforms the hybrid algorithm
for all values of λ for small prediction errors, the hybrid
algorithm does better as the prediction error increases.

6. Conclusions
In this paper, we initiate the study of improving the worst-
case performance of online algorithms by incorporating
predictions made by multiple experts (typically ML algo-
rithms). In particular, we study the well-known ski rental
problem in this framework. We develop algorithms that
smoothly trade off between consistency and robustness, and
also obtain tight upper and lower bounds on the consistency
ratio as a function of the number of experts k. We believe
this study, along with the others before it, will raise many
interesting questions on incorporating learned advice (e.g.,
from ML algorithms) into classical optimization problems
to improve the performance of online algorithms beyond
worst-case bounds.
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