
Content Availability, Pollution and Poisoning
in File Sharing Peer-to-Peer Networks ∗

Nicolas Christin
S.I.M.S., UC Berkeley

christin@sims.berkeley.edu

Andreas S. Weigend
Weigend Associates LLC

andreas@weigend.com

John Chuang
S.I.M.S., UC Berkeley

chuang@sims.berkeley.edu

ABSTRACT
Copyright holders have been investigating technological solutions
to prevent distribution of copyrighted materials in peer-to-peer file
sharing networks. A particularly popular technique consists in “poi-
soning” a specific item (movie, song, or software title) by injecting
a massive number of decoys into the peer-to-peer network, to re-
duce the availability of the targeted item. In addition to poisoning,
pollution, that is, the accidental injection of unusable copies of files
in the network, also decreases content availability. In this paper, we
attempt to provide a first step toward understanding the differences
between pollution and poisoning, and their respective impact on
content availability in peer-to-peer file sharing networks. To that
effect, we conduct a measurement study of content availability in
the four most popular peer-to-peer file sharing networks, in the ab-
sence of poisoning, and then simulate different poisoning strategies
on the measured data to evaluate their potential impact. We exhibit
a strong correlation between content availability and topological
properties of the underlying peer-to-peer network, and show that
the injection of a small number of decoys can seriously impact the
users’ perception of content availability.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer-Communication
Networks

General Terms
Measurement, Performance, Reliability

Keywords
Peer-to-peer networks, File sharing, Content protection

1. INTRODUCTION
Since its inception in 1999 with the Napster service, peer-to-

peer file sharing has grown to the point of becoming one of the

∗This work is supported in part by the National Science Foundation
under grant numbers ANI-0085879 and ANI-0331659.

c©ACM, 2005. This is the authors’ version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
conference version will be published in the Proceedings of ACM EC’05,
Vancouver, British Columbia, Canada, June 2005.

predominant sources of Internet traffic [21, 23]. As a result, and
even though the actual impact of peer-to-peer file sharing on prod-
uct sales remains hard to assess (e.g., [20] and [25] reach opposite
conclusions), copyright holders are now more than ever worried by
the potential loss of revenues due to file sharing, and have been
exploring several options for thwarting file sharing in peer-to-peer
networks. In particular, while legal action, for instance the case
against Napster [1], has received the most significant exposure in
the popular press, considerable effort has also been devoted to in-
vestigate technological solutions for reducing content availability
in peer-to-peer file sharing systems.

A common technique to decrease the availability of a specific
item (e.g., movie, song, software distribution) in a peer-to-peer
network consists in injecting a massive number of decoys into the
network [13]. The decoys are files whose name and metadata in-
formation (e.g., artist name, genre, length) match those of the item,
but whose actual content is unreadable, corrupted, or altogether dif-
ferent from what the user expects. For instance, many peer-to-peer
users who tried to download the song “American Life” by Madonna
found themselves in possession of a track that only contained a
message from the artist chiding them for using file sharing services.
We refer to such a deliberate injection of decoys asitem poisoning.

In addition to poisoning, the accidental injection of “bad” (i.e.,
poorly encoded or truncated) copies of files in the network, ornet-
work pollution, also has the effect of decreasing the proportion of
usable content in the network. For instance, a recent study [17]
provides empirical evidence that a substantial fraction of the files
served in the KaZaA/FastTrack network are unusable, due to either
pollution or poisoning.

However, while pollution and poisoning both result in introduc-
ing unusable files in the network, their respective characteristics
and impact are significantly different. More precisely, pollution can
generally be assimilated to (almost) random noise, whereas poison-
ing aims at changing the availability of a specific item in the net-
work, by deliberately making it harder to find usable copies of the
item.

In this paper, we make a first step toward understanding the im-
pact of pollution and poisoning on content availability in peer-to-
peer file sharing networks. We notably investigate questions such
as “which level of network pollution is really harmful?” or “is a
given poisoning strategy effective at limiting the availability of the
item it targets?”

Our specific contributions are as follows. We first provide a mea-
surement study of content availability in the four most popular (at
the time of this writing) peer-to-peer file sharing networks, in the
absence of (blatant) poisoning. We next discuss the differences be-
tween network pollution and possible poisoning strategies, some of
which have been observed in practice [17]. We then evaluate the

effect of network pollution and poisoning on content availability,
by numeric simulation on the gathered measurement data. We ex-
hibit a potentially strong correlation between content availability
and topological properties of the underlying peer-to-peer network,
and show that the injection of a small number of decoys can seri-
ously impact the users’ perception of content availability.

As a caveat, we point out that this paper solely focuses on the
properties of the file sharingnetworks. More precisely, while we
do look at metrics that influence user behavior, such as the time
to complete a download, we defer the study of actual user behav-
ior (e.g., through laboratory experiments with human subjects) to
future work.

The remainder of this paper is organized as follows. In Sec-
tion 2, we briefly review some of the related measurement studies
that have been proposed in the literature. In Section 3, we summa-
rize how the various peer-to-peer networks we investigate respond
to user queries. In Section 4, we report our measurements of con-
tent availability in the four most popular peer-to-peer networks. In
Section 5, we use the measurement data obtained to characterize
by simulation the response of the networks under consideration to
pollution and to different types of poisoning attacks. Finally, in
Section 6, we draw brief conclusions and identify some avenues
for future research.

2. RELATED WORK
The rapid rise of peer-to-peer systems has prompted number of

quantitative works. Some studies, e.g. [14, 21, 23], take a bird’s eye
view of commercial or university networks, and assess the impact
of peer-to-peer traffic on the underlying physical network. In par-
ticular, Saroiu et al. [21] provide convincing evidence of the very
high level of peer-to-peer traffic in university campuses, and Kara-
giannis et al. confirm in [14] that the amount of peer-to-peer traffic
is not declining, despite the growing legal threats on peer-to-peer
users.

Other measurement works investigate topological properties of
peer-to-peer systems. For instance, Liang et al. discuss properties
of the KaZaA/FastTrack network in [16], Loo et al. describe the
evolution of the Gnutella topology in [18], and Tutschku charac-
terizes eDonkey traffic in [24]; Saroiu et al. [22] exhibit a high
heterogeneity in the hosts connected to the Gnutella and Napster
networks, while Bhagwan et al. [5] look at peer availability, and
notably at the turnover rate of Overnet hosts.

A few studies measure content location and popularity in peer-
to-peer networks. Chu et al. [6] exhibit power-laws in content
replication in the Napster and Gnutella networks. Gummadi et al.
[12] show that, on the other hand, download requests significantly
deviate from a power-law distribution, because most users down-
load files only once. Le Fessant et al. [15] show that the eDonkey
network presents geographical clustering properties, which could
be taken advantage of with the appropriate content replication al-
gorithms.

All of these works provide us with a very good understanding
of the properties of peer-to-peer file sharing systems at the net-
work level, by mostly relying on passive measurements; that is,
they monitor the network without introducing noticeable perturba-
tions. Because we are more concerned in how end users perceive
the network, we use active measurements, which consist in present-
ing the network with an input, and measuring the response of the
network to that input.

In that respect, Liang et al.’s study [17] is more closely related to
our study. Liang et al. send a set of queries into the FastTrack net-
work, and measure returns to their queries. They show they obtain a
substantial proportion of incomplete or corrupted files, and provide

a methodology to automatically assess whether a file is a decoy.
Our study takes a different, and complementary, approach, by mak-
ing the distinction between pollution and poisoning, and evaluating
the potential impact of different poisoning strategies. Additionally,
we not only investigate the FastTrack network, but also examine
the properties of the eDonkey, Overnet, and Gnutella networks.

Last, in a study conducted simultaneously and independently of
the work described in this paper, Dumitriu et al. investigate pos-
sible attacks on peer-to-peer file sharing systems by mathematical
modeling and simulation [10]. Our study, on the other hand, relies
on measurements of field data, and focuses on poisoning attacks
that aim at discouraging users from downloading a specific file,
rather than on attacks that attempt to bring an entire peer-to-peer
system down.

3. BACKGROUND
As evidenced by the demise of the Napster network, which quasi-

immediately followed the shutdown of the search infrastructure,
the success of a peer-to-peer network is generally driven by con-
tent availability. Content availability describes how easily content
can be found and downloaded, and is itself directly conditioned by
the network response to user search queries.1 How queries are pro-
cessed is itself highly dependent on the topology of the peer-to-peer
network, which we discuss in this section.

Older peer-to-peer file sharing networks such as Napster relied
on a global index of the network contents, hosted on a centralized
server. Because one can take down the entire network by attacking
the centralized server, as was the case with the legal attack on Nap-
ster [1], most of the peer-to-peer networks have since then aban-
doned a completely centralized search index in favor of distributed
search primitives.

In particular, the three most popular peer-to-peer networks, that
is, the eDonkey, FastTrack, and Gnutella networks, which have
approximately between 1,000,000 and 3,000,000 users each,2 all
rely on two-tiered hierarchical topologies, where nodes are split
between leaf nodes and hubs (called “ultrapeers” in Gnutella, “su-
pernodes” in FastTrack, and “servers” in eDonkey). Leaf nodes
maintain a connection to a handful of hubs, while hubs maintain
connections with hundreds or more of leaves, and with many other
hubs. Each hub serves as a centralized index for the leaf nodes that
it is connected to. Whenever a leaf node issues a query, the query
is sent to the hub(s) the leaf node is connected to. If the item re-
quested is not present in the index maintained by the hub(s), the
query is forwarded to other hubs.

The main differences between the eDonkey, FastTrack and Gnu-
tella networks reside in (1) the proportion of hubs among all nodes,
(2) the rate at which connections between leaves and hubs change,
and (3) the criteria that preside over the promotion of a leaf node to
hub status. Different networks also use different formats for query
messages, but differences in message formats have generally lim-
ited incidence on the number and content of responses to a query,
thus we will not discuss them any further here.

We summarize the hierarchical properties of the different net-
works under study in Table 1. The number of hubs is evaluated
using publicly available statistics for eDonkey,3 and using mea-

1A notable exception is BitTorrent [9], which does not provide any
search facility. As such, BitTorrent is arguably more of an ex-
tremely efficient distributed algorithm for downloading a given file,
than a peer-to-peer network containing a collection of files.
2Data reported as of February 18, 2005 onhttp://www.
slyck.com .
3http://ocbmaurice.dyndns.org/pl/ed2k_stats.
pl

eDonkey FastTrack Gnutella
Nr. of hubs 40–90 25,000–40,000 10,000-100,000
Nr. of nodes ≈ 2.8×106 ≈ 2.5×106 ≈ 106

Frac. of hubs ≈ 2×10−5 ≈ 1.5×10−2 ≈ 5×10−2

Average
leaf-hub ≈ 24 hr ≈ 30 min ≈ 90 min
connection
lifetime
Leaf Voluntary Election Election
promotion

Table 1: Topological characteristics. The table illustrates the
differences in topology between the different networks.

Queries Songs 1–2, Songs 4–5, Songs 5–6,
Movies 1–2, Movies 4–5, Movies 5–6,

Network Software 1 Software 2 Software 3
Gnutella 6 6 6
eDonkey 6 6 6
eD/Overnet 6 6 6
FastTrack 12 12 12

Table 2: Experimental setup. The table describes the number
of hosts on each network that were used to issue each query.

surements presented in [16] and [18] for FastTrack and Gnutella,
respectively. Dividing the number of hubs by the total size of the
network, we can infer the fraction of hubs in the network. We fur-
ther use measurements from [16, 18] as well as our own measure-
ments (for eDonkey) to determine the average lifetime of a leaf-hub
connection. Note that we only present estimates of averages over
all nodes here. While averages are useful to infer general trends, re-
sults for specific nodes can significantly deviate from the average,
and we refer to [16, 18] for more comprehensive data. These av-
erage numbers allow us to make the key observation that eDonkey
is much more centralized than FastTrack or Gnutella, relying on a
few hubs (servers), and connections between leaf nodes and servers
that are much more persistent.

The insight behind the difference in topologies lies in how nodes
are promoted from leaf to hub. Promotion is purely voluntary in
eDonkey: users interested in hosting a server have to install and
run specific server software. Hence, servers are expected to have
very long uptimes, a (quasi-)permanent connection to the network,
and the ability to handle large number of requests. Conversely, in
both FastTrack and Gnutella, leaf nodes are promoted to hubs by
the software client, and generally unbeknownst to the user. Even
though criteria for promotion to hub status include node uptime,
network capacity and processing power, FastTrack and Gnutella
hubs exhibit rates of connection and disconnection to the network
only slightly lower than those of leaves, and certainly much higher
than those of eDonkey servers.

Last, the fourth most popular file sharing network, Overnet, ac-
counts for about 1,000,000 users. Overnet does not distinguish
between leaves and hubs, and instead relies on the Kademlia dis-
tributed hash table [19] to locate content. However, all Overnet
clients simultaneously connect to the eDonkey network,4 so that we
expect to observe substantial content overlap between the eDonkey
and Overnet networks.

4. CONTENT AVAILABILITY
Ideally, each node participating in a peer-to-peer network should

have the same, global, view of the entire content available on the
4Clients solely connecting to the Overnet network were only avail-
able as “beta” versions, and were discontinued in August 2004.

network, irrespective of time or location. In practice, responses to a
query may considerably differ depending on the hub responding to
the query. In networks where connections between leaves and hubs
are highly dynamic, and with high turnover rate among the peers
[5, 16, 18], a user’s view of the available content may drastically
depend on time and location.

In this section, we outline the differences in (perceived) content
availability across different networks, and correlate them with dif-
ferences in the network topologies. The goal is to gain a better un-
derstanding of the factors that influence the sensitivity of a network
to poisoning and pollution. To that effect, we conduct a measure-
ment study of content availability in the eDonkey, eDonkey/Over-
net, FastTrack, and Gnutella networksin the absenceof observable
poisoning, so that we can later (in Section 5) separately character-
ize the effects of different poisoning strategies on each network. We
next motivate and discuss our measurement infrastructure, describe
our experimental methodology, and report our observations.

4.1 Measurement infrastructure
Logical overlay network topologies such as peer-to-peer networks

generally bear little resemblance to the underlying geographical lo-
cations of their participants. However, we conjecture that peer-to-
peer nodes located in geographically distant areas are unlikely to be
topologically close in the peer-to-peer network. Thus, we try to ob-
tain a global view of the networks under consideration, by running
peer-to-peer clients on a number of geographically dispersed nodes
in the PlanetLab infrastructure [7]. We run peer-to-peer clients on
over 50 nodes located in 18 different countries in North and South
America, Europe, Asia, and Oceania. PlanetLab nodes connect to
the Internet through different ISPs and different types of physical
links, including broadband access (DSL).

We use MLDonkey [4] to connect to the eDonkey, eDonkey/Over-
net,5 and Gnutella networks, and giFT-FastTrack [2] to access the
FastTrack network. The main advantage of MLDonkey and giFT-
FastTrack is that both implement daemons that can be accessed
throughtelnet -based interfaces. Hence, experiments are easily
scriptable, and therefore easily repeatable. We communicate with
the daemons using simple Perl clients to search and download files
in all four networks. As an aside, nodes under our control only im-
plement leaf functionality, and cannot be used as a hub. In other
words, none of our nodes is a FastTrack supernode, a Gnutella ul-
trapeer, or an eDonkey server. Because we are more interested in
how users see the network rather than considering aggregate of re-
quests, this limitation does not affect our study.

4.2 Experimental methodology
As we mentioned earlier, active measurements are a good fit for

our approach, since we want to contrast the response of the network
depending on whether or not the network is subject to poisoning.
In addition, the most popular items on the network are likely to be
poisoned. Therefore, poisoning could account for a vast majority of
the traffic observed using passive measurements, ultimately making
the distinction between poisoning effects and usual network behav-
ior difficult.

The main drawback of active measurements is that results can
heavily depend on the nature of the input we inject in the network.
In other words, we have to find a set of queries that are represen-
tative enough to give us an accurate picture of the network. In
an effort to cover the three main categories of content available in
peer-to-peer file sharing networks, we choose 15 query strings cor-

5Like the official Overnet client, MLDonkey requires to simultane-
ously connect to the eDonkey network to access the Overnet net-
work.

eDonkey eDonkey/Overnet FastTrack Gnutella
Songs Movies Soft. Songs Movies Soft. Songs Movies Soft. Songs Movies Soft.

Avg. number 648 369 790 759 473 909 32 6 348 68 186 563
of responses
(Std. dev.) (292) (210) (237) (315) (236) (200) (37) (7) (291) (76) (185) (528)

Avg. number 578 282 588 668 348 650 22 4 178 65 179 521
of unique files

(Std. dev.) (268) (163) (166) (294) (179) (106) (23) (4) (123) (72) (178) (492)

Table 3: Number of query returns. The table provides both the total number of query returns and the number of unique files
returned. Numbers correspond to the number of returns obtained after 10 minutes for Gnutella, FastTrack and eDonkey.

responding to 6 movies, 6 popular songs, and 3 popular software
titles. (To avoid facilitating potential copyright infringement, we
refer to the different queries as Song 1 through 6, Movie 1 through
6, and Software 1 through 3, respectively.) We use “specialized”
queries for songs and movies to improve the quality of the search
returns; that is, we restrict the possible returns to MP3 files and
video files, respectively.

For each of the 15 queries, we manually verify that the item
queried is not subject to poisoning (or at least, that a potentially
ongoing poisoning attack has negligible effect); that is, we check
that a few “good” files can be easily found and downloaded. On
the other hand, we cannot guarantee the network is not subject to
pollution; in fact, we experience various pollution levels depending
on the network and query considered, as we discuss later.

We inject the queries in each network as described in Table 2.
A bug in MLDonkey causes the results of concurrent queries on
a same host to be sporadically mixed, so we run only one ML-
Donkey client per host, and group queries into three groups of five
queries (2 songs, 2 movies, and 1 software distribution) each. For
each group of the three groups of queries, we send the queries from
6 hosts connected to the Gnutella network, 6 hosts connected to the
eDonkey network, and 6 hosts connected to the eDonkey/Overnet
network. In addition, we also issue the queries on 12 hosts con-
nected to the FastTrack network. On each host, we repeatedly issue
the queries every half-hour for 36 hours.

Last, when a peer-to-peer client is first installed and run on a
host, it uses a bootstrapping mechanism that typically results in
connecting to a fixed, well-known set of hubs. We attenuate the
impact of the initial bootstrapping mechanisms on our experimen-
tal results by running the clients for several days before starting to
collect data. More precisely, with the exception of one experiment
(as discussed later), all clients were started between November 26
and 27, 2004, and all data presented in this paper was collected over
December 1–5, 2004. The length of the collection period allows
us to circumvent transient and short-term effects, such as time-of-
the-day dependency; a comparison with previous experiments con-
ducted over October 7–14, 2004, and which we do not report here,
indicates that seasonal effects do not play a substantial role in the
set of measurements we are gathering.

4.3 Experimental results
All network properties have, to some extent, an impact on how

people exchange content on peer-to-peer file sharing networks. Be-
cause we do not directly study user behavior, we have to find the set
of network metrics that are likely to have the most impact on users’
decisions to use or instead abandon a given network. While we do
not claim the metrics we select describe exhaustively all factors that
condition user behavior, we focus on a set of five metrics that intu-
itively play a key role in how peer-to-peer users perceive a network:
number of responses to a query, response time to a query, content
stability, content replication, and download completion time.

Number of query returns Table 3 provides the average number
of responses to our queries we obtained for each network 10 min-
utes after having issued the query, averaged over all songs, movies
and software titles. Because a given file may be hosted on sev-
eral peers simultaneously, we distinguish between the total number
of responses and the number of unique files returned. We make
several observations. First, we have significantly more returns in
eDonkey and eDonkey/Overnet than in the other networks. This
does not necessarily imply that the eDonkey network has more
content available than the other networks. In fact, a more likely
cause for the observed difference is that each hub in FastTrack and
Gnutella indexes the contents of a much lower fraction of the total
number of nodes than in eDonkey. Thus, each node in FastTrack
and Gnutella has a relatively limited search horizon, which results
in lower numbers of returns, and in the returns being more sensi-
tive to nodes leaving and joining. The high variability in the ob-
served number of query returns in FastTrack and Gnutella seems
to confirm our hypothesis. In addition, we notice that specialized
searches (movies and songs) in FastTrack result in a low number
of returns. This can be due to either high levels of pollution (spe-
cialized searches tend to filter out some of the polluted items), or
to a bug in how the giFT-FastTrack daemon handles specialized
searches. We need further measurements, some of which we dis-
cuss later, to clarify the possible causes.

Query response times Because searches are not fully central-
ized, different query results are returned to the sender at different
times. Query results that arrive quickly are more likely to be se-
lected for download by most users, who generally have limited pa-
tience. Hence, the distribution of the query response times (that
is, the time difference between a query is issued and a specific re-
turn reaches the sender) plays an important role with respect to the
users’ perception of content availability.

We plot the distribution of the query response times for all four
networks in Fig. 1. The thin lines in the plots show the average
over all queries of each type (songs, movies, and software titles).
A better indicator might be the 90th percentile of all queries (thick
lines), which provides an upper bound for the query response times
experienced by 90% of the queries. We observe that eDonkey
and eDonkey/Overnet produce results extremely quickly: after two
minutes, for nearly all queries, the sender has received over 85%
of all query returns. After 3.5 minutes, the network has returned
virtually all responses to every query. We can explain this small
response time by the highly centralized topology in eDonkey: the
first server to be contacted already has most of the results avail-
able. In fact, the couple of jumps one can observe in each of the
plots in Figs. 1(a) and (b) correspond to results coming from dif-
ferent eDonkey servers. Conversely, Gnutella seems to produce
results almost continuously, and FastTrack exhibits a long-tailed
distribution of query response times for software titles. These re-
sults indicates that queries are propagated to many different hubs

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600

Fr
ac

tio
n

of
 a

ll
qu

er
y

re
tu

rn
s

Time (s)

Songs (90%)

Songs
Software

Software (90%)

Movies

Movies (90%)

(a) eDonkey

Songs

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600
Time (s)

Fr
ac

tio
n

of
 a

ll
qu

er
y

re
tu

rn
s

Songs (90%)

Movies (90%)

Software
Movies

Software (90%)

(b) eDonkey/Overnet

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600

Fr
ac

tio
n

of
 a

ll
qu

er
y

re
tu

rn
s

Time (s)

Songs
Movies

Movies (90%)

Software (90%)

Software

Songs (90%)

(c) FastTrack

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600

Fr
ac

tio
n

of
 a

ll
qu

er
y

re
tu

rn
s

Time (s)

Songs

Movies (90%)

Software (90%)

Songs (90%)

MoviesSoftware

(d) Gnutella

Figure 1: Query response times. The plots describe the average (thin lines) and 90th percentile (thick lines) of the query response
times (normalized over the final number of returns), for all three types of queries in the four networks under consideration.

that answer to the sender at different times. We note that FastTrack
seems to respond very quickly to specialized searches (movies and
songs). We speculate that the specialized searches were not prop-
agated to other hubs, which would explain both the low number of
returns we observed in Table 3, as well as the very quick response
time.

Content stability We use a time-dependent function we call
temporal stability, χ, to assess how the users’ perception of the
available content changes over time. Denoting byU(t) the set of
query returns corresponding to unique files returned at timet, we
defineχ(τ), for anyτ ∈ R, as

χ(τ) =

∑
t |U(t) ∩ U(t + τ)|∑
t |U(t) ∪ U(t + τ)| .

In other words,χ(τ) is the average probability (averaged over all
times) that an item returned at a given timeT is also returned at
time T + τ , for anyτ . We always haveχ(0) = 1, and values of
χ(τ) for τ < 0 characterize the probabilities an item returned at
a given time had also been returned in the past. In networks with
distributed search mechanisms, high temporal stability generally
characterizes high content propagation, which may be a good indi-
cator of limited pollution. Conversely, important levels of pollution
are likely to cause low temporal stability.

We plot the temporal stability in all four networks in Fig. 2, and
observe considerable differences between the different networks.
In particular, eDonkey and eDonkey/Overnet have very high tem-
poral stability. For instance, after 24 hours, there is a 50% chance
that a given user perceives a specific movie file as still being present
on the network. In contrast, two factors appear to cause Fast-
Track to exhibit a low temporal stability: (1) leaf-hub connections
change more frequently than in eDonkey, and (2) there is a much
higher pollution rate in the FastTrack network. Results for Gnu-

tella present an anomaly: judging from Fig. 2(d), content seems
to be continuously disappearing from the network. In fact, we is-
sue identical requests at a rate considered abusive by some servers,
which then ban our IP addresses and stop responding to our re-
quests. A separate experiment, whose results we omit here, shows
that sending requests every hour instead of every half-hour attenu-
ates the phenomenon.

Complementary to temporal stability, we characterize spatial sta-
bility, as a functionσ(n) of a number of hostsn. For a given query,
the spatial stability is the probability that a response returned to any
of the hosts is obtained, over the entire time of the experiment, by
at leastn different hosts. By definition, we always haveσ(1) = 1.

We plot spatial stability in Fig. 3, and observe that in FastTrack
and Gnutella, the probability that an item be seen atn hosts de-
creases exponentially inn, while eDonkey seemingly presents a
more linear decrease. The exponential decrease in FastTrack and
Gnutella is not surprising given the high rate of change in links be-
tween leaves and hubs, but the relatively sharp drop-off for eDonkey
hints that different servers in eDonkey provide significantly differ-
ent returns. Indeed, the very small number of servers in eDonkey
translates into a high probability that several of our hosts are con-
nected to the same server. Hence, we would have expected the
curve to remain much closer to 1 if different servers provided rela-
tively similar results.

(Perceived) content replication Content replication is a di-
rect consequence of propagation, and is perhaps the most impor-
tant reason behind the success of peer-to-peer networks. Indeed,
highly replicated content, being served by a number of peers, is
less likely to be unavailable; in addition, most peer-to-peer proto-
cols use swarming downloads (i.e., downloading a single file from
multiple sources simultaneously), which makes replicated content
easier and faster to download. Thus, most peer-to-peer clients rank
query returns by number of copies of a given file found in the net-

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

−24 −18 −12 −6 0 6 12 18 24

T
em

po
ra

l s
ta

bi
lit

y

Time (hr)

Songs

Movies

Software

(a) eDonkey

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

−24 −18 −12 −6 0 6 12 18 24

T
em

po
ra

l s
ta

bi
lit

y

Time (hr)

Movies

Software

Songs

(b) eDonkey/Overnet

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

−24 −18 −12 −6 0 6 12 18 24

T
em

po
ra

l s
ta

bi
lit

y

Time (hr)

Songs

Software
Movies

(c) FastTrack

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

−24 −18 −12 −6 0 6 12 18 24

T
em

po
ra

l s
ta

bi
lit

y
Time (hr)

Songs

Movies Software

(d) Gnutella

Figure 2: Temporal stability. The plots describe the average temporal stability of the responses to all three types of query in the four
networks under consideration. The temporal stability is the average probability (averaged over all times) that a response returned
at a given timeT is also returned at timeT + τ , for any τ .

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5 6

Sp
at

ia
l s

ta
bi

lit
y

Number of hosts

Songs
Movies

Software

(a) eDonkey

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5 6

Sp
at

ia
l s

ta
bi

lit
y

Number of hosts

Songs
Movies

Software

(b) eDonkey/Overnet

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5 6 7 8 9 10 11 12

Sp
at

ia
l s

ta
bi

lit
y

Number of hosts

Songs
Movies

Software

(c) FastTrack

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5 6

Sp
at

ia
l s

ta
bi

lit
y

Number of hosts

Songs
Movies

Software

(d) Gnutella

Figure 3: Spatial stability. The plots describe the average spatial stability of the responses to all three types of query in the four
networks under consideration. The spatial stability is the probability that a response returned to a host is returned at least once to
n different hosts, expressed in function ofn.

Average

90th percentile

10th percentile

 1

 10

 1 10 100 1000
Availability rank

N
um

be
r o

f c
op

ie
s

(a) eDonkey: Songs

Average

90th percentile

10th percentile

 1

 10

 1 10 100 1000
Availability rank

N
um

be
r o

f c
op

ie
s

(b) eDonkey: Movies

Average

90th percentile

10th percentile

 1

 10

 1 10 100 1000
Availability rank

N
um

be
r o

f c
op

ie
s

(c) eDonkey: Software

Average

90th percentile

10th percentile

 1

 10

 1 10 100 1000
Availability rank

N
um

be
r o

f c
op

ie
s

(d) eDonkey/Overnet: Songs

Average

90th percentile

10th percentile

 1

 10

 1 10 100 1000
Availability rank

N
um

be
r o

f c
op

ie
s

(e) eDonkey/Overnet: Movies

Average

90th percentile 10th percentile

 1

 10

 1 10 100 1000
Availability rank

N
um

be
r o

f c
op

ie
s

(f) eDonkey/Overnet: Software

Average

90th percentile

10th percentile

 1

 10

 1 10 100 1000
Availability rank

N
um

be
r o

f c
op

ie
s

(g) FastTrack: Songs

10th percentile

Average

 1

 10

 1 10 100 1000
Availability rank

N
um

be
r o

f c
op

ie
s

(h) FastTrack: Movies

Average

10th percentile

90th percentile

 1

 10

 1 10 100 1000
Availability rank

N
um

be
r o

f c
op

ie
s

(i) FastTrack: Software

90th percentile

Average
10th percentile

 1

 10

 1 10 100 1000
Availability rank

N
um

be
r o

f c
op

ie
s

(j) Gnutella: Songs

10th percentile
90th percentile

Average
 1

 10

 1 10 100 1000
Availability rank

N
um

be
r o

f c
op

ie
s

(k) Gnutella: Movies

Average

90th percentile

10th percentile

 1

 10

 1 10 100 1000
Availability rank

N
um

be
r o

f c
op

ie
s

(l) Gnutella: Software

Figure 4: (Perceived) content replication. The plots present, in a log-log scale, the average, 90th and 10th percentiles of the number
of copies found against their availability rank, for all three types of queries in the four networks under consideration. Average
distributions are relatively close to power-laws.

work. Ranking items according to their degree of replication cre-
ates a hysteresis effect: users are more likely to download highly
replicated items, thereby increasing the number of replicas avail-
able in the network.

Fig. 4 shows that, for all networks and all items, content repli-
cation, as perceived by users, roughly follows a power law. The
key result here is that we obtain the same behavior irrespective of
the network considered or of the type of query; plots for the 90th
and 10th percentile also exhibit power-law distributions. In addi-
tion, our results match observations previously made over entire
networks for FastTrack [17], older variants of Gnutella, which did
not use a two-tiered hierarchical topology, and Napster [6]. In other
words, despite their limited view of the network, users have a quite
accurate perception of the relative availability of different files.

Download completion time Last, we measure the total time
needed to successfully complete a download. This is arguably one
of the most important metrics with respect to the users’ decision to
abandon or join a peer-to-peer file sharing network.

Because, in this experiment, we download actual files, we use
a scaled-down experimental setup to limit the aggregate amount
of bandwidth we consume, and, more importantly, to only involve
in the experiment machines over which we have complete admin-
istrative control.6 We run FastTrack, eDonkey/Overnet, eDonkey,
and Gnutella clients on a total six machines. Every three hours,

6Data for this experiment was collected between February 10–17,
2005.

each client sends a request for Song 1. After 10 minutes, the client
ranks the query returns by number of copies found, and attempts
to download the 30 highest ranked returns. Thus, our experimental
setup mimics the behavior of a user who launches a query, waits
long enough, and tries to download all the results she sees on her
screen (most clients display about 30 results on a single screen).

We track the progress of the downloads over two hours, and plot
the average number of completed downloads against time, aver-
aged over all experiment runs, in Fig. 5. We observe that, despite
its very low temporal and spatial stability, the FastTrack network is
doing surprisingly well: at least one copy of the song is success-
fully downloaded within 20 minutes. These results indicate that, as
shown in [17], the FastTrack network is highly polluted. However,
good copies are easy to find among the mostly replicated objects.
In other words, replication is an efficient antidote to network pollu-
tion. Gnutella shows results similar to FastTrack, albeit with lower
levels of pollution, which confirms the results we previously ob-
tained.

The eDonkey and eDonkey/Overnet clients initially lag behind
the FastTrack and Gnutella clients, before catching up. This is due
to the credit system used in the downloading algorithm in eDonkey.
Peers which upload more traffic get more credits, and can in turn
download files from a larger number of peers. Such a credit sys-
tem mildly penalizes newcomers, and corroborates the results we
observe. Finally, the slightly lower average of successfully com-
pleted downloads in eDonkey/Overnet compared to eDonkey does
not indicate that Overnet degrades the performance of the down-

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120
Time (mins)

FastTrack

eDonkey/Overnet

eDonkey

Gnutella

A
ve

ra
ge

 n
um

be
r

of
 c

om
pl

et
ed

 d
ow

nl
oa

ds

Figure 5: Download completion time. The graph shows the av-
erage number of files that were successfully downloaded after
a given amount of time, averaged over all experiments.

loads, but is instead an artifact of the eDonkey/Overnet client being
connected to a less efficient server in this particular experiment.

Summary of measurements We exhibited a correlation between
network topology and content availability. In particular, more cen-
tralized topologies such as eDonkey result in faster query response
times, and higher temporal stability of the content available to a
client. Perceived content replication, that is, the number of copies
of a given file that are found in a search initiated by a node, gener-
ally follows a power law distribution. Users’ perception of content
replication thus matches measurements of content replication over
an entire network, as reported elsewhere [6, 17]. Hence, ranking
of query returns by number of replica available in the network is
an effective strategy in accommodating the modest or intermediate
levels of network pollution we observed in our experiments, as ev-
idenced by the relatively short time we needed to download a good
copy.

5. POLLUTION AND POISONING
Poisoning and pollution both result in decreasing the relative

availability of usable content in the network [17]. One expects pol-
lution to be a mostly random process, which can be filtered out
relatively easily as discussed in the previous section. On the other
hand, poisoning should in principle be designed to ensure, with
very high probability, that users always end up downloading de-
coys. Furthermore, we expect to observe pollution with most files
in the network, whereas poisoning should be targeted to specific
“protected” files.

In this section we describe three possible strategies for injecting
decoys (or bad files) in a peer-to-peer network: injection of random
decoys, injection of replicated decoys, and injection of replicated
transient decoys. We characterize each strategy and show its effect
on content availability, by considering how each strategy impacts
temporal stability and number of replicas found. To that effect,
we simulate each strategy on the measurements we obtained in the
previous section for Song 1. We choose Song 1 because it presents
typical (i.e., relatively close to the average) characteristics in the
absence of poisoning, but point out that the results are mostly inde-
pendent of the specific query we use in our simulations.

Random decoy injection The first strategy we consider con-
sists in randomly injecting decoys in the network. That is, we as-
sume that a set of hosts advertise files that are in fact decoys, and
frequently change the contents of the decoys. At low levels of in-
jection, such a strategy is in fact a good approximation of network

pollution, if we make the assumption that polluted copies seldom
propagate.7

At high levels, such a strategy may seem, at first glance, a rather
inefficient way of poisoning an item. Indeed, flooding the network
with random decoys does not, in itself, change the availability of
usable files in the network. Hence, the decoys should be easy to
filter out using a simple technique such as ranking search results by
number of replicas found.

While this reasoning is generally true when the number of in-
jected random decoys remains low, at high levels, we have to take
into account the fact that peer-to-peer systems limit the number of
returns a given query can yield. For instance, FastTrack supernodes
never send more than 200 returns at a time, and can only be queried
five times in a row, for a total of at most 1,000 results. Injecting a
massive number of random decoys may therefore prevent usable
files from appearing in the search results.

Figure 6 shows the effect of random decoy injection in the net-
works, for different levels of injection (0%, 25%, 50%, and 99%).
We limit the number of possible query results to 2,000. We ob-
serve that while random decoy injection significantly lowers tem-
poral stability, it does not affect content replication unless the in-
jection level is extremely high. Fig. 6(d–f) shows that, even at high
injection levels, content replication is only affected when the num-
ber of decoys injected in the network is high enough to drive usable
files out of the search results.

Thus, random decoy injection requires the injection of large quan-
tities of decoys in the network to be an effective poisoning tech-
nique. For example, for an item that returns on average 100 results,
one would need to inject in the order of 9,900 decoys in the net-
work. In fact, to successfully poison the item over the entire net-
work, one might need to inject as many as 9,900 decoysat each
hub. While not technically infeasible, the solution is likely to be
expensive and to require a massive infrastructure, which may be
impractical. In addition, as discussed above, such a large injec-
tion of decoys from a limited number of sources leaves a rather
obvious “signature” on the temporal stability. In highly centralized
networks such as eDonkey, poisoning techniques that leave a clear
statistical signature should be relatively easy to detect and combat.

Replicated decoy injection Instead, one may consider to instead
inject numerous replicas of the same decoy. Such a technique has
the advantage of guaranteeing a high ranking in the search results
for the injected decoy, thereby leading the decoy to be frequently
downloaded. Of course, the injection of a single, highly replicated
decoy is very easy to detect, so that one may improve the poison-
ing by injecting many replicated decoys. Liang et al. report that
such a technique is used for poisoning some items in the FastTrack
network [17].

This technique is less costly that a brute-force random decoy in-
jection. Indeed, judging from the content replication measurements
we obtained in the previous section, to considerably skew the rank-
ing of the search results in favor of the decoys, one would only need
to inject about 10 replicas per decoy, and about 30–40 decoys, for
a total of 300–400 files per hub . However, such a poisoning attack
can be easily countered by a simple reputation system, external to
the peer-to-peer network, that tells users if a given file is likely to be
a decoy; the Jugle eDonkey FakeCheck service [3] is an example
of such a reputation service. One can in turn defeat the reputa-
tion system by either compromising it (which may not be easy), or
by frequently replacing the replicated decoys injected in the net-

7Even though this assumption is unlikely to perfectly hold, prop-
agation of polluted files should be relatively limited, as we expect
most users would delete the file once they realize it is unusable.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

−24 −18 −12 −6 0 6 12 18 24

T
em

po
ra

l s
ta

bi
lit

y

Time (hr)

0%
25%
50%
99%

(a) eDonkey/Overnet - Temporal stability

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

−24 −18 −12 −6 0 6 12 18 24

T
em

po
ra

l s
ta

bi
lit

y

Time (hr)

0%
25%
50%
99%

(b) FastTrack - Temporal stability

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

−24 −18 −12 −6 0 6 12 18 24

T
em

po
ra

l s
ta

bi
lit

y

Time (hr)

0%
25%
50%
99%

(c) Gnutella - Temporal stability

Original

99%

50%

25%

 1

 10

 1 10 100 1000
Availability rank

N
um

be
r o

f c
op

ie
s

(d) eDonkey/Overnet - Content replication

Original

25%

99%50%

 1

 10

 1 10 100 1000
Availability rank

N
um

be
r o

f c
op

ie
s

(e) FastTrack - Content replication

99%
50%Original

25%

 1

 10

 1 10 100 1000
Availability rank

N
um

be
r o

f c
op

ie
s

(f) Gnutella - Content replication

Figure 6: Random decoy injection. The plots describe the effect of randomly injecting decoys on the temporal stability and content
replication of each network, for various levels ranging from mild pollution to aggressive poisoning.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

−24 −18 −12 −6 0 6 12 18 24

T
em

po
ra

l s
ta

bi
lit

y

Time (hr)

Original

Random (99%)

Replicated

Repl. transient

(a) eDonkey/Overnet: Temporal stability

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

−24 −18 −12 −6 0 6 12 18 24

T
em

po
ra

l s
ta

bi
lit

y

Time (hr)

Replicated

Repl. transient

Random (99%)

Original

(b) FastTrack: Temporal stability

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

−24 −18 −12 −6 0 6 12 18 24

T
em

po
ra

l s
ta

bi
lit

y

Time (hr)

Replicated

Original

Random (99%)

Repl. transient

(c) Gnutella: Temporal stability

Random

Original

Replicated (Transient)

 1

 10

 1 10 100 1000
Availability rank

N
um

be
r o

f c
op

ie
s

(d) eDonkey/Overnet: Content replication

Replicated (Transient)

Original
Random

 1

 10

 1 10 100 1000
Availability rank

N
um

be
r o

f c
op

ie
s

(e) FastTrack: Content replication

Replicated (Transient)

Random

Original

 1

 10

 1 10 100 1000
Availability rank

N
um

be
r o

f c
op

ie
s

(f) Gnutella: Content replication

Figure 7: Poisoning effects. The plots compare the different poisoning techniques with respect to temporal stability and perceived
content replication. Replicated decoys and replicated transient decoys have identical effects on perceived content replication.

work. We call the poisoning technique of frequently replacing the
replicated decoys injected in the networkreplicated transient decoy
injection.

We compare the effect of the three poisoning techniques we dis-
cussed in Fig. 7: 99% random decoy injection completely destroys
temporal stability, and the perception the clients have from con-
tent replication. Replicated, and replicated transient decoy injec-
tion manage to substantially skew the perceived content replica-
tion; in addition, replicated transient decoy injection avoids signif-
icantly changing the temporal stability properties of each network,
and may not leave an obvious statistical signature, which makes
such a poisoning strategy hard to detect.8 In fact, except for de-
liberately including misspellings in metadata information to escape
poisoning, we are not aware of any currently deployed mechanism
that would thwart replicated transient decoy injection. A more elab-
orate reputation system, which weighs the reputation of a file by the

8The degree of replication of the decoys, which, for simplicity, we
assumed constant here, can be easily chosen to follow a power law
distribution, further concealing an ongoing attack.

time it has been present in the network could be useful in limiting
the impact of poisoning by replicated transient decoy injection.

Last, we note that the above poisoning techniques are not mu-
tually exclusive. A poisoning attack on a file, that, for instance,
combines injection of random decoys at a level of 80%, with the
injection of a few replicated transient decoys, would likely be dif-
ficult to detect, and would likely lead to drastically decreasing the
content availability of the targeted file.

6. CONCLUSIONS
We provided a measurement-based analysis of content availabil-

ity in peer-to-peer networks. We showed that the topology of the
peer-to-peer network plays a crucial role in how each peer perceives
the network. Specifically, we defined the notion of temporal stabil-
ity, and exhibited that more centralized topologies, such as used by
eDonkey, generally have a better temporal stability than more dis-
tributed networks, such as FastTrack or Gnutella. In addition, we
confirmed that centralized topologies tend to return query results
faster.

We showed that content replication as perceived by end users
generally follows power-laws. Consequently, ranking query results
by the number of copies found in the network is effective in deal-
ing with moderate to intermediate levels of network pollution. We
also discussed possible strategies that copyright holders may use
to prevent the propagation of copyrighted material, and, notably
item poisoning. We indicated that, to be an effective technique for
reducing the availability of content on the network, randomly in-
jecting decoys of popular files needs needs to be done on a massive
scale and may be easy to detect in highly centralized peer-to-peer
networks. On the other hand, the injection of a few replicated de-
coys can lead to significant perturbations in the network as well,
while being much more cost-efficient.

We point out that more elaborate techniques, such as discussed in
[10], can theoretically bring an entire peer-to-peer network down.
However, copyright holders may be reluctant to disrupt an entire
network and provide content protection “for free” to their competi-
tors. Hence, whether such techniques will actually be deployed
remains an open problem.

We see two main avenues for future work on the subject. First,
we are interested in precisely determining the statistical character-
istics of network pollution. In this paper, we reduced pollution to
a random injection of bad files. However, studies of user behavior
show that a vast number of users are vastly unaware of the files they
share [11]. As such, one would expect polluted items to acciden-
tally propagate, which we could determine by deliberately injecting
bad copies of a file and tracking their progress in the network. Sec-
ond, we focused on the network metrics which, we believe, play
an important role in user behavior with respect to peer-to-peer file
sharing usage. We plan on conducting laboratory experiments with
human subjects to get a better characterization of user behavior in
face of pollution and poisoning.

Peer-to-peer file sharing is a reality, and copyright holders seem
to have, at least partially, accepted the limitations of legal recourses.
Hence, we are starting to observe a technological arms race be-
tween peer-to-peer network designers and copyright holders. The
former want to make their networks as robust as possible, that is,
as immune as possible to poisoning and pollution, while the latter
want to disrupt availability of copyrighted contents. This is one of
the “tussles” Clark et al. were envisioning in [8], one which we
believe will have deep economic impact in the years to come.

7. ACKNOWLEDGMENTS
This work highly benefited from discussions with Jens Grossklags.

We also thank Joe Hall for pointing us to literature on the impact
of peer-to-peer networks on music sales, and Yvan Pointurier for
making a machine available to us on extremely short notice.

8. REFERENCES
[1] A&M Records et al. v. Napster. U.S. Ct. of Appeals for the

9th Circuit, Case Nr.: 00-16401. Feb. 12, 2001.
[2] giFT: Internet File Transfer - FastTrack plug-in.

http://gift-fasttrack.berlios.de/ .
[3] Jugle real-time fake check for eMule and eDonkey.

http://www.jugle.net .
[4] MLDonkey, a multi-networks file-sharing client.http:

//savannah.nongnu.org/projects/mldonkey/ .
[5] R. Bhagwan, S. Savage, and G. Voelker. Understanding

availability.Proc. IPTPS’03, pp. 256–267, Berkeley, CA,
Feb. 2003.

[6] J. Chu, K. Labonte, and B. Levine. Availability and locality
measurements of peer-to-peer filesystems.Proc. SPIE,
vol. 4868, pp. 310–321, Boston, MA, July 2002.

[7] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: an overlay
testbed for broad-coverage services.ACM Comp. Comm.
Rev., 33(3):3–12, July 2003.

[8] D. Clark, J. Wroclawski, K. Sollins, and R. Braden. Tussle in
cyberspace: defining tomorrow’s Internet.Proc. ACM
SIGCOMM’02, pp. 347–356, Pittsburgh, PA, Aug. 2002.

[9] B. Cohen. Incentives build robustness in BitTorrent.Proc. 1st
Work. Econ. Peer-to-Peer Syst., Berkeley, CA, June 2003.

[10] D. Dumitriu, E. Knightly, A. Kuzmanovic, I. Stoica, and
W. Zwaenepoel. Denial-of-service resilience in peer-to-peer
file sharing systems.Proc. ACM SIGMETRICS’05, Banff,
AB, Canada, June 2005. To appear.

[11] N. Good and A. Krekelberg. Usability and privacy: a study
of KaZaA P2P file-sharing.Proc. ACM CHI’03, pp.
137–144, Fort Lauderdale, FL, Apr. 2003.

[12] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and
J. Zahorjan. Measurement, modeling, and analysis of a
peer-to-peer file-sharing workload.Proc. ACM SOSP’03, pp.
314–329, Bolton Landing, NY, Oct. 2003.

[13] J. Hale and G. Manes. Method to inhibit the identification
and retrieval of proprietary media via automated search
engines utilized in association with computer compatible
communications network, May 2004. U.S. Patent
nr. 6,732,180.

[14] T. Karagiannis, A. Broido, N. Brownlee, kc claffy, and
M. Faloutsos. Is P2P dying or just hiding?Proc. IEEE
Globecom’04, Dallas, TX, Nov. 2004.

[15] F. Le Fessant, S. Handurukande, A.-M. Kermarrec, and
L. Massoulíe. Clustering in peer-to-peer filesharing
workloads.Proc. IPTPS’04, pp. 217–226, San Diego, CA,
Feb. 2004.

[16] J. Liang, R. Kumar, and K. Ross. The KaZaA overlay: a
measurement study. Working paper, Sept. 2004.

[17] J. Liang, R. Kumar, Y. Xi, and K. Ross. Pollution in P2P file
sharing systems.Proc. IEEE INFOCOM’05, Miami, FL,
Mar. 2005. To appear.

[18] B.-T. Loo, R. Huebsch, I. Stoica, and J. Hellerstein. The case
for a hybrid P2P search infrastructure.Proc. IPTPS’04, pp.
141–150, San Diego, CA, Feb. 2004.

[19] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer
information system based on the XOR metric.Proc.
IPTPS’02, pp. 53–65, Cambridge, MA, Feb. 2002.

[20] F. Oberholzer and K. Strump. The effect of file sharing on
record sales: an empirical analysis. Working Paper, Mar.
2004.

[21] S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, and H. Levy.
An analysis of Internet content delivery systems.Proc.
USENIX OSDI’02, pp. 156–170, Boston, MA, Dec. 2002.

[22] S. Saroiu, K. Gummadi, and S. Gribble. A measurement
study of peer-to-peer file sharing systems.Proc. SPIE/ACM
MMCN’02, pp. 156–170, San Jose, CA, Jan. 2002.

[23] S. Sen and J. Wang. Analyzing peer-to-peer traffic across
large networks.Proc. ACM IMW’02, pp. 137–150, Marseille,
France, Nov. 2002.

[24] K. Tutschku. A measurement-based traffic profile of the
eDonkey filesharing service.Proc. PAM’04, pp. 12–21,
Juan-les-Pins, France, Apr. 2004.

[25] A. Zentner. Measuring the effect of music downloads on
music sales. Working Paper. June 2003.

