
Safe Parallel Programming in an Interpreted Language

Chen Ding, Brian Gernhardt,
Pengcheng Li

Department of Computer Science
University of Rochester
Rochester, New York

Matthew Hertz
Department of Computer Science

Canisius College
Buffalo, New York

1. Introduction
Parallel programming is increasingly important with the ad-
vent of multicore processors. However, modern software is
difficult to parallelize because of the high degree of modu-
larization. It is unclear whether a piece of code is parallel
if it calls other functions. Dynamic languages such as Ruby,
Python, and Matlab represent modularization to the extreme.
A program, also known as a script, requires interpretation for
every statement, calling a whole host of functions from pars-
ing to execution. Because of the complexity of the interpreter
and the dynamic nature of script code, scripting languages
are among the most difficult to parallelize.

In this paper, safe parallelization means to parallelize a
sequential program with the guarantee that the parallelized
version produces the same result as the original sequential
code. In other words, safety means sequential equivalence.

There are generally three ways to ensure safety. Consider
a sequential loop as the target program to parallelize. The
first way is static. A compiler analyzes the loop and deter-
mines whether it is parallel. Static parallelization means that
the loop is parallel in all executions. The second way is dy-
namic. Immediately before executing the loop, a run-time li-
brary determines whether the loop is parallel. The third way
is speculative. The loop is run in parallel speculatively. If
conflicts are detected in the parallel execution, the conflict-
ing part is rolled back and re-run sequentially. This paper
uses the third way and describes a system that speculatively
parallelizes a Ruby script to ensure safety.

In the past, most speculation systems were for automatic
parallelization and were not user programmable [2, 5, 10].
Then a number of interfaces appeared, including safe future
in Java [13], ordered transactions using TLS hardware [12],
and possibly parallel region (PPR) in the BOP (behavior-
based parallelization) system [4, 6, 14], and multi-threaded
transactions [9]. These are effectively hints of parallelism.
Dependence hints were introduced in the BOP system as a
way to suggest possible dependences between operations in
different PPRs [7]. In this paper, we adapt the BOP interfaces
for use in Ruby.

2. Safe Parallel Ruby
Ruby is an object-oriented scripting language with first-
class functions. It is “pure” in that almost all programmable
entities, including constants and first-class functions, are
objects. Every object has a class, which is itself an object.

Safe parallel Ruby adds the following two constructs to
Ruby:

• PPR{ X }: X is a code block called a PPR block. The PPR
block is possibly parallel with the code after it.

• Ordered{ Y }: Y is a code block called an ordered block.
An ordered block is likely dependent on the result of
earlier ordered blocks (as ordered in would-be sequential
execution).

Note that the parallelism happens between PPR blocks, not
inside a PPR block.

As an example, consider a program that searches two
places, A,B. Let’s assume that the two searches are indepen-
dent, but the parallelism is conditional — the second search
is needed only if the first returns nil. We can parallelize them
using two PPR blocks as follows.

Listing 1: Conditional parallel search

done = f a l s e
PPR{

r = s e a r c h (A)
done = t rue i f r != n i l # s t o p s e a r c h

}
PPR{

r = s e a r c h (B) i f not done
}
In the first PPR block, we search A and assign a flag

variable if the result is not nil. In the second PPR block, we
check the flag variable before searching B. When executed,
safe parallel Ruby runs the two PPR blocks in parallel. After
they finish, it will check for conflicts, that is, if there is an
object written by the first PPR block and read by the second
PPR block. In the case of the flag variable, the correctness
check would pass if the flag is not set after the first search.

1 2014/12/12

Then the second search is needed, and the speculation is
correct. If the flag is set, however, the correctness check
would fail, and the second PPR would be rolled back and
re-executed.

To demonstrate the use of an ordered block, we consider
another example. It searches two places A,B (uncondition-
ally) and combines the results in an array. We use two PPR
blocks for the two searches. Inside each PPR, we use an or-
dered block to collect the result. The parallelized code is as
follows:

Listing 2: Parallel probe but serial sum

h i t s = []
PPR{

r = s e a r c h (A)
Ordered{ h i t s << r }

}
PPR{

r = s e a r c h (B)
Ordered{ h i t s << r }

}
Safe parallel Ruby guarantees the same output as the

sequential execution of the code without hints. In the first
example, the result r is the result of the conditional search.
In the second example, the hits array stores the two results
in the sequential order of the search. Speculation and parallel
execution have absolutely no effect on the final result. The
only aspect it can change is the execution time.

A common question about the interface is what happens
to the code between PPR blocks. We may call it the inter-PPR
code. The inter-PPR code is suggested to run sequentially
with the PPR block after it but in parallel with the PPR
block before it. A PPR block similar to a future, invented
in Multilisp to specify parallelism between the future and
the continuation [8]. PPR{ X }Y means that X is possibly
parallel with Y . In the two examples, the second PPR block
is actually unnecessary. The first PPR already expresses the
parallelism.

3. Implementation Using BOP
Safe parallel Ruby is implemented using the BOP system,
which supports speculative parallelization in C programs [3,
4, 6, 7, 14]. Ruby PPR blocks use BOP C functions, which
implements PPR tasks as a process. Using processes, BOP
implements speculation in a two-step strategy. The first is
copy-on-write in PPR tasks to isolate them from each other.
This is done automatically by the OS. The second is serial
commit after a group of PPRs finish. The second step is to
merge concurrent changes and resolve conflicts. It is done
by the BOP run-time using data access information provided
by Ruby.

Before merging the changes, BOP checks for parallel con-
flicts. The checking is based on the dependence theory, i.e.
the fundamental theory of dependence, which states that

a reordered execution produces the same result if the re-
ordered execution preserves all dependences [1]. The copy-
and-merge strategy changes dependence checking in two
ways [4]. First, copy-on-write removes all false depen-
dences, i.e. write-after-read and write-after-write. The only
type of dependences to check is flow dependence, which
happens when a predecessor task writes a value, and a suc-
cessor task reads it. The second is value-based speculation.
If the predecessor does not change the original value, or it
alters the value but changes it back at the end, the successor,
when running in parallel with the predecessor, still reads the
correct value in spite of the flow dependence violation. Value
checking is more permissive than value speculation because
the value is not necessarily a constant (during PPR).

If a conflict occurs in the parallel execution, the specula-
tive PPRs are abandoned by killing their processes, and the
canceled PPRs are re-executed sequentially. Tian et al. called
their system CorD to indicate that the speculation results are
either copied or discarded [11]. To combine the acronyms,
we may say that the strategy is first COW (copy-on-write)
and then CorD. The step after COW may also be called
merge or discard (MorD, or MORD for ministry of rural de-
velopment).

4. Conclusion
We have implemented a prototype called RubyBOP from the
MRI 1.8.7 Ruby interpreter. RubyBOP includes classes for
the interface, multiple heaps for speculative allocation, and
access monitoring for objects, arrays, and hashes. We have
also parallelized three programs to analyze the cost and scal-
ability of the design. On a multicore, multiprocessor ma-
chine we observed three to four times the sequential speed
for two of the tests simply by adding a few hints to the se-
quential scripts.

For the programmer, safe parallel Ruby reduces the com-
plexity of parallel programming. It just suggests parallel
tasks and their dependences. There are no concurrent, asyn-
chronous, or out-of-order task finishes for the programmer
to worry about. There is no data synchronization needed, no
coherence problem (software or hardware), and no deadlock
or livelock.

Using a dynamic language, testing is simple and inter-
active. There is no intermediate step of recompilation and
linking. An interpreter stores enough information for run-
time reflection. The internal states, for example, the identity
of shared objects, can be represented and understood at the
source level.

2 2014/12/12

References
[1] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architec-

tures: A Dependence-based Approach. Morgan Kaufmann Publishers,
Oct. 2001.

[2] M. H. Cintra and D. R. Llanos. Design space exploration of a software
speculative parallelization scheme. IEEE Transactions on Parallel and
Distributed Systems, 16(6):562–576, 2005.

[3] C. Ding and L. Liu. Access annotation for safe program paralleliza-
tion. In Proceedings of the IFIP International Conference on Network
and Parallel Computing, pages 13–26, 2013.

[4] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang.
Software behavior oriented parallelization. In Proceedings of PLDI,
pages 223–234, 2007.

[5] M. Gupta and R. Nim. Techniques for run-time parallelization of
loops. In Proceedings of SC’98, page 12, November 1998.

[6] Y. Jiang and X. Shen. Adaptive software speculation for enhancing the
cost-efficiency of behavior-oriented parallelization. In Proceedings of
ICPP, pages 270–278, 2008.

[7] C. Ke, L. Liu, C. Zhang, T. Bai, B. Jacobs, and C. Ding. Safe parallel
programming using dynamic dependence hints. In Proceedings of
OOPSLA, pages 243–258, 2011.

[8] R. B. Osborne. Speculative computation in Multilisp. In Proceedings
of LISP and Functional Programming, pages 198–208, 1990.

[9] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August.
Speculative parallelization using software multi-threaded transactions.
In Proceedings of ASPLOS, pages 65–76, 2010.

[10] L. Rauchwerger and D. Padua. The LRPD test: Speculative run-time
parallelization of loops with privatization and reduction paralleliza-
tion. In Proceedings of PLDI, La Jolla, CA, June 1995.

[11] C. Tian, M. Feng, V. Nagarajan, and R. Gupta. Copy or Discard
execution model for speculative parallelization on multicores. In
Proceedings of MICRO, pages 330–341, 2008.

[12] C. von Praun, L. Ceze, and C. Cascaval. Implicit parallelism with
ordered transactions. In Proceedings of PPoPP, pages 79–89, Mar.
2007.

[13] A. Welc, S. Jagannathan, and A. L. Hosking. Safe futures for Java. In
Proceedings of OOPSLA, pages 439–453, 2005.

[14] C. Zhang, C. Ding, X. Gu, K. Kelsey, T. Bai, and X. Feng. Continuous
speculative program parallelization in software. In Proceedings of
PPoPP, pages 335–336, 2010. poster paper.

3 2014/12/12

