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Abstract

Common datasets have the form of elements with
keys (e.g., transactions and products) and the goal
is to perform analytics on the aggregated form of
key and frequency pairs. A weighted sample of
keys by (a function of) frequency is a highly ver-
satile summary that provides a sparse set of rep-
resentative keys and supports approximate eval-
uations of query statistics. We propose private
weighted sampling (PWS): A method that san-
itizes a weighted sample as to ensure element-
level differential privacy, while retaining its util-
ity to the maximum extent possible. PWS max-
imizes the reporting probabilities of keys and
estimation quality of a broad family of statis-
tics. PWS improves over the state of the art
even for the well-studied special case of pri-
vate histograms, when no sampling is performed.
We empirically observe significant performance
gains of 20%-300% increase in key reporting for
common Zipfian frequency distributions and ac-
curate estimation with ×2-8 lower frequencies.
PWS is applied as a post-processing of a non-
private sample, without requiring the original
data. Therefore, it can be a seamless addition
to existing implementations, such as those opti-
mizes for distributed or streamed data. We be-
lieve that due to practicality and performance,
PWS may become a method of choice in appli-
cations where privacy is desired.

1 Introduction

Weighted sampling schemes are often used to obtain versa-
tile summaries of large datasets. The sample constitutes a
representation of the data and also facilitates efficient es-
timation of many statistics. Motivated by the increasing
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awareness and demand for data privacy, in this work we
construct privacy preserving weighted sampling schemes.
The privacy notion that we work with is that of differential
privacy (Dwork et al., 2016), a strong privacy notion that is
considered by many researchers to be a gold-standard for
privacy preserving data analysis.

Before describing our new results, we define our setting
more precisely. Consider an input dataset containing m el-
ements, where each element contains a key x from some
domain X . For every key x ∈ X we write wx to denote
the multiplicity of x in the input dataset. (We also refer
to wx as the frequency of x in the data.) With this nota-
tion, it is convenient to represent the input dataset in its
aggregated form D = {(x,wx)} containing pairs of a key
and its frequency wx ≥ 1 in the data. Examples of such
datasets are plentiful: Keys are search query strings and el-
ements are search requests, keys are products and elements
are transactions for the products, keys are locations and el-
ements are visits by individuals, or keys are training ex-
amples and elements are activities that generate them. We
aim here to protect the privacy of data elements. These ex-
ample datasets tend to be very sparse, where the number
of distinct keys in the data is much smaller than the size
|X | of the domain. Yet, the number of distinct keys can be
very large and samples serve as small summaries that can
be efficiently stored, computed, and transmitted. We there-
fore aim for our private sample to retain this property and
in particular only include keys that are in the dataset.

The (non-private) sampling schemes we consider are spec-
ified by a (non-decreasing) sequence (qi)i≥0 of probabili-
ties qi ∈ [0, 1], where q0 := 0. Such a sampling scheme
takes an input dataset D = {(x,wx)} and returns a sample
S ⊆ D, where each pair (x,wx) is included in S inde-
pendently, with probability qwx . Loosely speaking, given a
(non-private) sampling scheme A, we aim in this paper to
design a privacy preserving variant of A with the goal of
preserving its “utility” to the extent possible under privacy
constraints. We remark that an immediate consequence of
the definition of differential privacy is that keys x ∈ X
with very low frequencies cannot be included in the pri-
vate sample S (except with very small probability). On
the other hand, keys with high frequencies can be included
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with probability (close to) 1. Private sampling schemes
can therefore retain more utility when the dataset has many
keys with higher frequencies or for tasks that are less sen-
sitive to low frequency keys.

Informal Problem 1.1. Given a (non-private) sampling
scheme A, specified by a sampling function q, design a pri-
vate sampling scheme that takes a dataset D = {(x,wx)}
and outputs a “sanitized” sample S∗ = {(x,w∗x)}. Infor-
mally, the goals are:

1. Each pair (x,wx) ∈ D is sampled with probability
“as close as possible” to the non-private sampling
probability qwx .

2. The sanitized sample S∗ provides utility that is “as
close as possible” to that of a corresponding non-
private sample S. In our constructions, the sani-
tized frequencies w∗x would be random variables from
which we can estimate ordinal and linear statistics
with (functions of) the frequency wx.

Informal Problem 1.1 generalizes one of the most basic
tasks in the literature of differential privacy – privately
computing histograms. Informally, algorithms for private
histograms take a dataset D = {(x,wx)} as input, and re-
turn, in a differentially private manner, a “sanitized” dataset
D∗ = {(x,w∗x)}. It is often required that the output D∗ is
sparse, in the sense that if wx = 0 then w∗x = 0. Com-
monly, we seek to minimize the expected or maximum er-
ror of estimators applied to w∗ of statistics on w. One
well-studied objective is to minimize maxx∈X | wx−w∗x|.
The work on private histograms dates all the way back
to the paper that introduced differential privacy (Dwork
et al., 2016), and it has received a lot of attention since
then, e.g., (Korolova et al., 2009; Hardt and Talwar, 2010;
Beimel et al., 2014, 2016; Bun and Steinke, 2016; Bun
et al., 2019; Balcer and Vadhan, 2018; Bun et al., 2018).
Observe that the private histogram problem is a special case
of Informal Problem 1.1, where q ≡ 1.

At first glance, one might try to solve Informal Problem 1.1
by a reduction to the private histogram problem. Specifi-
cally, we consider the baseline where the data is first “san-
itized” using an algorithm for private histograms, and then
a (non-private) weighted sampling algorithm is applied to
the sanitized data (treating the sanitized frequencies as ac-
tual frequencies). This framework, of first sanitizing the
data and then sampling it was also considered in (Cormode
et al., 2012). We show that this baseline is sub-optimal, and
improve upon it in several axes.

1.1 Our Contributions

Our proposed framework, Private Weighted Sampling
(PWS), takes as input a non-private weighted sample S that
is produced by a (non-private) weighted sampling scheme.

We apply a “sanitizer” to the sample S to obtain a respec-
tive privacy-preserving sample S∗. Our proposed solution
has the following advantages.

Practicality. The private version is generated from the
sample S as a post-processing step without the need to re-
visit the original dataset, which might be massive or un-
available. This means that we can augment existing im-
plementations of non-private sampling schemes and retain
their scalability and efficiency. This is particularly ap-
pealing for sampling schemes designed for massive dis-
tributed or streamed data that use small sketches and avoid
a resource-heavy aggregation of the data (Gibbons and Ma-
tias, 1998; Estan and Varghese, 2002; Cohen et al., 2014;
Andoni et al., 2011; Cohen et al., 2012; Cohen, 2018; Ja-
yaram and Woodruff, 2018; Cohen and Geri, 2019; Co-
hen et al., 2020a). Our code is available at github.com/

google-research/google-research/tree/master/private_sampling.

Benefits of end-to-end privacy analysis PWS achieves
better utility compared to the baseline of first sanitizing the
data and then sampling. In spirit, our gains follow from
a well-known result in the literature of differential privacy
stating that applying a differentially private algorithm on
a random sample from the original data has the effect of
boosting the privacy guarantees of the algorithm (Chaud-
huri and Mishra, 2006; Kasiviswanathan et al., 2011; Bun
et al., 2015). Our solution is derived from a precise end-to-
end formulation of the privacy constraints that account for
the benefits of the random sampling in our privacy analysis.

Optimal reporting probabilities. PWS is optimal in that
it maximizes the probability that each key x is included in
the private sample. The private reporting probability of a
key x depends on the privacy parameters, frequency, and
sampling rate and is at most the non-private sampling prob-
ability qwx . The derivation is provided in Section 4.

Estimation of linear statistics. Linear statistics accord-
ing to a function of frequency have the form:

s :=
∑
x

L(x)g(wx) , (1)

where g(wx) ≥ 0 is a non-decreasing function of frequency
with g(0) := 0. The most common use case is when L(x)
is a predicate and g(w) := w and the statistics is the sum of
frequencies of keys that satisfy the selection L. Our PWS
sanitizer in Section 5 maintains optimal reporting proba-
bilities and provides private information on frequencies of
keys. We show that generally differential privacy does not
allow for unbiased estimators for statistics without signifi-
cant increase in variance. We propose biased but nonnega-
tive and low-variance estimators.

Estimation of ordinal statistics. Ordinal statistics, such
as (approximate) quantiles and top-k sets, are derived from
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the order of keys that is induced by their frequencies. This
order can be approximated by the order induced by PWS
sanitized frequencies. We show that PWS is optimal, over
all DP sanitization schemes, for a broad class of ordinal
statistics. In particular, PWS maximizes the probability
that any pair is concordant and maximizes the expected
Kendall-τ rank correlation between the order induced by
sanitized and true frequencies.

Improvement over prior baselines. We show analyt-
ically and empirically in Section 8 that we obtain or-
ders of magnitude increase in reporting probability in low-
frequency regimes. For estimation tasks, both PWS and
prior schemes have lower error for higher frequencies but
PWS obtains higher accuracy for frequencies that are×2-8
lower than prior schemes. This is particularly helpful for
datasets/selections with many mid-low frequency keys.

Improvement for private histograms. As an important
special case of our results, we improve upon the state-of-
the-art constructions for private (sparse) histograms (Ko-
rolova et al., 2009; Bun et al., 2019). These existing con-
structions obtain privacy properties by adding Laplace or
Gaussian noise to the frequencies of the keys whereas we
directly formulate and solve elementary constraints. Let
π∗i denote the PWS reporting probability of a key with
frequency i, when applied to the special case of private
histograms. Let φi denote the reporting probability of
the state-of-the-art solution for private (sparse) histograms
of (Korolova et al., 2009; Bun et al., 2019). Clearly π∗i is
always at least φi. We show that in low-frequency regimes
we have π∗i /φi ≈ 2i. Similarly for estimation tasks, PWS
provides more accurate estimates in these regimes. Quali-
tatively, PWS and private histograms have high reporting
probabilities and low estimation error for high frequen-
cies. But PWS significantly improves on low to medium
frequencies, which is important for distributions with long
tails. We empirically show gains of 20%-300% in overall
key reporting for Zipf-distributed frequencies. As private
histograms are one of the most important building blocks
in the literature of differential privacy, we believe that our
improvement is significant (both in theory and in practice).

2 Related Work

The suboptimality of the Laplace mechanism for
anonymization was noted by Ghosh et al. (2012). In
our language, Ghosh et al. studied the non-sparse case,
where all values, including 0 values, can be reported with
added noise. They did not consider sampling, and studied
pure differential privacy. Instead of Laplace noise, they
propose the use of a symmetric Geometric distribution and
establish it is optimal for certain estimation tasks. This
can be viewed as a special case of what we do in that our
schemes converge to that when there is no sampling, we

use pure differential privacy, and when frequencies are
large (so the effect of the sparse case constraint dissipates).
Ghosh et al. establish the optimality of unbiased estimators
for some frequency statistics when loss is symmetric. We
show that bias is necessary in the sparse case and propose
estimators that control the bias and variance.

Key reporting was formulated and studied as differentially
private set union problem (Gopi et al., 2020). They studied
it without sampling, in a more general user privacy setting,
and proposed a truncated Laplace noise mechanism similar
to (Korolova et al., 2009; Bun et al., 2019).

Recent independent work by Desfontaines et al. (2020) de-
rived the optimal scheme for key reporting for sparse pri-
vate histograms, a special case of our solution when there
is no sampling.

3 Preliminaries

We consider data in the form of a set of elements E , where
each element e ∈ E has a key e. key ∈ X . The frequency
of a key x, wx := |{e ∈ E | e. key = x}|, is defined as the
number of elements with e. key = x. The aggregated form
of the data, known in the DP literature as its histogram, is
the set of key and frequency pairs {(x,wx)}. We use the
vector notation w for the aggregated form. We will use
m := |E| for the number of elements and n for the number
of distinct keys in the data.

3.1 Weighted Sampling

We consider a very general form of without-replacement
sampling schemes. Each scheme is specified by non-
decreasing probabilities (qi)i≥1. The probability that a key
is sampled depends on its frequency – a key with frequency
i is sampled independently with probability qi. Our pro-
posed methods apply with any non-decreasing (qi).

Threshold sampling is a popular class of weighted sampling
schemes. We review it for concreteness and motivation and
use it in our empirical evaluation of PWS. A threshold sam-
pling scheme (see Algorithm 1) is specified by (D, f, τ),
where D is a distribution, f is a function of frequency, and
τ is a numeric threshold value that specifies the sampling
rate. For each key we draw i.i.d. ux ∼ D. The two com-
mon choices are D = Exp[1] for a probability proportional
to size without replacement (ppswor) sample (Rosén, 1972)
and D = U [0, 1] for a Poisson Probability Proportional to
Size (PPS) sample (Ohlsson, 1990, 1998; Duffield et al.,
2007). A key x is included in the sample if ux ≤ τf(wx).
The probability that a key with frequency i is sampled is

qi := Pr
u∼D

[u < f(i)τ ] . (2)

Threshold sampling is related to bottom-k (order) sam-
pling (Rosén, 1997; Ohlsson, 1990; Duffield et al., 2007;
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Cohen and Kaplan, 2007, 2008) but instead of specify-
ing the sample size k we specify an inclusion threshold
τ . Ppswor is equivalent to drawing keys sequentially with
probability proportional to f(wx). The bottom-k version
stops after k keys and the threshold version has a stopping
rule that corresponds to the threshold. The bottom-k ver-
sion of Poisson PPS sampling is known as sequential Pois-
son or Priority sampling.

Algorithm 1: Threshold Sampling
// Threshold Sampler:
Input: Dataset w of key frequency pairs (x,wx); distributionD, function

f , threshold τ
Output: Sample S of key-frequency pairs from w
begin

S ← ∅
foreach (x,wx) ∈ w do

Draw independent ux ∼ D
if ux < f(wx)τ then

S ← S ∪ {(x,wx)}

return S

Since PWS applies a sanitizer to a sample, it inherits the ef-
ficiency of the base sampling scheme. Threshold sampling
(via the respective bottom-k schemes) can be implemented
efficiently using small sketches (of size expected sample
size) on aggregated data that can be distributed or streamed
(Duffield et al., 2007; Rosén, 1997; Ohlsson, 1998; Cohen
and Kaplan, 2007). On unaggregated datasets, it can be im-
plemented using small sketches for some functions of fre-
quency including the moments f(w) = wp for p ∈ [0, 2]
(Cohen et al., 2012; Cohen, 2018; Cohen and Geri, 2019;
Cohen et al., 2020b).

Our methods apply with a fixed threshold τ . But the
treatment extends to when the threshold is privately de-
termined from the data. If we have a private approxima-
tion of the total count ‖f(w)‖1 :=

∑
x f(wx) we can set

τ ≈ k/‖f(w)‖1. This provides (from the non-private sam-
ple that corresponds to the threshold) estimates with addi-
tive error ‖f(w)‖1/

√
k for statistics with function of fre-

quency g = f and when L is a predicate.

3.2 Differential Privacy

The privacy requirement we consider is element-level dif-
ferential privacy. Two datasets with aggregated forms w
and w′ are neighbors if ‖w − w′‖1 = 1, that is, the fre-
quencies of all keys but one are the same and the difference
is at most 1 for that one key. The privacy requirements are
specified using two parameters ε, δ ≥ 0.

Definition 3.1 (Dwork et al., 2016). A mechanism M is
(ε, δ)-differentially private if for any two neighboring in-
puts w, w′ and set of potential outputs T ,

Pr[M(w) ∈ T ] ≤ eε Pr[M(w′) ∈ T ] + δ . (3)

Algorithm 2: Private Weighted Samples
// Sanitized Keys:
Input: (ε, δ), weighted sample S, taken with non-decreasing probabilities

(qi)i≥1

Output: Private sample of keys S∗

Compute (pi)i≥1 // Reporting probabilities per freq.
begin // Sanitize using scheme

S∗ ← ∅
foreach (x,wx) ∈ S do

With probability pwx , S∗ ← S∗ ∪ {x}
return S∗

// Sanitized keys and frequencies:
Input: (ε, δ), weighted sample S, taken with non-decreasing probabilities

(qi)i≥1

Output: Sanitized sample S∗

Compute probability vectors (pi•)i≥1 // Reported values
begin // Sanitize using scheme

S∗ ← ∅
foreach (x,wx) ∈ S do

Draw j ∼ pwx• // By probability vector
if j > 0 then

S∗ ← S∗ ∪ {(x, j)}

return S∗

// Estimator:
Input: Sanitized sample S∗ = {(x, jx)}, {πi,j} (where πij := pijqi ,

functions g(i), L(x)
Output: Estimate of the linear statistics

∑
x L(x)g(x)

begin
Compute (aj)j≥1 using {πij} and g(i) // Per-key
estimates for g()

return
∑

(x,jx)∈S∗ L(x)ajx

3.3 Private Weighted Samples

Given a (non-private) weighted sample S of the data in
the form of key and frequency pairs and (a representation)
of the sampling probabilities (qi)i≥1 that guided the sam-
pling, our goal is to release as much of S as we can without
violating element-level differential privacy.

We consider two utility objectives. The basic objective,
sanitized keys, is to maximize the reporting probabilities of
keys in S. The private sample in this case is simply a subset
of the keys in S. The refined objective is to facilitate esti-
mates of linear frequency and order statistics. The private
sample includes sanitized keys from S together with infor-
mation on their frequencies. The formats of the sanitizers
and estimators are provided as Algorithm 2.

4 Sanitized Keys

Algorithm 3: Compute πi for Sanitizing Keys
Input: (ε, δ), non-decreasing sampling probabilities (qi)i≥1,

Max Frequency
π0 ← 0
foreach i = 1, . . . ,Max Frequency do

πi ← min{qi, eεπi−1 + δ, 1 + e−ε(πi−1 + δ − 1)}

return (πi)
Max Frequency
i=1

A sanitizer C uses a representation of the non-decreasing
(qi)i≥1 and computes respective probabilities (pi)i≥1. A
non-private sample S can then be sanitized by considering
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each pair (x,wx) ∈ S and reporting the key x indepen-
dently with probability pwx .

We find it convenient to express constraints on (pi)i≥1 in
terms of the end-to-end reporting probability of a key x
with frequency i (probability that x is sampled and then
reported):

πi := piqi = Pr[x ∈ C(A(w))] .

Keys of frequency 0 are not sampled or reported and we
have q0 = 0 and π0 := 0. The objective of maximizing pi
corresponds to maximizing πi. We establish the following
(The proof is provided in Appendix A):
Lemma 4.1. Consider weighted sampling schemeA where
keys are sampled independently according to a non-
decreasing (qi)i≥1 and a key sanitizer C (Algorithm 2) is
applied to the sample. Then the probabilities pi ← πi/qi,
where πi are the iterates computed in Algorithm 3, are
each at the maximum under the DP constraints forC(A()).
Moreover, (πi)i≥1 is non-decreasing.

4.1 Structure and Properties of (πi)i≥1

The solution as computed in Algorithm 3 applies with any
non-decreasing qi. We explore properties of the solution
that allow us to compute and store it more efficiently and
understand the reporting loss (reduction in reporting prob-
abilities) that is due to the privacy requirement. Proofs are
provided in Appendix A.

We provide closed-form expressions of the solution π∗i that
corresponds to qi = 1 for all i (aka the private histogram
problem). We will use the following definition of L(ε, δ).
To simplify the presentation, we assume that ε and δ are
such that L is an integer (this assumption can be removed).

L(ε, δ) :=
1

ε
ln

(
eε − 1 + 2δ

δ(eε + 1)

)
≈ 1

ε
ln
( ε

2δ

)
(4)

Lemma 4.2. When qi = 1 for all i, the sequence (πi)i≥1
computed by Algorithm 3 has the form:

π∗i =


δ e

εi−1
eε−1 i ≤ L+ 1

1− δ eε(2L+2−i)−1
eε−1 L+ 1 ≤ i ≤ 2L+ 1

1 i ≥ 2L+ 2

(5)

For the general case where the qi’s can be smaller than 1,
we bound the number of frequency values for which πi <
qi. On these frequencies, the private reporting probability
is strictly lower than that of the original non-private sample,
and hence there is reporting loss due to privacy.
Lemma 4.3. There are at most 2L(ε, δ) + 1 values i such
that πi < qi, where L is as defined in (4).

We now consider the structure of the solution for threshold
sampling. The solution has a particularly simple form that
can be efficiently computed and represented.

Lemma 4.4. When the sampling probabilities (qi)i≥1 are
those of threshold ppswor sampling with f(i) = i then the
solution has the form πi = π∗i for i < ` and πi = qi for
i ≥ `, where ` = min{i : π∗i > qi} is the lowest position
with π∗i > qi and π∗i is as defined in (5).

5 Sanitized Keys and Frequencies

Algorithm 4: Compute (πi,j) for Sanitized Frequen-
cies
Input: ((ε, δ), non-decreasing (qi)i≥1), Max Frequency
Output: (πi,j) for 0 ≤ j ≤ i ≤ Max Frequency
π0,0 ← 1, π0 = 0
foreach i = 1, . . . ,Max Frequency do // Iterate over rows

πi ← min{qi, eεπi−1 + δ, 1 + e−ε(πi−1 + δ − 1)}
// End-to-end probability to output a key with
frequency i
πi,0 ← 1− πi
foreach j = 1, . . . , i− 1 do // Set lower bound values;
use [a]+ := max{a, 0}
πi,j ← e−ε

(∑j
h=1 πi−1,h − δ

)
−
∑j−1
h=1 πi,h

+
[
e−επi−1,0 − πi,0

]
+

πi,j ← [πi,j ]+

R← πi −
∑i−1
h=1 πi,h // Remaining probability to

assign

foreach j = i, . . . , 1 do // Set final values for πi,j
ifR = 0 then Break
U ← eε

∑i−1
h=j πi−1,h + δ −

∑i
h=j+1 πi,h // Max

value allowed for πi,j

if U − πi,j ≤ R then
R← R− (U − πi,j)
πi,j ← U

else
πi,j ← πi,j + R
R← 0

return (πi,j)

A frequency sanitizer C returns keys x together with san-
itized information on their frequency. We use pi,j for the
probability that C reports j ∈ [t] for a sampled key that has
frequency i, with pi,0 being the probability that the sam-
pled key is not reported. We have that

∑t
j=1 pi,j is the total

probability that a sampled key with frequency i is reported
by C. We use

πi,j ← qipi,j

for the end-to-end probability that a key with frequency i
is sampled and reported in the private sample with sani-
tized value j. For notation convenience, we use πi,0 :=

1−∑t
j=1 πi,t for the probability that a key is not reported,

making πi,• probability vectors. The reader can interpret
the returned value j as a token from an ordered domain.
The estimators we propose depend only on the order of to-
kens and not their values and hence are invariant to a map-
ping of the domain that preserves the order.

We express constraints on (πi,j)i≥0,j≥0. For a solution to
be realizable, we must have end-to-end reporting probabil-
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ities that do not exceed the sampling probabilities:

∀i,
t∑

j=1

πi,j ≤ qi . (6)

The DP constraints are provided in the sequel. Note that we
must have

∑t
j=1 πi,j ≤ πi, where (πi)i≥1 is the solution

for sanitized keys (Algorithm 3), this because the sanitized
frequencies DP constraints are a superset of the sanitized
keys constraints – we obtain the latter in the former by con-
sidering outputs that group together all outputs with a key
x with all possible values of j > 0. For optimality, we
seek solutions that (informally) maximally separate the dis-
tributions of different frequencies (minimize the overlap),
over all possible DP frequency reporting schemes. We will
see that maximum separation can (i) always be achieved
by a discrete distribution (when the maximum frequency is
bounded) and (ii) can be simultaneously achieved between
any pair of frequencies. In particular, we maintain optimal
reporting, that is,

∑t
j=1 πi,j = πi and πi,0 = πi. The solu-

tions we express are such that for i1 > i2, πi1,• (first-order)
stochastically dominates πi2,•: That is, for any h, the prob-
ability of a token j ≥ h is non-decreasing with frequency.

We present two algorithms that express (πi,j). Algorithm 4
provides a simplified construction, where t is equal to the
maximum frequency and we always report j ≤ i for a key
with frequency i. The sanitizer satisfies realizability and
DP and has optimal key reporting but attains maximum
separation only under some restrictions. The values πi,j
are specified in order of increasing i, where the row πi,• is
set so that the probability mass of πi is pushed to the extent
possible to higher j values.

Algorithm 5 specifies PDFs (fi) for a frequency sanitizer.
The PDFs have a discrete point mass at 0 (that corresponds
to the probability of not reporting) and are piecewise con-
stant elsewhere. The scheme is a refinement of the scheme
of Algorithm 4 and, as we shall see, for any (qi) and (ε, δ),
it maximally separates sanitized values for different fre-
quencies. The construction introduces at most 3m distinct
breakpoints for frequencies up to m and can be discretized
to have an equivalent (πi,j) form with j ∈ [3m]. (More
details and proofs are provided in Appendix C.)

Theorem 5.1. The sanitizer with (πi,j) expressed in Algo-
rithm 5 satisfies:

1. ∀i, ∑i
j=1 πi,j = πi, and in particular, (6) holds and

the sanitizer is realizable.

2. (ε, δ)-DP

3. Maximum separation: For each i, there is an index ci
so that subject to the above and to row πi−1,•, for all
j′ ≤ ci, the sum

∑j′

j=1 πij is at a minimum and for all

j′ ≥ ci, the sum
∑i
j=j′ πij is at a maximum.

The (πi,j) expressed by Algorithm 4 satisfy maximum sep-
aration (Property 3) under the particular restrictions on the
reported values (that only i different outputs are possible
for frequencies up to i). (The proofs are provided in Ap-
pendix B)

The (πi,j) expressed by Algorithm 5 and then discretized
satisfy maximum separation (Property 3) unconditionally,
over all DP frequency sanitization schemes.

For the special case where qi = 1 for all i, Algorithm 4
provides maximum separation. We provide a closed-form
expression for the solution π∗i,j .
Lemma 5.2. Let the DP parameters (ε, δ) be such that
L(ε, δ) as in (4) is integral. Let (π∗ij) be the solution com-
puted in Algorithm 4 for qi = 1 for all i. Then the matrix
with entries π∗ij for i, j ≥ 1 has a lower triangular form,
with the non-zero entries as follows:

For j ∈ {max{1, i− 2L}, . . . , i}, π∗ij = π∗i−j+1 − π∗i−j .

Equivalently, π∗i,j =

{
δe(i−j)ε if 0 ≤ i− j ≤ L
δe(2L−(i−j))ε if L+ 1 ≤ i− j ≤ 2L .

Algorithm 5: Compute (fi) for Sanitizing Frequencies
Input: (ε, δ), non-decreasing sampling probabilities (qi)i≥1,

Max Frequency
Output: (fi)Max Frequency

i=0 , where fi : [0, i] // PDF of sanitized
frequency for frequency i: discrete mass at
fi(0) (probability of not reporting) and
density on (0, i]

f0(0)← 1; πi ← 0 // Keys with frequency 0 are never
reported

for i← 1 to Max Frequency do // Specify fi : [0, i]

πi ← min{qi, eεπi−1 + δ, 1 + e−ε(πi−1 + δ − 1)};
fi(0)← 1− πi // Reporting probability for i
fi(i− 1, i]← min{πi, δ}
// Represent a function fL : (0, i− 1] that "lower

bounds" fi

if max{0, e−εfi−1(0)− fi(0)}+
∫ i−1

0+
fi−1(x)dx ≤ δ then

fL(0, i− 1]← 0

else
bi ← z that solves
max{0, e−εfi−1(0)− fi(0)}+

∫ z
0+

fi−1(x)dx = δ

// Well defined, as from DP, we always have

max{0, e−εfi−1(0)− fi(0)} ≤ δ
fL(0, bi]← 0

for x ∈ (bi, i− 1] do fL(x)← e−εfi−1(x)

// Point where fi(x)− fi−1(x) switches sign
ci ← z that solves∫ z

0
fL(x)dx+ eε

∫ i−1
z

fi−1(x)dx = πi −min{πi, δ}
// Any solution z ∈ (0, i− 1]

for x ∈ (ci, i− 1] do fi(x) = eεfi−1(x)
for x ∈ (0, ci] do fi(x)← fL(x)

return (fi)
Max Frequency
i=0

6 Estimation of Ordinal Statistics

The sanitized frequencies can be used for estimation of
statistics specified with respect to the actual frequencies.
In this section we consider ordinal statistics, that only de-
pend on the order of frequencies but not on their nomi-
nal values. Ordinal statistics include (approximate) top-k
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set, quantiles, rank of a key, set of keys with a higher (or
lower) rank than a specified key, and more. We approxi-
mate ordinal statistics from the ordering of keys that is in-
duced by sanitized frequencies. The quality of estimated
ordinal statistics is determined by the match between the
order induced by exact frequencies and the order induced
by sanitized frequencies. We say that the two orders are
concordant on a subset of keys {xi}, when they match on
that subset. Since the output of our sanitizer is stochastic,
we consider the probability of a subset being concordant.
When sanitized values are discrete and two keys have the
same sanitized value, we use probability of 0.5 that two
keys are concordant.

We define (see Appendix D) a measure of separation be-
tween distributions fi1 and fi2 at a certain quantile value
α and show that the (fi) constructed by Algorithm 5 max-
imize it pointwise for any i1, i2, α. This measure general-
izes and follows from Property 3 stated in Theorem 5.1.
As a corollary we show (The proof is provided in Ap-
pendix D):

Corollary 6.1. The sanitizing scheme specified by the (fi)
computed by Algorithm 5 maximizes the following: The
probability that a subset of keys is concordant, the prob-
ability that a key is correctly ordered with respect to all
other keys, and the expected Kendall-τ rank correlation.

Note that we get optimality in a strong sense – there is no
Pareto front where concordant probability on some pairs
of frequencies needs to be reduced in order to get a higher
value for other pairs.

7 Estimation of Linear Frequency Statistics

The objective is to estimate statistics of the form

s :=
∑
x

L(x)g(wx) . (7)

We briefly review estimators for the non-private setting
where the sample consists of pairs (x,wx) of keys and their
frequency. We use the per-key inverse-probability estima-
tors (Horvitz and Thompson, 1952) (also known as impor-
tance sampling). The estimate ĝ(wx) of g(wx) is 0 if key
x is not included in the sample and otherwise the estimate
is

awx :=
g(wx)

qwx
. (8)

These estimates are nonnegative, a desired property for
nonnegative values, and are also unbiased when qwx > 0.
The estimate for the query statistics (7) is

ŝ :=
∑

(x,wx)

L(x)ĝ(wx) =
∑

(x,wx)∈S

L(x)awx . (9)

Since the estimate is 0 for keys not represented in the sam-
ple, it can be computed from the sample. The variance of a

per-key estimate for a key with frequency i is g(i)2( 1
qi
−1)

and the variance of the sum estimator (9) is

Var[ŝ] =
∑
x

L(x)2g(wx)2(
1

qwx
− 1) .

These inverse-probability estimates are optimal for the
sampling scheme in that they minimize the sum of per-
key variance under unbiasedness and non-negativity con-
straints. We note that the quality of the estimates depends
on the match between g(i) and qi: Probability Proportional
to Size (PPS), where qi ∝ g(i) is most effective and mini-
mizes the sum of per-key variance for the sample size. Our
aim here is to optimize what we can do privately when q
and g are given.

7.1 Estimation with Sanitized Samples

We now consider estimation from sanitized samples S∗.
We specify our estimators (aj)j≥1 in terms of the reported
sanitized frequencies j. The estimate is 0 for keys that are
not reported and are aj when reported with value j. The
estimate of the statistics is

ŝ :=
∑

(x,j)∈S∗
L(x)aj . (10)

As for choosing (aj)j≥1, a first attempt is the unique unbi-
ased estimator: The unbiasedness constraints

∀i,
i∑

j=1

πijaj = g(i)

form a triangular system with a unique solution (aj)j≥1:

ai ←
g(i)−∑i−1

j=1 πi,jaj

πi,i
.

However, (aj)j≥1 may include negative values and esti-
mates have high variance. We argue that bias is unavoid-
able with privacy: First, the inclusion probability of keys
with frequency wx = 1 can not exceed δ. Therefore, the
variance contribution of the key to any unbiased estimate
is at least 1/δ. Typically, δ is chosen so that 1/δ � nk,
where n is the support size and k the sample size, so this
error can not be mitigated. Second, we show in Appendix F
that even for the special case of q = 1, any unbiased esti-
mator applied to the output of any sanitized keys and fre-
quencies scheme with optimal reporting probabilities must
assume negative values. That is, DP schemes do not admit
unbiased nonnegative estimators without compromising re-
porting probabilities. We therefore seek estimators that are
biased but balance bias and variance and are nonnegative.
In our evaluation we use the following Maximum Likeli-
hood estimator (MLE):

aj ←
g(i)

πi
, where i = arg max

h
πhj . (11)
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This estimate is ”right” for the frequency i for which the
probability of reporting j is maximized. The estimate can
be biased up or down. Another estimator with desirable
properties is proposed in Appendix E.

We express the expected value, bias, Mean Squared Error
(MSE), and variance of the per-key estimate for a key with
frequency i:

Ei :=
i∑

j=1

πi,jaj

Biasi :=Ei − g(i)

MSEi :=πig(i)
2 +

i∑
j=1

πi,j(aj − g(i))2

Vari :=MSEi − Bias2
i .

For the sum estimate (10) we get:

Bias[ŝ] =
∑
x

L(x)Biaswx

Var[ŝ] =
∑
x

L(x)2Varwx

MSE[ŝ] =Var[ŝ] + Bias[ŝ]2

NRMSE[ŝ] =

√
MSE[ŝ]
s

. (12)

Note that the variance component of the normalized
squared error MSE[ŝ]/s2 decreases linearly with support
size whereas the bias component may not. We therefore
consider both the variance and bias of the per-key estima-
tors and qualitatively seek low bias and “bounded” vari-
ance. We measure quality of statistics estimators using the
Normalized Root Mean Squared Error (NRMSE).

8 Performance Analysis

We study the performance of PWS on the key reporting and
estimation objectives and compare with a baseline method
that provides the same privacy guarantees. We use pre-
cise expressions (not simulations) to compute probabilities,
bias, variance, and MSE of the different methods.

8.1 Private Histograms Baseline

We review the Stability-based Histograms (SbH) method
of (Bun et al., 2019; Korolova et al., 2009; Vadhan, 2017),
which we use as a baseline. SbH, provided as Algorithm 6,
is designed for the special case when qi = 1 for all frequen-
cies. The input S is the full data of pairs of keys and posi-
tive frequencies (x,wx). The private output S∗ is a subset
of the keys in the data with positive sanitized frequencies
(x,w∗x).

The SbH method is considered the state of the art for sparse
histograms (only keys with wx > 0 can be reported). The
method returns non-negative w∗x > 0 sanitized frequencies.

Algorithm 6: Stability-based Histograms (SbH)

Input: (ε, δ) , S = {(x,wx)} where wx > 0
Output: Key value pairs S′

S∗ ← ∅ // Initialize private histogram

T ← (1/ε) ln(1/δ) + 1 // Threshold

foreach (x,wx) ∈ S do
w∗x ← wx + Lap[ 1

ε
] // Add Laplace random variable

if w∗x ≥ T then
S∗ ← S∗ ∪ (x,w∗x)

For the case of no sampling, we compare PWS (with q ≡ 1)
with SbH. We use the SbH sanitized frequencies directly
for estimation. For sampling, our baseline is sampled-SbH:
The data is first sanitized using SbH and then sampled, us-
ing a weighted sampling algorithm with q, while treating
the sanitized frequencies as actual frequencies. For estima-
tion, we apply the estimator (9) (which in this context is
biased). To facilitate comparison with SbH and sampled-
SbH we express the reporting probabilities, bias, and vari-
ance in Appendix G.

8.2 Reporting Probabilities: No Sampling

We start with the case of no sampling and the objective
of maximizing the number of privately reported keys. We
compare the PWS (optimal) probabilities π∗ (5) to the
baseline SbH (Bun et al., 2019; Korolova et al., 2009; Vad-
han, 2017) reporting probabilities φ (49). Figure 1 shows
reporting probability per frequency for selected DP pa-
rameters. We can see that with both private methods the
reporting probability reaches 1 for high frequencies but
PWS (Opt) reaches the maximum earlier and is signifi-
cantly higher than φ along the way. Analytically from the
expressions we can see that for i ≤ L(ε, δ), π∗i /φi ∈
[2, 2/ε] and for lower i we have π∗i /φi ≈ 2i. We can
also see that π∗2L+1 reaches 1 at 2L ≈ 2

ε ln(ε/δ) whereas
φi > 1 − δ for i ≈ 2

ε ln(1/δ). The ratio between the
frequency values when maximum reporting is reached is
≈ ln(1/δ)/ ln(ε/δ).

Figure 2 shows the expected numbers of reported keys with
PWS (Opt) and SbH for frequency distributions that are
Zipf[α] with α = 1, 2 as we sweep the privacy parameter δ.
Overall we see that PWS gains 20%-300% in the number
of keys reported over baseline. Note that as expected, the
optimal PWS reports all keys when δ = 1 (i.e., no privacy
guarantees) but SbH incurs reporting loss.

We additionally evaluate PWS and compare it to SbH on
two real-world datasets:

1. ABC: The words of news headlines from the Aus-
tralian Broadcasting Corporation. The keys are words
and the frequency is the respective number of occur-
rences (Kulkarni, 2017).
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2. SO: The multi-graph of Stack Overflow where keys
are nodes in the graph and frequencies are undirected
degrees (Paranjape et al., 2017).

Figure 3 shows the expected numbers of reported keys on
these datasets. We note that the results are similar to what
was observed on the synthetic Zipf datasets.

Figure 1: Key reporting probability for frequency. No
sampling (q = 1) with PWS (Opt) and SbH for (ε, δ) =
(0.1, 0.01), (0.01, 10−6)

Figure 2: Expected fraction of keys that are privately re-
ported with PWS (Opt) and SbH for Zipf[α] frequency dis-
tributions. For α = 1, 2, privacy parameters ε = 0.1 and
sweeping δ between 1 and 10−8. Left: The respective ratio
of PWS to SbH.
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Figure 3: Evaluation of PWS on real-world datasets (with-
out sampling). Left: The ratio of reported keys with PWS
to SbH. Center and Right: Fraction of total keys reported
with sampled-SbH and PWS as we sweep the parameter δ.

8.3 Reporting Probabilities with Sampling

Figure 4 shows reporting probabilities with PWS (opti-
mal reporting probabilities), sampled-SbH, and non-private
sampling, for representative sampling rates and privacy
parameters. As expected, for sufficiently large frequen-
cies both private methods have reporting probabilities that
match the sampling probabilities q of the non-private
scheme. But PWS reaches q at a lower frequency than
sampled-SbH and has significantly higher reporting prob-
abilities for lower frequencies. Figure 5 shows the frac-
tion of keys reported for Zipf distributions as we sweep the
sampling rate (threshold τ ). PWS reports more keys than
sampled-SbH and the gain persists also with low sampling

Figure 4: Reporting probability as a function of frequency.
For ppswor sampling with threshold τ (q), PWS private
samples (Opt), and sampled-SbH private samples.

rates. We can see that with PWS, thanks to end-to-end
privacy analysis, the reporting loss due to sampling miti-
gates the reporting loss needed for privacy – reporting ap-
proaches that of the non-private sampling when the sam-
pling rate τ approaches δ. Sampled-SbH, on the other hand,
incurs reporting loss due to privacy on top of the reporting
loss due to sampling. Figures 6 and 7 show the expected
fraction of reported keys on the real-world datasets ABC
and SO.

Figure 5: Fraction of total keys reported with threshold-
ppswor, sampled-SbH, and PWS (Opt), as we sweep the
sampling rate τ . For Zipf[α], ε = 0.1 and δ = 0.001 the
gains in reporting of PWS over Sampled-SbH are at least
230% (α = 0.5), 97% (α = 1) and 37% (α = 2).
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Figure 6: Evaluation on real-world datasets (with sam-
pling): fraction of total keys reported with threshold-
ppswor (non-private), sampled-SbH, and PWS, as we
sweep the sampling rate τ .

8.4 Estimation of Linear Statistics

We evaluate estimation quality for linear statistics (7) when
g(w) = w and L(x) is a selection predicate. The statis-
tics is simply the sum of frequencies of selected keys.
We compare performance of PWS with the MLE estima-
tor (11), the baseline sampled-SbH, and for reference, the
estimator of the respective non-private sample (9). Fig-
ure 8 (top) shows normalized bias Biasi/i as a function
of the frequency i for the two private methods (the non-
private estimator is unbiased and not shown). With both
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Figure 7: Ratio of expected number of keys that are pri-
vately reported with PWS to SbH for the ABC and SO
datasets, as we sweep the sampling rate τ .

methods, the bias decreases with frequency and diminishes
for i � 2ε−1 ln(1/δ). PWS has lower bias at lower fre-
quencies than SbH, allowing for more accurate estimates
on a broader range. We can see that with PWS, the bias
decreases when the sampling rate (τ ) decreases and dimin-
ishes when τ approaches δ. This is a benefit of the end-to-
end privacy analysis. The bias of the baseline method does
not change with sampling rate.

Figure 9 shows the normalized variance Vari/i2 per fre-
quency i for representative parameter settings. The pri-
vate methods PWS and sampled-SbH maintain low vari-
ance across frequencies: The value is fractional with no
sampling and is of the order of that of the non-private un-
biased estimator with sampling. In particular this means
that the bias is a good proxy for performance and that the
improvement in bias of PWS with respect to baseline does
not come with a hidden cost in variance. For high frequen-
cies (not shown), keys with all methods are included with
probability (close to) 1. The non-private method that re-
ports exact frequencies have 0 variance whereas the private
methods maintain a low variance, but the normalized vari-
ance diminishes for all methods.

For statistics estimation, the per-key performance suggest
that when the selection has many high frequency keys, the
private methods perform well and are similar to non-private
sampling. When the selection is dominated by very low
frequencies, the private methods perform poorly and well
below the respective non-private sample. But for low to
medium frequencies, PWS can provide drastic improve-
ments over SbH and the gain increases with lower sampling
rates. Figure 8 (bottom) shows the NRMSE as a function
of sampling rate for estimating the sum of frequencies on a
selection of 2×105 keys with frequencies uniformly drawn
between 1 and 200. We can see that the error of non-private
sampling and of sampled-SbH decreases with higher sam-
pling rate. Note the perhaps counter-intuitive phenomenon
that PWS (MLE) hits its sweet spot midway: This is due
to a balance of the two components of the error, the vari-
ance which increases and the bias that decreases when the
sampling rate decreases. Also note that PWS significantly
improves over SbH also with no sampling (τ = 1).
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Figure 8: Top: Normalized bias for PWS (MLE) and
sampled-SbH as a function of frequency, for different
sampling rates. The bias of the sampled-SbH estimates
(shown once) does not change with sampling rate. Bot-
tom: NRMSE as a function of sampling rate for a selection
of 2× 105 keys with frequencies drawn uniformly [1, 200].
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Figure 9: Normalized variance Vari/i2 and variance Vari
for PWS (MLE) and sampled-SbH as a function of the fre-
quency i.

Conclusion

We presented Private Weighted Sampling (PWS), a method
to post-process a weighted sample and produce a version
that is differentially private. Our private samples maximize
the number of reported keys subject to the privacy con-
straints and support estimation of linear and ordinal statis-
tics. We demonstrate significant improvement over prior
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methods for both reporting and estimation tasks, even for
the well studied special case of private histograms (when
there is no sampling).

An appealing direction for future work is to explore the use
of PWS to design composable private sketches, e.g., in the
context of coordinated samples. Threshold and bottom-k
samples of different datasets are coordinated when using
consistent {ux}. Coordinated samples generalize MinHash
sketches and support estimation of similarity measures and
statistics over multiple datasets (Brewer et al., 1972; Saave-
dra, 1995; Cohen, 1997; Broder, 2000; Cohen, 2014a,b).
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A Proofs: Sanitized Keys

We establish that (πi)i≥1 as computed by Algorithm 3
are maximum under the DP constraints and are non-
decreasing.

Proof of Lemma 4.1. We use the notation πi := 1 − πi
for the probability of a key not being included in C(A()).
Since key inclusions in the (original or sanitized) sample
are independent, the probability of a particular sanitized
sample Z (set of keys, possibly empty) has the product
form

Pw(Z) :=
∏
x∈Z

πwx
∏
x 6∈Z

πwx .

Since πi = qipi is the product of two probabilities, one that
is given (qi) and one that we set (pi) then our solution for
(πi)i≥1 is realizable if and only if it satisfies the constraints
for all i:

πi ≤ qi . (13)

We now consider the DP constraints. Consider two neigh-
boring datasets w and w′ and the two cases (i) For some
i ≥ 1 there is a key x such that wx = i and w′x = i − 1
(ii) For some i ≥ 0 there is a key x such that wx = i and
w′x = i+ 1.

We consider sets T of possible outputs that we partition to
outputs T+ that include the key x and outputs T− that do
not include x. We use the notation

Q+ =
∑
Z∈T+

Pw−x(Z \ {x})

Q− =
∑
Z∈T−

Pw−x(Z)

for the respective sums over these sets of outputs of the
probability projected on keys other than x.

The general DP constraints on a set of outputs T have one
of the following form corresponding to our two cases:

Q+πi +Q−πi ≤ eε(Q+πi−1 +Q−πi−1) + δ (14)

Q+πi +Q−πi ≤ eε(Q+πi+1 +Q−πi+1) + δ . (15)

We observe, assuming monotonicity of πi, that constraints
(14) are strictest when Q− is as small as possible. This

because πi ≤ πi−1 implies Q−πi ≤ eεQ−πi−1 (using
eε ≥ 1), so the larger Q− is, the less strict the inequality
becomes. This is achieved when T− = ∅ and thusQ− = 0,
that is, T only includes outputs that include x. Similarly,
assuming πi ≥ πi−1, the constraints are strictest when Q+

is as large as possible. That is T+ includes all possible
outcomes on keys other than x and thus Q+ = 1. A simi-
lar argument shows that constraints (15) are strictest when
Q+ = 0 and Q− = 1.

We obtain that the DP constraints simplify to

i ≥ 1: πi ≤ eεπi−1 + δ (16)
i ≥ 0: πi ≤ eεπi+1 + δ . (17)

We show below that the solution (πi)i≥1 of the simplified
constraints (as subset of all constraints) is non-decreasing
and hence any solution to the full set of constraints must
also be non-decreasing and thus the assumption that led to
the simplification is valid.

We observe that the constraints (16) and (17) are upper
bounds on πi in terms of πi−1 and the feasibility constraint
(13) is also an upper bound on πi. Therefore, each iterate
πi computed in Algorithm 3 attains the maximum possible
value by the constraints, provided that πi−1 is at its maxi-
mum value. The claim that each πi is maximized follows
by induction.

Finally, to establish that (πi)i≥1 are non-decreasing we
show that each term in the minimum that determines πi+1

is at least πi:

• (13): qi+1 ≥ qi ≥ πi
• (16): eεπi + δ ≥ πi
• (17): 1+e−ε(πi+δ−1) = (1−e−ε)+e−ε(πi+δ) ≥

(1− e−ε)πi + e−ε(πi + δ) = πi + e−εδ ≥ πi

Consider the iterates πi and the corresponding constraints
sequence of the minimum among the three constraints:
(13), (16), and (17). We will slightly abuse notation and
use these references to constraints in expressions. We first
consider the relation between (16) and (17):

Lemma A.1. The constraints sequence has all positions
with (16) preceding all positions with (17). In the typical
settings of ε � 1, the highest position i before the transi-
tion has πi ≤ (1− δ)/2.

Proof. The ratio of constraints as a function of x = πi is:

(16)
(17)

=
eεx+ δ

1 + e−ε (x+ δ − 1)
.

This is an increasing function for x ∈ (0, 1]. Therefore
the iterates πi are such that initially (16) is smaller (ratio is
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lower than 1) and then (17) is smaller (ratio is larger than
1). Solving for the crossing point (ratio equal to one) we
get

x =
1− δ
1 + eε

≈ 1− δ
2 + ε

,

using the first order approximation ez ≈ 1 + z which holds
when z � 1. Also note that x ≤ (1− δ)/2.

A subsequence of (πi) where all constraints are (16) or all
(17) has a compact form:

Lemma A.2. The iterates πi+1 = eεπi + δ on a sub-
sequence with only (16) that starts at i0 can be compactly
expressed for i > i0:

πi = πi0e
(i−i0)ε + δ

e(i−i0)ε − 1

eε − 1
. (18)

Similarly, for a sub-sequence with only (17) constraints
where πi+1 = e−ε(πi − δ) we get:

πi = πi0e
−(i−i0)ε − δe−ε 1− e−(i−i0)ε

1− e−ε . (19)

Proof. The iterates form a geometric series.

We now establish the closed-form expressions of the solu-
tion π∗i that corresponds to qi = 1 for all i.

Proof of Lemma 4.2. Since qi = 1 for all i, the constraint
sequence includes only (16) and (17) constraints (until the
minimum exceeds 1, in which πi = 1 at this position and
all subsequent positions). From Lemma A.1 we know it
has the form (16)∗(17)∗. We have π∗1 = δ.

We have π∗1 = δ and hence while the constraint (16) holds.
Using (18) (Lemma A.2) we have π∗i = δ e

iε−1
eε−1 . From

the proof of Lemma A.1, we have (16) in the constraint
sequence until π∗i >

1−δ
1+eε . From our choice of L, we have

π∗L = δ
eLε − 1

eε − 1
=

1− δ
1 + eε

.

Therefore, both (16) and (17) hold at position L. We have
π∗L+1 = eεπ∗L + δ. From our choice of L we have π∗L+1 =

π∗L and π∗L = π∗L+1. We apply (19) (Lemma A.2) with
i0 = L to obtain the claim. Note the symmetry of the
solution where for 1 ≤ i ≤ L, π∗2L+1−i = π∗i .

We are now ready to bound the number of positions iwhere
πi < qi:

Proof of Lemma 4.3. We have πi < qi if and only if the ith
position in the constraint sequence has (16) or (17).

The sequence of πi is non-decreasing with at most one tran-
sition from (16) to (17). For i such that qi ≤ δ we have the

constraint (13). Hence πi ≥ δ = π∗1 at the first position
with πi < qi. Each application of the minimum of (16)
and (17) increases πi. The total increase is larger when the
initial value is larger. Let h be the ith position with (16) or
(17). Because of the monotone increase we can show by
induction that πh ≥ π∗i . Since there are 2L + 1 positions
in (π∗i )i≥1 with value π∗i < 1, there can be at most 2L+ 1
positions in (πi)i≥1 with πi < qi.

With threshold sampling (say by moments of frequency)
we have a closed form for qi. Using this and Lemma A.2
we can express the solution πi with computation that de-
pends on the number of transitions in the constraint se-
quence. The following Lemma bounds the number of such
transitions. The proof of Lemma 4.4 follows as a special
case:

Lemma A.3. For threshold ppswor with p = 1 the con-
straints sequence has the regular-expression form

(16)∗(17)∗(13)∗ .

For priority sampling with p ≤ 1 and for priority with p ≥
1 when τ ≥ δ, all (13) constraints must follow all (16)
constraints in the constraint sequence.

Proof. From Lemma A.1 there is at most one transition
from (16) to (17).

We now consider the relation between (13) and (16). When
πi = qi, we will have (13)≤(16) if

ρ(i, δ) :=
qi+1 − δ

qi
≤ eε . (20)

We need to establish that once (20) holds for i = i0, it
continues to hold for i ≥ i0. Equivalently, establishing
the claim for all ε > 0 is equivalent to establishing that
ρ(i, δ) is non-increasing with i when ρ(i, δ) > 1. That is,
that ρ(i, δ) is non-increasing, equivalently, that the partial
derivative satisfies

∂ρ(i, δ)

∂i
≤ 0 (21)

when
qi+1 − qi ≥ δ . (22)

In some of the derivations i will be convenient to work with
the continuous form of (22):

∂qi
∂i
≥ δ . (23)

Consider ppswor threshold sampling with p = 1. Re-
call that qi = 1 − e−τi. Therefore, the condition (22)
is e−τi(1 − e−τ ) ≥ δ. It suffices to check (21) when
δ + e−τ ≤ 1. Substituting and solving (21) we obtain that
the derivative is negative when δ + e−t ≤ 1. Therefore,
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there can be at most one transition from (16) to (13) for
ppswor with p = 1.

We next consider priority threshold sampling qi =
min{1, τ ip}. For ipτ ≥ 1, qi = 1 and (22) does not hold.
Therefore it suffices to consider qi = τip < 1 and

ρ(i, δ) =
(i+ 1)p − δ

τ

ip
.

When p ≤ 1, (i+1)p−ip ≤ 1 and thus condition (22) does
not hold when τ ≤ δ. Hence it suffices to consider p ≥ 1
or δ < τ . Using the continuous form (23) with qi = τip

we get that it is satisfied when

ip−1 ≥ δ/(pτ) . (24)

By solving (21) we get

(i+ 1)p−1 >
δ

τ
.

This holds for all i ≥ 1 and p ≥ 1 when δ ≤ τ . Since it
suffices to for the solution to hold for (24), we obtain the
claim for p ≤ 1. Combining, we obtain that there can be at
most one transition from (16) to (13) for priority sampling
with p ≤ 1 and for p ≥ 1 when τ ≥ δ.

We next consider the relation between (13) and (17). We
define

ρ(i, δ) :=
qi − δ
qi+1

.

When πi = qi, we will have (13)≤(17) if

ρ(i, δ) ≤ eε .

To establish the claim for all ε > 0 it is equivalent to estab-
lish that ρ(i, δ) is non-increasing when it is greater than 1.
Equivalently, that qi − qi+1 = qi+1 − qi > δ (same as (22)
and (23)) implies that ρ(i, δ) is non-increasing. That is,

∂ρ(i, δ)

∂i
≤ 0 . (25)

For ppswor with p = 1 we get

ρ(i, δ) =
e−τi − δ
e−τ(i+1)

and that (25) holds for all δ ≥ 0 and τ > 0.

B Proofs: Sanitized Keys and Frequencies

We establish properties of the values (πi,j) computed by
Algorithm 4.

Proof of Theorem 5.1. We write the DP constraints in
terms of sets T of potential outputs on pairs of neighbor-
ing datasetsw andw′. We follow the proof of Lemma 4.1.
Consider two neighboring datasets w and w′ and the two
cases: (i) For some i ≥ 1 there is a key x such that wx = i
and w′x = i − 1. (ii) For some i ≥ 0 there is a key x such
that wx = i and w′x = i+ 1.

We consider a set of outputs T . A potential output Z ∈ T
is a set of key value pairs (y, j) where key y is reported
with value j. For purposes of this proof we partition T to
sets Tj according to the output on key x. If (x, j) ∈ Z we
place Z ∈ Tj and if key x is not in Z we place Z in T0.

We denote by Qj the respective combined probability of
outputs Tj when projected on all keys other than x (equiv-
alently, the probability of Tj when key x is removed from
the dataset). The general DP constraints have the form

Pr[C(A(w)) ∈ T ] ≤ eε Pr[C(A(w′)) ∈ T ] + δ .

We have

Pr[C(A(w)) ∈ T ] =

i∑
j=0

Qjπi,j .

From the two choices of the neighboring dataset w′ we
have one of:

Pr[C(A(w′)) ∈ T ] =

i−1∑
j=0

Qjπi−1,j

Pr[C(A(w′)) ∈ T ] =

i+1∑
j=0

Qjπi+1,j .

The corresponding DP constraints are:

i ≥ 1 :
i∑

j=0

Qjπi,j ≤ eε
i−1∑
j=0

Qjπi−1,j + δ (26)

i ≥ 1 :
i∑

j=0

Qjπi,j ≤ eε
i+1∑
j=0

Qjπi+1,j + δ . (27)

Considering any particular set of values πi,j , the strictest
constraints of the form (26) would have Qj = 1 for j
where πi,j > πi−1,j and Qj = 0 otherwise. Similarly
for constraints of the form (27), the strictest would have
Qj = 1 for j where πi,j > πi+1,j and Qj = 0 other-
wise. By ”strictest” constraints we mean that if the values
{πi,j} satisfy these selected constraints, the satisfy all DP
constraints.

Therefore, taking the union of all these ”strictest” sets of
constraints over all {πi,j} we obtain that without loss of
generality it suffices to solve for constraints of the follow-
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ing form: For i ≥ 1 and all J ⊂ {0, . . . , i}:∑
j∈J

πi,j ≤ eε
∑
j∈J

πi−1,j + δ (28)

∑
j∈J

πi,j ≤ eε
∑
j∈J

πi+1,j + δ . (29)

We re-arrange the set of constraints (29) and get the equiv-
alent set for all i and J ⊂ {0, . . . , i}:

∑
j∈J

πi,j ≥ e−ε
∑
j∈J

πi−1,j − δ

 . (30)

For sets J , the constraints (28) and (6) determine upper
bounds on

∑
j∈J πi,j as determined by

∑
j∈J πi−1,j for

j ∈ J . The constraints (30) determine lower bounds.

The solution is constructed by increasing i, so that row i is
set after rows h < i are set. We first set πi,0 = 1− πi. We
set other entries so that

i∑
j=1

πij = πi (31)

(we will establish inductively that we can always satisfy
(31)). Note that such settings imply that (6) are satisfied.
At the high level, we set the entries πi• using two passes:
The first pass is performed in increasing order by j ≥ 1
and we greedily compute the minimum values Di,j we can
have for πi,j so that constraints of type (30) are satisfied.
The second pass is performed in decreasing order by j ≤ i
and greedily sets πi,j to the maximum value we can while
satisfying the constraints (28) and (6). The second pass
finishes at an entry h so that

∑h−1
j=1 Di,j +

∑i
j=h πi,j =

πi. We set all entries 1 ≤ j < h to πi,j ← Di,j . A
subtlety is that during the passes we only use the respective
constraints (30) and (28) for J of prefix or suffix forms,
but we establish that the constructed solution satisfies these
constraints for all J .

We now elaborate on the first pass. The value Di,j for j ≥
1 is set to the minimum needed for πi,j so that a setting of
πi,h ← Di,h for h < j satisfies (30) for J = {0, . . . , j}
and J = {1, . . . , j} (We refer to such J as being in prefix
form). Specifically, for j = 1, . . . , i− 1 in order we get:

Di,j ← max{0, e−ε
(

j∑
h=1

πi−1,h − δ
)
−
j−1∑
h=1

Di,h+

max{0, e−επi−1,0 − πi,0}} .

Let the breakpoint b1 be maximum such that

b1∑
j=1

πi−1,j + max{0, e−επi−1,0 − πi,0} ≤ δ .

Then Di• has Di,j = 0 for j ≤ b1 and Di,j = e−επi,j for
j > b1 + 1. It follows that

∀j ≥ 1, Di,j ≤ e−επi−1,j . (32)

Also note (from the form of the constraints) that for all j ≥
1,
∑j
h=1Di,j is a lower bound on

∑j
h=1 πi,j for all πi• that

satisfy (30) on all J with prefix form. That is, we could not
get a lower prefix with a non-greedy setting of Di,j .

We now provide details on the second pass. We visit entries
j ≤ i in decreasing order and set πi,j > Di,j as follows.
Let

Di ←
i−1∑
h=1

Di,h .

From (32) we get

Di ≤
i−1∑
h=1

πi−1,h = πi−1 ≤ πi . (33)

We compute the initial probability mass to allocate R ←
πi − Di. From (33) we get that R ≥ 0. While allocat-
ing we maintain that

∑i
h=j(πi,h − Di,h) ≤ R. For j, we

first compute the maximum value U we can have for πi,j
given values we already set for πi,h for h > j so that the
constraint (28) with J = {j, . . . , i} is satisfied:

U ← eε
i−1∑
h=j

πi−1,h + δ −
i∑

h=j+1

πi,h .

We then compute the increase ∆ ← U − Di,j . If ∆ ≤
R we set πi,j ← U and R ← R − ∆. Otherwise, we
set πi,j ← Di,j + R and R ← 0. The pass terminates
when R = 0 and we let b2 be the j value when the pass
terminates. (πi,j for 1 ≤ j < b2 are set to Di,j). The
solution has the following structure. If initially R ≤ δ, the
second pass stops at b2 = i. Otherwise, πi,i = δ and for
b2 < j ≤ i − 1, πi,j = eεπi−1,j . Note that (due to the
form of the constraints) is that the construction maximizes∑i
h=j πi,j for all πi• that satisfy (28) on all J with suffix

form.

We next establish that the constructed πi• satisfy (31). For
that, we need to show that we can always exhaust R. Note
that if the situation is that current values have

∑i
j=1 πi,j <

πi we must have slack and U > πi,j in the constraints.
This since

∑i
j=1 πi,j < πi ≤ eεπi−1. We obtain U =

πi −
∑i
j=2 πi,j > πi,1 when processing j = 1.

Finally, we need to establish that the constructed πi• satis-
fies constraints (30) and (28) for all J .

From the construction, we have that any solution with
πi,j ≥ Di,j for all j, and in particular, the one con-
structed, satisfy (30) for all J that has the form {0, . . . , h}
or {1, . . . , h} for some h. Consider now an arbitrary J .
All indices with j > b1 have πi,j ≥ e−επi−1,j . Therefore



Edith Cohen, Ofir Geri, Tamas Sarlos, Uri Stemmer

J ′ ← J \ {b1 + 1, . . . , i} is such that if (30) holds for J ′,
it must hold for J . The entries 1 ≤ j < b1 have πi,j = 0.
Thus J ′′ ← J ′ ∪ {1, . . . , b1 − 1} is such that if (30) holds
for J ′′, it must hold for J ′. Now note that J ′′ has a prefix
form starting at 0 or 1 and ending at b1−1 or b1. Therefore,
(30) holds for J ′′ and hence, also holds for J .

From the construction, we know that (28) is satisfied for
any J that has a suffix form (h, . . . , i) for h ≥ b2. Consider
now an arbitrary J . Now recall that for all j < i, πi,j ≤
eεπi−1,j . Therefore, if (28) holds for J ′ = J \ {0, . . . , i−
1}, it must hold for J . But either J ′ = {i} or J ′ is empty
and in both cases (28) holds.

Proof of Lemma 5.2. We need to show that
(π∗i,j)

i
j=max{1,i−2L} is a suffix of the following sequence

of length 2L+ 1:

δ · (1, eε, . . . , eε(L−1), eεL, eε(L−1), . . . , eε, 1) (34)

We inductively verify that the construction in Algorithm 4
is such that if form (34) holds for π∗i,•, it also holds for
π∗i+1,•. We use properties of the solution outlined in the
proof of Theorem 5.1.

Note that for i ≤ 2L + 1, π∗i is equal to the sum of the
length-i suffix of the sequence and for i > 2L+ 1 we have
π∗i = 1.

For i ≤ L: the algorithm first sets lower bounds on
(π∗i+1,j)

i
j=1 that are pointwise below the respective π∗i,j .

The setting of final values will set π∗i+1,i+1 ← δ and for
h = 1, . . . ,min{i, L}:

π∗i+1,i+1−h ← eεπi,i+1−h .

For L + 1 ≤ i ≤ 2L: We have that π∗i+1 = π∗i+1,0 =
e−ε(π∗i,0 − δ). Therefore, the lower bounds the algorithm
computes for (π∗i+1,j)

i
j=1 are respectively e−επ∗i,j . This is

consistent with the prefix for j ≤ i−L. The setting of final
values will be according to the suffix until the sum is equal
to π∗i+1, which will be the case when j = i− L.

For i ≥ 2L + 1: In this case π∗i = 1 and π∗i+1 = 1
and therefore π∗i,0 = 0. We have from our assumption
π∗i,j = 0 for j < i− (2L). Therefore, the respective lower
bounds on π∗i+1,j are 0. We have π∗i,i−2L = δ and thus the
lower bound π∗i+1,i−2L is 0 and we obtain lower bounds
The lower bounds on π∗i+1,i+1−h for 1 ≤ h < 2L will re-
spectively be e−επ∗i,i+1−h. The setting of final values will
set πi+1,i+1 ← δ and set for h = 1, . . . , L:

πi+1,i+1−h ← eεπi,i+1−h

At that point we allocated all of the probability mass of 1
and have the claimed form (34) for row i+ 1.

C Frequency Sanitizer with Maximum
Separation

We express a general form of frequency sanitizers and then
establish that the sanitizer of Algorithm 5 can be discretized
and has the stated properties.

C.1 General Form of Frequency Sanitizers

We express a general form of frequency sanitizers (fre-
quency reporting schemes), in order to facilitate a discus-
sion of when a scheme is optimal. We consider the sparse
case, where a scheme never reports keys with frequency 0.
A scheme is designed for a given non-decreasing sampling
probabilities (qi)i≥1 and privacy parameters (ε, δ) as in Al-
gorithm 2 and is specified by a sequence (fi)i≥0 of prob-
ability density functions (PDF) over the support <≥0. The
PDF fi is the distribution of end-to-end reported values for
a key with frequency i ≥ 0. Each fi has discrete probabil-
ity mass at the point x = 0, which corresponds to the event
that the key is not reported. To simplify presentation, we
denote the value of the discrete point mass by fi(0) and as-
sume that there is continuous mass density on (0,∞). Note
that for realizability we must have fi(0) ≥ 1−qi. In partic-
ular, the function f0, which specifies the reporting function
for a key with frequency 0, has a discrete mass of 1 at x = 0
and is 0 elsewhere (in our sparse case, keys with frequency
0 are not sampled or reported). The end-to-end sampling
and sanitization is equivalent to drawing independently, for
each key x with frequency i in the dataset, jx ∼ fi, and
reporting (x, jx) if jx > 0.

The sanitization of a set of sampled key and frequency
pairs is performed as in Algorithm 2, with the follow-
ing distributions f−i playing the role of the discrete pi•:
f−i (0) := (fi(0) − (1 − qi))/qi and f−i (x) = fi(x)/qi
otherwise. The sanitization processes each (sampled) key x
with frequency i by drawing independently a sanitized fre-
quency jx ∼ f−i and if jx > 0, reporting the pair (x, jx).
The reader can verify that the end-to-end distributions (fi)
are equivalent to sampling with (qi) and sanitizing with
(f−i ). For each fi, we denote the respective Cumulative
Distribution Function (CDF) by Fi and the inverse CDF
by the sets F−1i (α) := {x | {Fi(x) = α}}, defined for
α ∈ [fi(0), 1).
Lemma C.1. A frequency sanitizer specified by (fi)i≥0 is
(ε, δ)-DP if and only if for any measurable set J ⊂ <≥0

∀i ≥ 0,∀J ⊂ <≥0,
∫
J

fi(x)dx ≤ eε
∫
J

fi−1(x)dx+ δ

(35)

∀i ≥ 0,∀J ⊂ <≥0,
∫
J

fi(x)dx ≥ e−ε(
∫
J

fi−1(x)− δ)
(36)

(Note that we allow J to include or exclude the discrete
point mass at x = 0)
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Proof. Variant on the proof of Theorem 5.1

C.2 A Refined Frequency Sanitizer

Algorithm 5 specifies PDFs (fi) for a frequency sani-
tizer. The scheme is a refinement of the scheme of Al-
gorithm 4 and, as we shall see, for any (qi) and (ε, δ),
it maximally separates sanitized values for different fre-
quencies. At a high level, the sub-optimality in the (πi,j)
of Algorithm 4 stems from frequencies i for which (i) R
is not exactly exhausted at U for some output value or
(ii) there is no prefix of discretized outputs πi• where ex-
actly δ =

∑bi
j=1 πij + max{0, e−επi−1,0 − πi,0}. The

scheme of Algorithm 5 (which can also be discretized) in-
troduces additional outputs so that the above breakpoints
align wholly with outputs. Note that for the special case of
(π∗i,j) with integral L, Algorithm 4 (Lemma 5.2) yields the
same scheme as Algorithm 5. This because bi and ci are
always integral and no new breakpoints are introduced by
Algorithm 5.

Theorem C.2. The (fi) computed by Algorithm 5 and the
sanitizer they specify satisfy:

1. For all i, fi(0) = 1− πi.

2. The sanitizer is (ε, δ)-DP.

3. For each i, there is a ci ≥ 0 such that subject to the
above and fi−1,

∫
J
fi(x)dx is maximized for all J =

(z, i−1] for z ≥ ci and is minimized for all J = [0, z]
for z ≤ ci.

Proof. We first establish a more limited claim, that for each
i there is ci so that the DP constraints are satisfied for all
intervals of the form (x, i] for x > ci and [0, x] or (0, x]
for all x ≤ ci. We will also show that under the conditions
above,

∫
J
fi(x)dx is maximized for all J = (z, i − 1] for

z ≥ ci and is minimized for all J of the form [0, z] for
z ≤ ci.
Each fi is constructed from fi−1 as follows.

From constraint 17, the maximum probability mass that can
be placed on J for which

∫
J
fi−1(x)dx = 0 is min{δ, πi}.

The construction places this maximum amount on (i−1, i].

We construct a function fL : (0, i−1] that are the minimum
values needed to satisfy (36) for all intervals [0, z] or (0, z]
for z ∈ (0, i−1]. We show that indeed fL has this property:
The respective constraints are

πi +

∫ z

0+

fi(x)dx ≥ e−ε(πi−1 +

∫ z

0+

fi−1(x)dx− δ)∫ z

0+

fi(x)dx ≥ e−ε(
∫ z

0+

fi−1(x)dx− δ) ,

(where with abuse of notation we use
∫ z
0+

to exclude the
discrete mass point at x = 0). Combining, we get∫ z

0+

fi(x)dx ≥ max{e−επi−1−πi, 0}+e−ε(
∫ z

0+

fi−1(x)dx−δ) .

(37)
Note that the right hand side could be negative but note it is
non-decreasing. We compute a point bi so that it is positive
for all z > bi and at most 0 for z < bi. The function fL(x)
specified in the algorithm is equal to the maximum of the
two constraints∫ z

0

fL(x)dx = max{e−επi−1−πi, 0}+e−ε(
∫ z

0+

fi−1(x)dx−δ) .

Finally, we note that given the placement on (i− 1, i], con-
straints (36) on intervals (z, i] are satisfied if and only if∫ i−1
z

fi(x)dx ≤ eε(
∫ i−1
z

fi−1(x)dx. The solution sets
them at maximum value (equality) for all z ≥ ci.
We next establish that the frequency sanitizer specified
by the (fi) is (ε, δ)-DP (satisfies the DP constraints
(Lemma C.1).

From the construction, the functions (fi) satisfy that for all
i, there is ci ≥ 0, so that

∀x ∈ (ci,∞],fi(x) ≥ eεfi−1(x)

∀x ∈ (0, ci],fi(x) ≤ e−εfi−1(x) .

We already established that (fi) satisfies the constraints
(35) on sets J that are intervals of the form (z,∞) and
satisfies the constraints (36) on intervals of the form [0, z)
(included the discrete point mass at x = 0) or (0, z) (do not
include the discrete point mass).

We will show that the constraints are satisfied for any J .
For each set J , define the partition J \ {0} = J+ ∪ J−
where J+ = J ∩ (ci,∞) and J− = J ∩ (0, ci). Con-
sider the constraint (35) for J . Noting that we always have
πi ≤ πi−1, the constraint will hold for J if it holds for J+.
In turn, the constraint holds for J+ if it holds for (ci,∞).
Consider the constraint (36) for J . If πi > e−επi−1 or if
0 6∈ J , the constraints holds for J if it holds for J−. In
turn, it holds for J− if it holds for (0, ci]. Otherwise, the
constraint holds for J if it holds for {0} ∪ J−. In turn, it
will hold for {0} ∪ J− if it holds for [0, ci].

Lemma C.3. The functions (fi)
m
i=1 are piecewise constant

on (0,∞) and have at most 3m distinct breakpoints in to-
tal.

Proof. The specification of fi on (0, i] is constructed from
fi−1 : (0, i − 1]. A constant value is assigned on (i −
1, i]. The construction computes two points bi and ci so that
fi−1(x) = 0 on (0, bi], is a constant (e−ε) times fi−1 on
x ∈ (bi, ci] and is a constant (eε) times fi−1 on x ∈ (ci, i−
1]. Therefore, fi has at most 3 more breakpoints than fi−1.
The breakpoints are {i}mi=1 ∪ {bi}mi=1 ∪ {ci}mi=1.
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The sanitizer can be discretized by collapsing intervals be-
tween consecutive breakpoints to discrete output points
with the respective probability mass. The discretization
does not impact estimation or privacy: We can always map
back from the discrete sanitized frequencies to ”simulate”
the respective continuous ones (and vice versa) by drawing
uniformly at random from a corresponding interval.

D Maximum Separation and Ordinal
Statistics

D.1 Maximum Separation

We define a measure of separation between distributions
fi1 and fi2 at a certain quantile value α and show that the
(fi) constructed by Algorithm 5 maximize it pointwise.

For (fi) we define for all i1, i2 and α ∈ (fi2(0), 1) the
respective functions

Ti1,i2(α) := Fi1(inf F−1i2
(α)) . (38)

Intuitively, lower values of Ti1,i2(α) for i1 > i2 and higher
values for i1 < i2 mean we can separate better the data fre-
quencies i1, i2 from their respective sanitized values and
have higher probability of a pair being concordant. We
show that the (fi) constructed by Algorithm 5 yield a
scheme that simultaneously optimizes all Ti1,i2(α) values:

Theorem D.1. The (fi) constructed by Algorithm 5, for
all α ∈ (fi2(0), 1), minimize Ti1,i2(α) for all i1 > i2 and
maximize Ti1,i2(α) for all i1 < i2, α, over all DP fre-
quency sanitizers.

Proof. The construction of fi : (0, i−1] from fi−1 : (0, i−
1) results in Ti,i−1 that is invariant to the actual distribution
of fi−1. From Theorem C.2, fi(0) is at a minimum (that
depends only on fi−1(0) and the mass of 1−fi(0) is pushed
as high as possible for any prefix. We now consider Ti1,i2
for i1 > i2 and note that it can be expressed in terms of
Ti1,i1+1, . . . , Ti2−1,i2 , using (repeatedly if needed):

Ti+2,i(α) = Fi+2(inf F−1i (α))

= Fi+2(F−1i+1(Fi+1(F−1i (α))))

= Fi+2(F−1i+1(Ti+1,i(α)))

= Ti+2,i+1(Ti+1,i(α)) .

Finally, note from the expressions that when Ti+1,i(α) are
at a maximum for all i and α then so is Ti1,i2 for all i1 > i2
and α.

D.2 Ordinal Statistics

Proof of Corollary 6.1. Conveniently, we can express
properties of the order induced by sanitized frequencies us-
ing only T and (fi(0))i≥1:

The probability that a pair of keys with frequencies i1 > i2
is concordant is

fi2(0)(1−fi1(0))+
1

2
fi2(0)fi1(0)+

∫ 1

fi2 (0)

(1−Ti1,i2(α))dα .

(39)
For a key x, keys Y with wy > wx for y ∈ Y and keys
Z with wz < wx for z ∈ Z, the probability that all
{(x, y)}y∈Y and {(x, z)}z∈Z pairs are concordant is

fwx(0)
∏
y∈Y

(1− fwy (0))
1

2|Z|

∏
z∈Z

fwz (0)+

∫ 1

fwx (0)

fwx(α)
∏
y∈Y

(1− Twx,wy (α))
∏
z∈Z

Twx,wz (α)dα .

(40)

The probability that a set of keys with frequencies
i1 < i2 < · · · < ik is concordant is a sum over
expressions that have a form of a constant that de-
pends on {fij (0)}j∈[k] times an expression of the form∫ 1

fi1 (0)

∫ 1

Ti2,i1 (α1)
· · · dαk · · · dα1.

Note that all these expressions are non-decreasing in
Ti1,i2(α) for i1 > i2 and non-increasing for i1 < i2.
Therefore, theses expressions are maximized for the (fi)
of Algorithm 5.

The expected Kendall-τ rank correlation increases with the
expected number of concordant pairs. Since the scheme
maximizes the expected number of concordant pairs, it also
maximizes the expected Kendall-τ rank correlation.

E The Biased-Down Estimator

aj ← min
i|πi,j>0

g(i)−∑j−1
h=1 ahπi,h

πi −
∑j−1
h=1 πi,h

. (41)

The sequence (aj) is non-decreasing and is guaranteed not
to over-estimate (see details in Appendix E).

Note (from the structure of πi,j) that the minimum is over
at most 2L((ε, δ) values of i and each sum can be over at
most 2L(ε, δ) positive πi,h entries (between i± L(ε, δ)).

Lemma E.1. The estimator expressed by the sequence (41)

aj ← min
i|πi,j>0

g(i)−∑j−1
h=1 ahπi,h

πi −
∑j−1
h=1 πi,h

. (42)

is biased-down and non-decreasing.

Proof. The estimate aj is always set to be at most the value
needed to have an unbiased estimate for g(i) when ai = aj
for i ≥ j. Therefore, the estimate can only be biased down.

Let ri,j =
g(i)−

∑j−1
h=1 ahπi,h

πi−
∑j−1
h=1 πi,h

and recall that aj is set to the
minimum over applicable i of ri,j . Now note that ri,j is
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non-decreasing with j because aj is always set to be at most
ri,j . Since for each j we take a minimum over a set of
values that can only be larger, aj may only increase.

F Limits on Private Non-negative Unbiased
Estimation

We show that private weighted sampling schemes with op-
timal key reporting generally do not admit non-negative
and unbiased estimation of frequencies. The lemma be-
low considers the case when there is no sampling, but the
argument extends to sampling schemes where πi = π∗i for
an appropriate prefix of the sequence.

Lemma F.1. Consider q ≡ 1 and (any) keys and frequen-
cies sanitizer with optimal π∗i reporting of keys. Then there
is no unbiased and nonnegative estimator for frequencies.

Proof. Consider a sanitized keys and frequencies scheme
for q = 1. The scheme reports a key with frequency i
with (optimal) probability π∗i . When a key is reported, the
scheme reports a token as a sanitized frequency. Let T [i] be
the distribution on output tokens for a key with frequency
i. To make this a distribution we use the special output ⊥
for the (probability π∗i ) event that the key is not reported.
Using our notation we have

Pr
t∼T [i]

[t 6= ⊥] = π∗i .

Consider a token t that has positive probability to be re-
ported with i = 1, that is, Prz∼T [1][z = t] > 0. We argue
that for any h ≤ L(ε, δ) (where L is as defined in (4))

Pr
z∼T [h]

[z = t] = e(h−1)ε Pr
z∼T [1]

[z = t] . (43)

The argument follows from the privacy constraints for
maintaining the maximum key reporting probabilities of
π∗i . The maximum probability with frequency h for tokens
that are not reported for frequency h − 1 is δ. Therefore,
to have π∗h = π∗h−1e

ε + δ the reporting probability of each
token reported for h−1 must increase by a factor of at least
eε.

We now consider estimation. A general estimator for this
scheme returns an estimate with expected value at for out-
put token t. Note that any unbiased estimator must be 0
when a key is not reported (a⊥ = 0) and for all h we have:

h = Ez∼T [h]az (44)

Let T1 be the set of possible output tokens t 6= ⊥ such that
Prz∼T [1][z = t] > 0. We have Prz∼T [1][z ∈ T1] = π∗1 =
δ and from unbiasedness (44) with h = 1:

Ez∼T [1]az =
1

δ
.

Consider now the estimates for a key with frequency h ≤
L(ε, δ). We use (44) to obtain:

h = Ez∼T [h]az = Ez∼T [h]Iz 6∈T1
az + Ez∼T [h]Iz∈T1

az

We will show that we can have that the second term is larger
than h which will mean that the first term is negative. We
use (43):

Ez∼T [h]Iz∈T1
az =

∑
t∈T1

Pr
z∼T [h]

[z = t]at

=
∑
t∈T1

Pr
z∼T [1]

[z = t]eε(h−1)at

= eε(h−1)
∑
t∈T1

Pr
z∼T [1]

[z = t]at

= eε(h−1)Ez∼T [1]az = eε(h−1) .

We obtain that when h < eε(h−1) holds, which is the case
for example when ε = 1 and h = 2, we have at < 0
on some tokens t. This because the contribution to the ex-
pectation of the estimate of frequency h that is only due
to outputs T1 already exceed the value h. Therefore, we
must have negative values at < 0 on at least some tokens
t 6∈ T1.

G SbH Baseline: Expressions

In this section we derive expressions for inclusion proba-
bilities, bias, and error for the baseline method of Stability-
based Histograms (Bun et al., 2019) (SbH) (see Sec-
tion 8.1). We use these expressions in our empirical and
analytical evaluation.

In this section we treat the weighted sampling probabilities
qi as a continuous function for i ≥ 0 and use estimators
that are continuous functions of a reported j. For consis-
tency with other parts of the paper we maintain the discrete
indices notation i, j. For a key with frequency i, we express
the probability density φi,j that the key is sampled and re-
ported with frequency j ≥ T . The distribution Lap[1/ε] is
a combination of (1/2)Exp[ε] and (−1/2)Exp[ε].

j ≥ i : φi,j =
1

2
qjεe

−ε(j−i)

j ≤ i : φi,j =
1

2
qjεe

−ε(i−j) .

The respective overall reporting probability for a key with
frequency i is

φi =

∫ ∞
T

φi,jdj .

For estimation, we follow (8). For reported frequency j to
estimate g(i) for a key with frequency i we use:

aj :=
g(j)

qj
.
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Note that since this is applied after the privacy transform,
the estimator is biased. But for keys with frequencies where
g(j) is likely to be close to g(i) and qj close to qi this es-
timate would be closer to a direct use of (8) on the original
data. The expected value and MSE of the estimate for a key
with frequency i are:

Ei =

∫ ∞
T

ajφi,jdj

MSEi =(g(i))2 · (1− φi)

+

∫ ∞
T

(aj − g(i))2φi,jdj .

Using these per-frequency expressions, we can express the
MSE and bias of sum estimators for linear statistics as in
Section 7.1.

G.1 Explicit expressions

Substituting φi,j and aj we obtain explicit expressions in
terms of (qi)i≥1 and g():

φi =


i > T : 1

2ε
(∫∞

i
qje
−ε(j−i)dj +

∫ i
T
qje
−ε(i−j)dj

)
= 1

2ε
(
eεi
∫∞
i
qje
−εjdj + e−εi

∫ i
T
qje

εjdj
)

i ≤ T : 1
2εe

εi
∫∞
T
qje
−εjdj .

(45)

The expected value Ei of the estimate of g(i) is:

Ei =


i > T :

1
2ε
(
eεi
∫∞
i
qjaje

−εjdj + e−εi
∫ i
T
qjaje

εjdj
)

= 1
2ε
(
eεi
∫∞
i
g(j)e−εjdj + e−εi

∫ i
T
g(j)eεjdj

)
i ≤ T : 1

2εe
εi
∫∞
T
g(j)e−εjdj .

(46)
Note that Ei (and hence the bias Ei−g(i)) does not depend
on the sampling q. We express the expected value for the
special case when g(i) = i:

Ei =



i > T : 1
2εe

εiε−2e−εi(εi+ 1)

+ 1
2εε
−2e−εi(eεi(εi− 1)− eεT (εT − 1))

= i− 1
2e
−ε(i−T )(T − 1

ε )

i ≤ T : 1
2εe

εiε−2e−εT (εT + 1)

= 1
2e
−ε(T−i)(T + 1

ε ) .
(47)

The MSE (general q and g) is:

MSEi = (1− φi)g(i)2+ (48)∫ ∞
T

qj(aj − g(i))2PDFLap[1/ε](j − i)dj

= −2g(i)Ei + (g(i))2φi + (g(i))2(1− φi)+∫ ∞
T

(g(j))2

qj
PDFLap[1/ε](j − i)dj

= (g(i))2 − 2g(i)Ei+∫ ∞
T

(g(j))2

qj
PDFLap[1/ε](j − i)dj

= (g(i))2 − 2g(i)Ei+
i > T : 1

2εe
εi
∫∞
i

g(j)2

qj
e−εjdj+

1
2εe
−εi ∫ i

T
g(j)2

qj
eεjdj

i ≤ T : 1
2εe

εi
∫∞
T

g(j)2

qj
e−εjdj .

G.2 Expressions for Private histograms (q ≡ 1)

We now express the reporting probabilities φi for the case
where no sampling is subsequently performed (q ≡ 1).
From (45) we obtain:

φi = 1−CDFLap[ 1ε ]
(T−i) =

{
i ≥ T : 1− 1

2δ e
−(i−1)ε

i < T : 1
2δe

ε(i−1)

(49)

By substituting q ≡ 1 and g(i) = i in (48) we get

MSEi =

{
i > T : 2

ε2
− e−ε(i−T )( 1

2
T 2 − iT + i−T

ε
+ 1

ε2
)

i ≤ T : i2 + e−ε(T−i)( 1
2
T 2 − iT − i−T

ε
+ 1

ε2
)

(50)

G.3 Expressions with sampling

The sampling schemes we consider are parameterized by
τ > 0. For threshold ppswor sampling qj = 1− e−τf(j) or
threshold Poisson qj = min{1, τf(j)}.
We express φi for ppswor threshold sampling and function
of frequency f(w) = w:

φi =


i ≥ T : 1− 1

2
e−ε(i−T ) − ε

2(ε+τ)
e−iτ

+Iε6=τ
ε

2(ε−τ) (e
−ε(i−T )−τT − e−τi)

−Iε=τ ( 12ε(i− T )e−εi)
i ≤ T : 1

2
e−ε(T−i)(1− ε

ε+τ
e−Tτ )

(51)

We now consider priority sampling with threshold τ and
f(w) = w. We start from expressing the inclusion proba-
bility φi. Recall that in the non-private case, the inclusion
probability of i is qi = min{τi, 1}.
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If T ≥ 1
τ ,

φi =

∫ ∞
T

qjPDFLap[ 1ε ]
(j − i)dj

=

∫ ∞
T

PDFLap[ 1ε ]
(j − i)dj

= 1− CDFLap[ 1ε ]
(T − i)

=

{
i ≥ T : 1− 1

2δ e
−(i−1)ε

i < T : 1
2δe

ε(i−1)

Otherwise, T < 1
τ .

φi =

∫ ∞
T

qjPDFLap[ 1ε ]
(j − i)dj

=

∫ 1
τ

T

τjPDFLap[ 1ε ]
(j − i)dj

+

∫ ∞
1
τ

PDFLap[ 1ε ]
(j − i)dj

= τ

∫ 1
τ

T

j · 1

2
εe−ε|j−i|dj + 1− CDFLap[ 1ε ]

(
1

τ
− i)

To compute the inclusion probability, we consider three
cases:

1. i ≤ T . In that case,

φi =
τ

2

((
T +

1

ε

)
e(i−T )ε − 1

ε
e(i−

1
τ )ε

)
.

2. T < i < 1/τ . In that case,

φi = τ

(
i− 1

2ε
eε(i−

1
τ ) − 1

2

(
T − 1

ε

)
eε(T−i)

)
.

3. i ≥ 1/τ . In that case,

φi = 1− τ

2ε
eε(

1
τ−i) − τ

2

(
T − 1

ε

)
eε(T−i).

To compute the MSE, we use Eq. (48), and need to com-
pute

∫∞
T

(g(j))2

qj
PDFLap[1/ε](j − i)dj. In our implementa-

tion, we wrote functions that evaluate the integrals:∫
xeεxdx =

1

ε2
eεx(εx− 1) + C∫

xe−εxdx = − 1

ε2
e−εx(εx+ 1) + C.∫

x2eεxdx =
1

ε3
eεx(ε2x2 − 2εx+ 2) + C∫

x2e−εxdx = − 1

ε3
e−εx(ε2x2 + 2εx+ 2) + C.

Then we considered the following cases in order to
compute the MSE. If i ≤ T , we need to compute
1
2εe

εi
∫∞
T

j2

min{τj,1}e
−εjdj, and we have two cases:

1. 1/τ < T . In that case, the integral∫∞
T

j2

min{τj,1}e
−εjdj becomes

∫∞
T
j2e−εjdj.

2. 1/τ ≥ T . In that case, the integral∫∞
T

j2

min{τj,1}e
−εjdj becomes

1

τ

∫ 1
τ

T

je−εjdj +

∫ ∞
1
τ

j2e−εjdj.

Similarly, if i > T , we need to compute

1

2
εeεi

∫ ∞
i

j2

min{τj, 1}e
−εjdj +

1

2
εe−εi

∫ i

T

j2

min{τj, 1}e
εjdj.

and consider the three cases: (i) 1/τ < T , (ii) T ≤ 1/τ <
i, and (iii) i ≤ 1/τ .


