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Abstract

Deep neural networks have become the state-
of-the-art models in numerous machine learning
tasks. However, general guidance to network ar-
chitecture design is still missing. In our work, we
bridge deep neural network design with numeri-
cal differential equations. We show that many ef-
fective networks, such as ResNet, PolyNet, Frac-
talNet and RevNet, can be interpreted as differ-
ent numerical discretizations of differential equa-
tions. This finding brings us a brand new per-
spective on the design of effective deep architec-
tures. We can take advantage of the rich knowl-
edge in numerical analysis to guide us in de-
signing new and potentially more effective deep
networks. As an example, we propose a linear
multi-step architecture (LM-architecture) which
is inspired by the linear multi-step method solv-
ing ordinary differential equations. The LM-
architecture is an effective structure that can be
used on any ResNet-like networks. In particu-
lar, we demonstrate that LM-ResNet and LM-
ResNeXt (i.e. the networks obtained by apply-
ing the LM-architecture on ResNet and ResNeXt
respectively) can achieve noticeably higher ac-
curacy than ResNet and ResNeXt on both CI-
FAR and ImageNet with comparable numbers of
trainable parameters. In particular, on both CI-
FAR and ImageNet, LM-ResNet/LM-ResNeXt
can significantly compress the original network-
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s while maintaining a similar performance. This
can be explained mathematically using the con-
cept of modified equation from numerical analy-
sis. Last but not least, we also establish a con-
nection between stochastic control and noise in-
jection in the training process which helps to
improve generalization of the networks. Fur-
thermore, by relating stochastic training strat-
egy with stochastic dynamic system, we can
easily apply stochastic training to the networks
with the LM-architecture. As an example, we
introduced stochastic depth to LM-ResNet and
achieve significant improvement over the origi-
nal LM-ResNet on CIFAR10.

1. Introduction
Deep learning has achieved great success in many machine
learning tasks. The end-to-end deep architectures have the
ability to effectively extract features relevant to the given
labels and achieve state-of-the-art accuracy in various ap-
plications (Bengio, 2009). Network design is one of the
central task in deep learning. Its main objective is to grant
the networks with strong generalization power using as few
parameters as possible. The first ultra deep convolutional
network is the ResNet (He et al., 2015b) which has skip
connections to keep feature maps in different layers in the
same scale and to avoid gradient vanishing. Structures oth-
er than the skip connections of the ResNet were also intro-
duced to avoid gradient vanishing, such as the dense con-
nections (Huang et al., 2016a), fractal path (Larsson et al.,
2016) and Dirac initialization (Zagoruyko & Komodakis,
2017). Furthermore, there has been a lot of attempts to
improve the accuracy of image classifications by modify-
ing the residual blocks of the ResNet. Zagoruyko & Ko-
modakis (2016) suggested that we need to double the num-
ber of layers of ResNet to achieve a fraction of a percent
improvement of accuracy. They proposed a widened ar-
chitecture that can efficiently improve the accuracy. Zhang
et al. (2017) pointed out that simply modifying depth or
width of ResNet might not be the best way of architecture
design. Exploring structural diversity, which is an alter-
native dimension in network design, may lead to more ef-
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fective networks. In (Szegedy et al., 2017), Zhang et al.
(2017), Xie et al. (2017), Li et al. (2017) and Hu et al.
(2017), the authors further improved the accuracy of the
networks by carefully designing residual blocks via in-
creasing the width of each block, changing the topology of
the network and following certain empirical observations.
In the literature, the network design is mainly empirical.It
remains a mystery whether there is a general principle to
guide the design of effective and compact deep networks.

Observe that each residual block of ResNet can be writ-
ten as un+1 = un + ∆tfn(un) which is one step of for-
ward Euler discretization of the ordinary differential equa-
tion (ODE) ut = f(u, t) (E, 2017). This suggests that there
might be a connection between discrete dynamic systems
and deep networks with skip connections. In this work, we
will show that many state-of-the-art deep network archi-
tectures, such as PolyNet (Zhang et al., 2017), FractalNet
(Larsson et al., 2016) and RevNet (Gomez et al., 2017),
can be consider as different discretizations of ODEs. From
the perspective of this work, the success of these network-
s is mainly due to their ability to efficiently approximate
dynamic systems. On a side note, differential equations
is one of the most powerful tools used in low-level com-
puter vision such as image denoising, deblurring, registra-
tion and segmentation (Osher & Paragios, 2003; Aubert
& Kornprobst, 2006; Chan & Shen, 2005). This may al-
so bring insights on the success of deep neural networks
in low-level computer vision. Furthermore, the connection
between architectures of deep neural networks and numer-
ical approximations of ODEs enables us to design new and
more effective deep architectures by selecting certain dis-
crete approximations of ODEs. As an example, we design a
new network structure called linear multi-step architecture
(LM-architecture) which is inspired by the linear multi-step
method in numerical ODEs (Ascher & Petzold, 1997). This
architecture can be applied to any ResNet-like networks.
In this paper, we apply the LM-architecture to ResNet and
ResNeXt (Xie et al., 2017) and achieve noticeable improve-
ments on CIFAR and ImageNet with comparable numbers
of trainable parameters. We also explain the performance
gain using the concept of modified equations from numeri-
cal analysis.

It is known in the literature that introducing randomness
by injecting noise to the forward process can improve gen-
eralization of deep residual networks. This includes s-
tochastic drop out of residual blocks (Huang et al., 2016b)
and stochastic shakes of the outputs from different branch-
es of each residual block (Gastaldi, 2017). In this work
we show that any ResNet-like network with noise injec-
tion can be interpreted as a discretization of a stochastic
dynamic system. This gives a relatively unified explana-
tion to the stochastic learning process using stochastic con-
trol. Furthermore, by relating stochastic training strategy

with stochastic dynamic system, we can easily apply s-
tochastic training to the networks with the proposed LM-
architecture. As an example, we introduce stochastic depth
to LM-ResNet and achieve significant improvement over
the original LM-ResNet on CIFAR10.

1.1. Related work

The link between ResNet (Figure 1(a)) and ODEs were first
observed by E (2017), where the authors formulated the
ODE ut = f(u, t) as the continuum limit of the ResNet
un+1 = un + ∆tfn(un). Liao & Poggio (2016) bridged
ResNet with recurrent neural network (RNN), where the
latter is known as an approximation of dynamic systems.
Sonoda & Murata (2017) and Li & Shi (2017) also regarded
ResNet as dynamic systems that are the characteristic lines
of a transport equation on the distribution of the data set.
Similar observations were also made by Chang et al. (2017;
2018); they designed a reversible architecture to grant sta-
bility to the dynamic system. On the other hand, many deep
network designs were inspired by optimization algorithms,
such as the network LISTA (Gregor & LeCun, 2010) and
the ADMM-Net (Yang et al., 2016). Optimization algo-
rithms can be regarded as discretizations of various types
of ODEs (Helmke & Moore, 2012), among which the sim-
plest example is gradient flow.

Another set of important examples of dynamic systems
is partial differential equations (PDEs), which have been
widely used in low-level computer vision tasks such as im-
age restoration. There were some recent attempts on com-
bining deep learning with PDEs for various computer vi-
sion tasks, i.e. to balance handcraft modeling and data-
driven modeling. Liu et al. (2010) and Liu et al. (2013) pro-
posed to use linear combinations of a series of handcrafted
PDE-terms and used optimal control methods to learn the
coefficients. Later, Fang et al. (2017) extended their mod-
el to handle classification tasks and proposed an learned
PDE model (L-PDE). However, for classification tasks, the
dynamics (i.e. the trajectories generated by passing data
to the network) should be interpreted as the characteristic
lines of a PDE on the distribution of the data set. This
means that using spatial differential operators in the net-
work is not essential for classification tasks. Furthermore,
the discretizations of differential operators in the L-PDE
are not trainable, which significantly reduces the network’s
expressive power and stability. Chen et al. (2015) proposed
a feed-forward network in order to learn the optimal non-
linear anisotropic diffusion for image denoising. Unlike the
previous work, their network used trainable convolution k-
ernels instead of fixed discretizations of differential oper-
ators, and used radio basis functions to approximate the
nonlinear diffusivity function. More recently, Long et al.
(2018) designed a network, called PDE-Net, to learn more
general evolution PDEs from sequential data. The learned
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PDE-Net can accurately predict the dynamical behavior of
data and has the potential to reveal the underlying PDE
model that drives the observed data.

In our work, we focus on a different perspective. First of
all, we do not require the ODE ut = f(u, t) associate to
any optimization problem, nor do we assume any differ-
ential structures in f(u, t). The optimal f(u, t) is learned
for a given supervised learning task. Secondly, we draw a
relatively comprehensive connection between the architec-
tures of popular deep networks and discretization schemes
of ODEs. More importantly, we demonstrate that the con-
nection between deep networks and numerical ODEs en-
ables us to design new and more effective deep network-
s. As an example, we introduce the LM-architecture to
ResNet and ResNeXt which improves the accuracy of the
original networks.

We also note that, our viewpoint enables us to easily ex-
plain why ResNet can achieve good accuracy by dropping
out some residual blocks after training, whereas dropping
off sub-sampling layers often leads to an accuracy drop
(Veit et al., 2016). This is simply because each residual
block is one step of the discretized ODE, and hence, drop-
ping out some residual blocks only amounts to modifying
the step size of the discrete dynamic system, while the sub-
sampling layer is not a part of the ODE model.

2. Numerical Differential Equation, Deep
Networks and Beyond

In this section we show that many existing deep neural
networks can be consider as different numerical schemes
approximating ODEs of the form ut = f(u, t). Based
on such observation, we introduce a new structure, called
the linear multi-step architecture (LM-architecture) which
is inspired by the well-known linear multi-step method in
numerical ODEs. The LM-architecture can be applied to
any ResNet-like networks. As an example, we apply it
to ResNet and ResNeXt and demonstrate the performance
gain of such modification on CIFAR and ImageNet data
sets.

2.1. Numerical Schemes And Network Architectures

PolyNet (Figure 1(b)), proposed by Zhang et al. (2017), in-
troduced a PolyInception module in each residual block to
enhance the expressive power of the network. The PolyIn-
ception model includes polynomial compositions that can
be described as

(I + F + F 2) · x = x+ F (x) + F (F (x)).

We observe that PolyInception model can be interpreted as
an approximation to one step of the backward Euler (im-
plicit) scheme: un+1 = (I − ∆tf)−1un. Indeed, we can

formally rewrite (I −∆tf)−1 as

I + ∆tf + (∆tf)2 + · · ·+ (∆tf)n + · · · .

Therefore, the architecture of PolyNet can be viewed as an
approximation to the backward Euler scheme solving the
ODE ut = f(u). Note that, the implicit scheme allows a
larger step size (Ascher & Petzold, 1997), which in turn al-
lows fewer numbers of residual blocks of the network. This
explains why PolyNet is able to reduce depth by increas-
ing width of each residual block to achieve state-of-the-art
classification accuracy.

FractalNet (Larsson et al., 2016) (Figure 1(c)) is designed
based on self-similarity. It is designed by repeatedly ap-
plying a simple expansion rule to generate deep networks
whose structural layouts are truncated fractals. We observe
that, the macro-structure of FractalNet can be interpreted
as the well-known Runge-Kutta scheme in numerical anal-
ysis. Recall that the recursive fractal structure of FractalNet
can be written as fc+1 = 1

2kc ∗+ 1
2fc ◦fc. For simplicity of

presentation, we only demonstrate the FractalNet of order
2 (i.e. c ≤ 2). Then, every block of the FractalNet (of order
2) can be expressed as

xn+1 = k1∗xn+k2∗(k3∗xn+f1(xn))+f2(k3∗xn+f1(xn),

which resembles the Runge-Kutta scheme of order 2 solv-
ing the ODE ut = f(u, t) (Ascher & Petzold, 1997).

RevNet(Figure 1(d)), proposed by Gomez et al. (2017), is
a reversible network which does not require to store acti-
vations during forward propagations. The RevNet can be
expressed as the following discrete dynamic system

Xn+1 = Xn + fn(Yn), Yn+1 = Yn + gn(Xn+1).

RevNet can be interpreted as a simple forward Euler ap-
proximation to the following dynamic system

Ẋ = f1(Y, t), Ẏ = f2(X, t).

Note that reversibility, which means we can simulate the
dynamic from the end time to the initial time, is also an im-
portant notation in dynamic systems. There were also at-
tempts to design reversible scheme in dynamic system such
as Nguyen & Mcmechan (2015).

2.2. LM-ResNet: A New Deep Architecture From
Numerical Differential Equation

We have shown that architectures of some successful deep
neural networks can be interpreted as different discrete ap-
proximations of dynamic systems. In this section, we pro-
posed a new structure, called linear multi-step structure
(LM-architecture), based on the well-known linear multi-
step scheme in numerical ODEs (see e.g. Ascher & Petzold
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Figure 1. Schematics of network architectures.

(1997)). The LM-architecture can be written as follows

un+1 = (1− kn)un + knun−1 + fn(un), (1)

where kn ∈ R is a trainable parameter for each layer n. A
schematic of the LM-architecture is presented in Figure 2.
Note that the midpoint and leapfrog network structures in
Chang et al. (2017) are all special case of ours. The LM-
architecture is a 2-step method approximating the ODE
ut = f(u, t). Therefore, it can be applied to any ResNet-
like networks, including those mentioned in the previous
section. As an example, we apply the LM-architecture to
ResNet and ResNeXt. We call these new networks the LM-
ResNet and LM-ResNeXt. We trained LM-ResNet and
LM-ResNeXt on CIFAR (Krizhevsky & Hinton, 2009) and
Imagenet (Russakovsky et al., 2014), and both achieve im-
provements over the original ResNet and ResNeXt.

Implementation Details. For the data sets CIFAR10 and
CIFAR100, we train and test our networks on the train-
ing and testing set as originally given by the data set. For
ImageNet, our models are trained on the training set with
1.28 million images and evaluated on the validation set
with 50k images. On CIFAR, we follow the simple data
augmentation in (Lee et al., 2015) for training: 4 pixel-
s are padded on each side, and a 32×32 crop is random-
ly sampled from the padded image or its horizontal flip.
For testing, we only evaluate the single view of the orig-
inal 32×32 image. Note that the data augmentation used
by ResNet (He et al., 2015b; Xie et al., 2017) is the same
as (Lee et al., 2015). On ImageNet, we follow the prac-
tice in (Krizhevsky et al., 2012; Simonyan & Zisserman,
2014). Images are resized with its shorter side randomly
sampled in [256, 480] for scale augmentation (Simonyan &
Zisserman, 2014). The input image is 224 × 224 random-
ly cropped from a resized image using the scale and aspect
ratio augmentation of (Szegedy et al., 2015). For the ex-
periments of ResNet/LM-ResNet on CIFAR, we adopt the
original design of the residual block in He et al. (2016),
i.e. using a small two-layer neural network as the residual

block with bn-relu-conv-bn-relu-conv. The residual block
of LM-ResNeXt (as well as LM-ResNet164) is the bottle-
neck structure used by (Xie et al., 2017) that takes the form 1× 1, 64

3× 3, 64
1× 1, 256

. We start our networks with a single 3 × 3

conv layer, followed by 3 residual blocks, global average
pooling and a fully-connected classifier. The parameters
kn of the LM-architecture are initialized by random sam-
pling from U [−0.1, 0]. We initialize other parameters fol-
lowing the method introduced by He et al. (2015a). On CI-
FAR, we use SGD with a mini-batch size of 128, and 256
on ImageNet. During training, we apply a weight decay
of 0.0001 for LM-ResNet and 0.0005 for LM-ResNeXt,
and momentum of 0.9 on CIFAR. We apply a weight de-
cay of 0.0001 and momentum of 0.9 for both LM-ResNet
and LM-ResNeXt on ImageNet. For LM-ResNet on CI-
FAR10 (CIFAR100), we start with the learning rate of 0.1,
divide it by 10 at 80 (150) and 120 (225) epochs and ter-
minate training at 160 (300) epochs. For LM-ResNeXt on
CIFAR, we start with the learning rate of 0.1 and divide it
by 10 at 150 and 225 epochs, and terminate training at 300
epochs.

Figure 2. LM-architecture is an efficient structure that enables
ResNet to achieve same level of accuracy with less parameters
on CIFAR10.

Results. Testing errors of our proposed LM-ResNet/LM-
ResNeXt and some other deep networks on CIFAR are p-
resented in Table 1. Figure 2 shows the overall improve-
ments of LM-ResNet over ResNet on CIFAR10 with var-
ied number of layers. We also observe noticeable im-
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Table 1. Comparisons of LM-ResNet/LM-ResNeXt with other networks on CIFAR
Model Layer Error Params Dataset

ResNet (He et al. (2015b)) 20 8.75 0.27M CIFAR10
ResNet (He et al. (2015b)) 32 7.51 0.46M CIFAR10
ResNet (He et al. (2015b)) 44 7.17 0.66M CIFAR10
ResNet (He et al. (2015b)) 56 6.97 0.85M CIFAR10
ResNet (He et al. (2016)) 110, pre-act 6.37 1.14M CIFAR10
ResNet (He et al. (2016)) 164, pre-act 5.46 1.7M CIFAR10

LM-ResNet (Ours) 20, pre-act 8.33 0.27M CIFAR10
LM-ResNet (Ours) 32, pre-act 7.18 0.46M CIFAR10
LM-ResNet (Ours) 44, pre-act 6.66 0.66M CIFAR10
LM-ResNet (Ours) 56, pre-act 6.31 0.85M CIFAR10
LM-ResNet (Ours) 110, pre-act 6.16 1.14M CIFAR10
LM-ResNet (Ours) 164, pre-act 5.27 1.7M CIFAR10

ResNet (Huang et al. (2016b)) 110, pre-act 27.76 1.7M CIFAR100
ResNet (He et al. (2016)) 164, pre-act 24.33 2.55M CIFAR100
ResNet (He et al. (2016)) 1001, pre-act 22.71 18.88M CIFAR100
FractalNet (Larsson et al. (2016)) 20 23.30 38.6M CIFAR100
FractalNet (Larsson et al. (2016)) 40 22.49 22.9M CIFAR100
DenseNet (Huang et al., 2016a) 100 19.25 27.2M CIFAR100
DenseNet-BC (Huang et al., 2016a) 190 17.18 25.6M CIFAR100
ResNeXt (Xie et al. (2017)) 29(8×64d) 17.77 34.4M CIFAR100
ResNeXt (Xie et al. (2017)) 29(16×64d) 17.31 68.1M CIFAR100
ResNeXt (Our Implement) 29(16×64d), pre-act 17.65 68.1M CIFAR100

LM-ResNet (Ours) 110, pre-act 25.87 1.7M CIFAR100
LM-ResNet (Ours) 164, pre-act 22.90 2.55M CIFAR100
LM-ResNeXt (Ours) 29(8×64d), pre-act 17.49 35.1M CIFAR100
LM-ResNeXt (Ours) 29(16×64d), pre-act 16.79 68.8M CIFAR100

provements of both LM-ResNet and LM-ResNeXt on CI-
FAR100. (Xie et al., 2017) claimed that ResNeXt can
achieve lower testing error without pre-activation (pre-act).
However, our results show that LM-ResNeXt with pre-
act achieves lower testing errors even than the original
ResNeXt without pre-act. Training and testing curves of
LM-ResNeXt are plotted in Figure3. In Table 1, we also
present testing errors of FractalNet and DenseNet (Huang
et al., 2016a) on CIFAR 100. We can see that our pro-
posed LM-ResNeXt29 has the best result. Comparisons
between LM-ResNet and ResNet on ImageNet are present-
ed in Table 2. The LM-ResNet shows improvement over
ResNet with comparable number of trainable parameter-
s. Note that the results of ResNet on ImageNet are ob-
tained from “https://github.com/KaimingHe/deep-residual-
networks”. It is worth noticing that the testing error of the
56-layer LM-ResNet is comparable to that of the 110-layer
ResNet on CIFAR10; the testing error of the 164-layer LM-
ResNet is comparable to that of the 1001-layer ResNet on
CIFAR100; the testing error of the 50-layer LM-ResNet is
comparable to that of the 101-layer ResNet on ImageNet.
We have similar results on LM-ResNeXt and ResNeXt as
well. These results indicate that the LM-architecture can

Table 2. Single-crop error rate on ImageNet (validation set)

Model Layer top-1 top-5

ResNet (He et al. (2015b)) 50 24.7 7.8
ResNet (He et al. (2015b)) 101 23.6 7.1
ResNet (He et al. (2015b)) 152 23.0 6.7

LM-ResNet (Ours) 50, pre-act 23.8 7.0
LM-ResNet (Ours) 101, pre-act 22.6 6.4

greatly compress ResNet/ResNeXt without losing much of
the performance. We will justify this mathematically at the
end of this section using the concept of modified equations
from numerical analysis.

Explanation on the performance boost via modified e-
quations. Given a numerical scheme approximating a dif-
ferential equation, its associated modified equation (Warm-
ing & Hyett, 1974) is another differential equation to which
the numerical scheme approximates with higher order of
accuracy than the original equation. Modified equation-
s are used to describe numerical behaviors of numerical



Beyond Finite Layer Neural Networks

Figure 3. Training and testing curves of ResNext29 (16x64d, pre-
act) and and LM-ResNet29 (16x64d, pre-act) on CIFAR100,
which shows that the LM-ResNeXt can achieve higher accuracy
than ResNeXt.

schemes. For example, consider the simple 1-dimensional
transport equation ut = cux. Both the Lax-Friedrichs
scheme and Lax-Wendroff scheme approximates the trans-
port equation. However, the associated modified equation-
s of Lax-Friedrichs and Lax-Wendroff are ut − cux =
∆x2

2∆t (1 − r2)uxx and ut − cux = c∆x2

6 (r2 − 1)uxxx
respectively, where r = 2∆t

∆x . This shows that the
Lax-Friedrichs scheme behaves diffusive, while the Lax-
Wendroff scheme behaves dispersive.

Consider the forward Euler scheme which is associated to
ResNet, un+1−un

∆t = fn(un). Note that

un+1 − un
∆t

= u̇n +
1

2
ün∆t+

1

6

...
un∆t2 +O(∆t3).

Thus, the modified equation of forward Euler scheme reads
as

u̇n +
∆t

2
ün = f(un, t). (2)

Consider the numerical scheme used in the LM-structure
un+1−(1−kn)un−knun−1

∆t = f(un, t). By Taylor’s expan-
sion, we have

un+1 − (1− kn)un − knun−1

∆t

= ((un + ∆tu̇n +
1

2
∆t2ün +O(∆t3)))−

(1− kn)un − kn(un −∆tu̇n +
1

2
∆t2ün +O(∆t3))))/∆t

= (1 + kn)u̇n +
1− kn

2
∆tün +O(∆t2).

Then, the modified equation of the numerical scheme as-
sociated to the LM-structure

(1 + kn)u̇n + (1− kn)
∆t

2
ün = f(un, t). (3)

Comparing (2) with (3), we can see that when kn ≤ 0,
the second order term ü of (3) is bigger than that of (2).

The term ü represents acceleration which leads to acceler-
ation of the convergence of un when f = −∇g Su & Boyd
(2015); Wilson et al. (2016). When f(u) = L(u) with L
being an elliptic operator, the term ü introduce dispersion
on top of the dissipation, which speeds up the flow of un
(Dong et al., 2017). In fact, this is our original motivation
of introducing the LM-architecture (1). Note that when the
dynamic is truly a gradient flow, i.e. f = −∇g, the dif-
ference equation of the LM-structure has a stability condi-
tion −1 ≤ kn ≤ 1. In our experiments, we do observe
that most of the coefficients are lying in (−1, 1) (Figure 4).
Moreover, the network is indeed accelerating at the end of
the dynamic, for the learned parameters {kn} are negative
and close to −1 (Figure 4).

Figure 4. The trained parameters {kn} of LM-ResNet on CI-
FAR100.

3. Stochastic Learning Strategy: A Stochastic
Dynamic System Perspective

Although the original ResNet (He et al., 2015b) did not
use dropout, several work (Huang et al., 2016b; Gastaldi,
2017) showed that it is also beneficial to inject noise dur-
ing training. In this section we show that we can regard
such stochastic learning strategy as an approximation to
a stochastic dynamic system. We hope the stochastic dy-
namic system perspective can shed lights on the discovery
of a guiding principle on stochastic learning strategies. To
demonstrate the advantage of bridging stochastic dynamic
system with stochastic learning strategy, we introduce s-
tochastic depth during training of LM-ResNet. Our results
indicate that the networks with proposed LM-architecture
can also greatly benefit from stochastic learning strategies.

3.1. Noise Injection and Stochastic Dynamic Systems

As an example, we show that the two stochastic learning
methods introduced in Huang et al. (2016b) and Gastal-
di (2017) can be considered as weak approximations of s-
tochastic dynamic systems.

Shake-Shake Regularization. Gastaldi (2017) introduced
a stochastic affine combination of multiple branches in a
residual block, which can be expressed as

Xn+1 = Xn + ηf1(Xn) + (1− η)f2(Xn),
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where η ∼ U(0, 1). To find its corresponding stochastic
dynamic system, we incorporate the time step size ∆t and
consider

Xn+1 = Xn+

(
∆t

2
+
√

∆t(η − 1

2
)

)
f1(Xn)

+

(
∆t

2
+
√

∆t(
1

2
− η)

)
f2(Xn),

(4)

which reduces to the shake-shake regularization when
∆t = 1. The above equation can be rewritten as

Xn+1 = Xn+
∆t

2
(f1(Xn) + f2(Xn))

+
√

∆t(η − 1

2
)(f1(Xn)− f2(Xn)).

Since the random variable (η − 1
2 ) ∼ U(− 1

2 ,
1
2 ), one can

show that (see e.g. Kesendal (2000); Evans (2013)) the net-
work of the shake-shake regularization is a weak approxi-
mation of the stochastic dynamic system

dX =
1

2
(f1(X) + f2(X))dt

+
1√
12

(f1(X)− f2(X))� [1N×1, 0N,N−1]dBt,

where dBt is an N dimensional Brownian motion, 1N×1 is
an N -dimensional vector whose elements are all 1s, N is
the dimension of X and fi(X), and � denotes the point-
wise product of vectors. Note from (4) that we have al-
ternatives to the original shake-shake regularization if we
choose ∆t 6= 1.

Stochastic Depth. Huang et al. (2016b) randomly drops
out residual blocks during training in order to reduce train-
ing time and improve robustness of the learned network.
We can write the forward propagation as

Xn+1 = Xn + ηnf(Xn),

where P(ηn = 1) = pn,P(ηn = 0) = 1− pn. By incorpo-
rating ∆t, we consider

Xn+1 = Xn + ∆tpnf(Xn) +
√

∆t
ηn − pn√
pn(1− pn)

√
pn(1− pn)f(Xn),

which reduces to the original stochastic drop out training
when ∆t = 1. The variance of ηn−pn√

pn(1−pn)
is 1. If we

further assume that (1−2pn) = O(
√

∆t), we can show that
(see e.g. Kesendal (2000); Evans (2013)) the network with
stochastic drop out can be seen as a weak approximation to
the stochastic dynamic system

dX = p(t)f(X)dt+
√
p(t)(1− p(t))f(X)�[1N×1, 0N,N−1]dBt.

Note that the assumption (1 − 2pn) = O(
√

∆t) also sug-
gests that we should set pn closer to 1/2 for deeper blocks
of the network, which coincides with the observation made
by Huang et al. (2016b, Figure 8).

Table 3. Test on stochastic training strategy on CIFAR10
Model Layer Training Error

ResNet(He et al. (2015b)) 110 6.61
ResNet(He et al. (2016)) 110 pre-act 6.37

ResNet(Huang et al. (2016b)) 56 SD 5.66
ResNet(Our Implement) 56,pre-act SD 5.55
ResNet(Huang et al. (2016b)) 110 SD 5.25
ResNet(Huang et al. (2016b)) 1202 SD 4.91

LM-ResNet(Ours) 56,pre-act SD 5.14
LM-ResNet(Ours) 110,pre-act SD 4.80

In general, we can interpret stochastic training procedures
as approximations of the following stochastic control prob-
lem with running cost

min EX(0)∼data

(
E(L(X(T )) +

∫ T

0

R(θ))

)
s.t. dX = f(X, θ)dt+ g(X, θ)dBt

where L(·) is the loss function, T is the terminal time of
the stochastic process, and R is a regularization term.

3.2. Stochastic Training for Networks with
LM-architecture

In this section, we extend the stochastic depth training s-
trategy to networks with the proposed LM-architecture. In
order to apply the theory of Itô process, we consider the
2nd order Ẍ + g(t)Ẋ = f(X) (which is related to the
modified equation of the LM-structure (3)) and rewrite it
as a 1st order ODE system

Ẋ = Y, Ẏ = f(X)− g(t)Y.

Following a similar argument as in the previous section, we
obtain the following stochastic process

Ẋ = Y,

Ẏ = p(t)f(X)dt

+
√
p(t)(1− p(t))f(X)� [1N×1, 0N,N−1]dBt − g(t)Y dt,

which can be weakly approximated by

Yn+1 =
Xn+1 −Xn

∆t
,

Yn+1 − Yn = ∆tpnf(Xn)

+
√

∆t (ηn − pn) f(Xn) + gnYn∆t,

where P(ηn = 1) = pn,P(ηn = 0) = 1−pn. Taking ∆t =
1, we obtain the following stochastic training strategy for
LM-architecture

Xn+1 = (2 + gn)Xn − (1 + gn)Xn−1 + ηnf(Xn).

The above derivation suggests that the stochastic learning
for networks using LM-architecture can be implemented
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simply by randomly dropping out the residual block with
probability p.

Implementation Details. We test LM-ResNet with s-
tochastic training strategy on CIFAR10. In our experi-
ments, all hyper-parameters are selected exactly the same
as in (Huang et al., 2016b). The probability of dropping
out a residual block at each layer is a linear function of the
layer, i.e. we set the probability of dropping the current
residual block as l

L (1 − pL), where l is the current layer
of the network, L is the depth of the network and pL is
the dropping out probability of the previous layer. In our
experiments, we select pL = 0.8 for LM-ResNet56 and
pL = 0.5 for LM-ResNet110. During training with SGD,
the initial learning rate is 0.1, and is divided by a factor of
10 after epoch 250 and 375, and terminated at 500 epochs.
In addition, we use a weight decay of 0.0001 and a momen-
tum of 0.9.

Results. Testing errors are presented in Table 3. Training
and testing curves of LM-ResNet with stochastic depth are
plotted in Figure5. Note that LM-ResNet110 with stochas-
tic depth training strategy achieved a 4.80% testing error
on CIFAR10, which is even lower that the ResNet1202
reported in the original paper. The benefit of stochastic
training has been explained from difference perspectives,
such as Bayesian (Kingma et al., 2015) and information
theory (Shwartz-Ziv & Tishby, 2017; Achille & Soatto,
2016). The stochastic Brownian motion involved in the
aforementioned stochastic dynamic systems introduces d-
iffusion which leads to information gain and robustness.

Figure 5. Training and testing curves of ResNet56 (pre-act) and
and LM-ResNet56 (pre-act) on CIFAR10 with stochastic depth.

4. Conclusion and Discussion
In this paper, we draw a relatively comprehensive connec-
tion between the architectures of popular deep networks
and discretizations of ODEs. Such connection enables us
to design new and more effective deep networks. As an
example, we introduce the LM-architecture to ResNet and
ResNeXt which improves the accuracy of the original net-

works, and the proposed networks also outperform Fractal-
Net and DenseNet on CIFAR100. In addition, we demon-
strate that networks with stochastic training process can be
interpreted as a weak approximation to stochastic dynam-
ic systems. Thus, networks with stochastic learning strat-
egy can be casted as a stochastic control problem, which
we hope to shed lights on the discovery of a guiding prin-
ciple on the stochastic training process. As an example,
we introduce stochastic depth to LM-ResNet and achieve
significant improvement over the original LM-ResNet on
CIFAR10.

As for our future work, if ODEs are considered as the con-
tinuum limits of deep neural networks (neural networks
with infinite layers), more tools from mathematical anal-
ysis can be used in the study of neural networks. We can
apply geometry insights, physical laws or smart design of
numerical schemes to the design of more effective deep
neural networks. On the other hand, numerical methods
in control theory may inspire new optimization algorithms
for network training. Moreover, stochastic control gives us
a new perspective on the analysis of noise injections during
network training.

Acknowledgments

Bin Dong is supported in part by NSFC 11671022 and The
National Key Research and Development Program of Chi-
na 2016YFC0207700. Yiping Lu is supported by the Elite
Undergraduate Training Program of the School of Math-
ematical Sciences at Peking University. Quanzheng Li is
supported in part by the National Institutes of Health under
Grant R01EB013293 and Grant R01AG052653.



Beyond Finite Layer Neural Networks

References
Achille, Alessandro and Soatto, Stefano. Information

dropout: Learning optimal representations through noisy
computation. arXiv preprint arXiv:1611.01353, 2016.

Ascher, Uri M. and Petzold, Linda R. Computer Method-
s for Ordinary Differential Equations and Differential-
Algebraic Equations. SIAM: Society for Industrial and
Applied Mathematics, 1997.

Aubert, Gilles and Kornprobst, Pierre. Mathematical prob-
lems in image processing: partial differential equations
and the calculus of variations, volume 147. Springer
Science & Business Media, 2006.

Bengio, Yoshua. Learning deep architectures for ai. Foun-
dations & Trends in Machine Learning, 2(1):1–127,
2009.

Chan, Tony F. and Shen, Jianhong. Image processing
and analysis: variational, PDE, wavelet, and stochas-
tic methods. Society for Industrial Mathematics, 2005.

Chang, Bo, Meng, Lili, Haber, Eldad, Ruthotto, Lars,
Begert, David, and Holtham, Elliot. Reversible architec-
tures for arbitrarily deep residual neural networks. arXiv
preprint arXiv:1709.03698, 2017.

Chang, Bo, Meng, Lili, Haber, Eldad, Tung, Frederick, and
Begert, David. Multi-level residual networks from dy-
namical systems view. In ICLR, 2018.

Chen, Yunjin, Yu, Wei, and Pock, Thomas. On learning
optimized reaction diffusion processes for effective im-
age restoration. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 5261–
5269, 2015.

Dong, Bin, Jiang, Qingtang, and Shen, Zuowei. Image
restoration: wavelet frame shrinkage, nonlinear evolu-
tion pdes, and beyond. Multiscale Modeling & Simula-
tion, 15(1):606–660, 2017.

E, Weinan. A proposal on machine learning via dynamical
systems. Communications in Mathematics and Statistic-
s, 5(1):1–11, 2017.

Evans, Lawrence C. An introduction to stochastic differen-
tial equations. American Mathematical Society, 2013.

Fang, Cong, Zhao, Zhenyu, Zhou, Pan, and Lin, Zhouchen.
Feature learning via partial differential equation with ap-
plications to face recognition. Pattern Recognition, 69
(C):14–25, 2017.

Gastaldi, Xavier. Shake-shake regularization. ICLR Work-
shop, 2017.

Gomez, Aidan N., Ren, Mengye, Urtasun, Raquel, and
Grosse, Roger B. The reversible residual network: Back-
propagation without storing activations. Advances in
Neural Information Processing Systems, 2017.

Gregor, Karol and LeCun, Yann. Learning fast approxi-
mations of sparse coding. International Conference on
Machine Learning, 2010.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. IEEE In-
ternational Conference on Computer Vision, 2015a.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Deep residual learning for image recognition. IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2015b.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Identity mappings in deep residual networks. IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2016.

Helmke, Uwe and Moore, John B. Optimization and dy-
namical systems. Springer Science & Business Media,
2012.

Hu, Jie, Shen, Li, and Sun, Gang. Squeeze-and-excitation
networks. arXiv preprint arXiv:1709.01507, 2017.

Huang, Gao, Liu, Zhuang, Weinberger, Kilian Q, and
van der Maaten, Laurens. Densely connected convo-
lutional networks. arXiv preprint arXiv:1608.06993,
2016a.

Huang, Gao, Sun, Yu, Liu, Zhuang, Sedra, Daniel, and
Weinberger, Kilian Q. Deep networks with stochas-
tic depth. European Conference on Computer Vision,
2016b.

Kesendal, BØ. Stochastic differential equations, an intro-
duction with applicatins, 2000.

Kingma, Diederik P., Salimans, Tim, and Welling, Max.
Variational dropout and the local reparameterization
trick. Advances in Neural Information Processing Sys-
tems, 2015.

Krizhevsky, Alex and Hinton, Geoffrey. Learning multiple
layers of features from tiny images. 2009.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, pp. 1097–1105, 2012.



Beyond Finite Layer Neural Networks

Larsson, Gustav, Maire, Michael, and Shakhnarovich, Gre-
gory. Fractalnet: Ultra-deep neural networks without
residuals. ICLR, 2016.

Lee, Chen-Yu, Xie, Saining, Gallagher, Patrick, Zhang,
Zhengyou, and Tu, Zhuowen. Deeply-supervised net-
s. In Artificial Intelligence and Statistics, pp. 562–570,
2015.

Li, Yanghao, Wang, Naiyan, Liu, Jiaying, and Hou, Xiaodi.
Factorized bilinear models for image recognition. ICCV,
2017.

Li, Zhen and Shi, Zuoqiang. Deep residual learning and
pdes on manifold. arXiv preprint arXiv:1708.05115,
2017.

Liao, Qianli and Poggio, Tomaso. Bridging the gaps be-
tween residual learning, recurrent neural networks and
visual cortex. arXiv preprint, arXiv:1604.03640, 2016.

Liu, Risheng, Lin, Zhouchen, Zhang, Wei, and Su, Zhixun.
Learning pdes for image restoration via optimal control.
European Conference on Computer Vision, 2010.

Liu, Risheng, Lin, Zhouchen, Zhang, Wei, Tang, Kewei,
and Su, Zhixun. Toward designing intelligent pdes for
computer vision: An optimal control approach. Image
and vision computing, 31(1):43–56, 2013.

Long, Zichao, Lu, Yiping, Ma, Xianzhong, and Dong, Bin.
PDE-Net:Learning PDEs Frome Data. Thirty-fifth In-
ternational Conference on Machine Learning (ICML),
2018.

Nguyen, Bao D and Mcmechan, George A. Five ways
to avoid storing source wavefield snapshots in 2d elas-
tic prestack reverse time migration. Geophysics, 80(1):
S1–S18, 2015.

Osher, S. and Paragios, N. Geometric level set methods
in imaging, vision, and graphics. Springer-Verlag New
York Inc, 2003.

Russakovsky, Olga, Deng, Jia, Su, Hao, Krause, Jonathan,
Satheesh, Sanjeev, Ma, Sean, Huang, Zhiheng, Karpa-
thy, Andrej, Khosla, Aditya, and Bernstein, Michael. Im-
agenet large scale visual recognition challenge. Inter-
national Journal of Computer Vision, 115(3):211–252,
2014.

Shwartz-Ziv, Ravid and Tishby, Naftali. Opening the black
box of deep neural networks via information. arXiv
preprint arXiv:1703.00810, 2017.

Simonyan, Karen and Zisserman, Andrew. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Sonoda, Sho and Murata, Noboru. Double continuum limit
of deep neural networks. ICML Workshop Principled
Approaches to Deep Learning, 2017.

Su, Weijie and Boyd, Stephen. A differential equation for
modeling nesterov’s accelerated gradient method: theory
and insights. Advances in Neural Information Process-
ing Systems, 2015.

Szegedy, Christian, Liu, Wei, Jia, Yangqing, Sermanet,
Pierre, Reed, Scott, Anguelov, Dragomir, Erhan, Du-
mitru, Vanhoucke, Vincent, and Rabinovich, Andrew.
Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, pp. 1–9, 2015.

Szegedy, Christian, Ioffe, Sergey, Vanhoucke, Vincent, and
Alemi, Alex. Inception-v4, inception-resnet and the im-
pact of residual connections on learning. AAAI, 2017.

Veit, Andreas, Wilber, Michael, and Belongie, Serge.
Residual networks are exponential ensembles of relative-
ly shallow networks. Advances in Neural Information
Processing Systems, 2016.

Warming, R. F and Hyett, B. J. The modified equation
to the stability and accuracy analysis of finite-difference
methods. Journal of Computational Physics, 14(2):159–
179, 1974.

Wilson, Ashia C., Recht, Benjamin, and Jordan, Michael I.
A lyapunov analysis of momentum methods in optimiza-
tion. arXiv preprint arXiv:1611.02635, 2016, 2016.

Xie, Saining, Girshick, Ross, Dollr, Piotr, Tu, Zhuowen,
and He, Kaiming. Aggregated residual transformations
for deep neural networks. IEEE Conference on Comput-
er Vision and Pattern Recognition, 2017.

Yang, Yan, Sun, Jian, Li, Huibin, and Xu, Zongben. Deep
ADMM-Net for compressive sensing MRI. Advances in
Neural Information Processing Systems, 2016.

Zagoruyko, Sergey and Komodakis, Nikos. Wide residual
networks. The British Machine Vision Conference, 2016.

Zagoruyko, Sergey and Komodakis, Nikos. Diracnet-
s: Training very deep neural networks without skip-
connections. arXiv preprint arXiv:1706.00388, 2017.

Zhang, Xingcheng, Li, Zhizhong, Loy, Chen, Change, and
Lin, Dahua. Polynet: A pursuit of structural diversity
in very deep networks. IEEE Conference on Computer
Vision and Pattern Recognition, 2017.


	Introduction
	Related work

	Numerical Differential Equation, Deep Networks and Beyond
	Numerical Schemes And Network Architectures
	LM-ResNet: A New Deep Architecture From Numerical Differential Equation

	Stochastic Learning Strategy: A Stochastic Dynamic System Perspective
	Noise Injection and Stochastic Dynamic Systems
	Stochastic Training for Networks with LM-architecture

	Conclusion and Discussion

