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Abstract

Learning a classifier in safety-critical applications like medicine raises several issues. Firstly,
the class proportions, also called priors, are in general imbalanced or uncertain. Secondly,
the classifier must consider some bounds on the priors taking the form of box constraints
provided by experts. Thirdly, it is also necessary to consider any arbitrary loss function
given by experts to evaluate the classification decision. Finally, the dataset may contain both
categorical and numerical features. To deal with both categorical and numerical features, the
numerical attributes are discretized. When considering only discrete features, we propose in
this paper a box-constrained minimax classifier which addresses all the mentioned issues.
We derive a projected subgradient algorithm to compute this classifier. The convergence of
this algorithm is established. We finally perform experiments on the Framingham heart
database for illustrating the relevance of our algorithm in health care field.

1. Introduction

Context and problem statement The task of supervised classification is becoming
increasingly promising in medicine fields such as medical diagnosis or health care. However,
in such applications, we often have to face four difficulties. Firstly, the training set is
generally imbalanced, i.e., the classes are not equally represented. In this case, minimizing
the empirical risk leads the classifier to minimize the class-conditional risks of the classes
with the largest number of samples. A minority class with just a small number of occurrences
will tend to have a large class-conditional risk (Elkan, 2001). Furthermore, when some
classes contain only a small number of samples, we can not claim that the class proportions
of the training set correspond to the true state of nature. A classifier fitted on such a
training set may have a poor performance on the test set (Poor, 1994). Secondly, experts
in the application domain are generally able to provide us with some bounds on the class
proportions. For example, in case of a medical disease, it is reasonable to bound the
maximum frequency of a given disease. We can expect that the bound will improve the
performance of a classifier. Thirdly, the experts can require the use of a specific loss function
for evaluating the classification decisions. For example, if the classifier confuses a throat
infection with a cold, the consequences are not the same as confusing a throat infection with
a lung cancer. Finally, we often have to deal with both numeric and categorical features.
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Many works have shown that the discretization of the numerical features can lead to results
with better accuracy (Dougherty et al., 1995; Peng et al., 2009; Yang and Webb, 2009;
Garćıa et al., 2016; Lustgarten et al., 2008). In this paper, we consider that the numerical
features are discretized such that the classifier must only process discrete features. The goal
of this paper is to build a classifier which addresses these four issues.

Related works A common approach to deal with imbalanced datasets is to balance the
data by resampling the training set. But this approach may increase the misclassification
risk when classifying some test samples which are imbalanced. Another common approach
is the cost sensitive learning (Ávila Pires et al., 2013; Drummond and C. Holte, 2003)
which aims at optimizing the cost of class misclassifications in order to counterbalance the
number of occurrences of each class. However, this approach transforms the loss function
provided by the experts, and these costs are generally difficult to tune. The task of learning
the class-proportions which maximize the minimum empirical risk was already studied in
past years. A pioneering work on the minimax criterion in the field of machine learning is
(Cannon et al., 2002). This work studies the generalization error of a minimax classifier but
it does not give any method to compute it. In (Kaizhu et al., 2004), the authors proposed
the Minimum Error Minimax Probability Machine for the task of binary classification only.
The extension to multiple classes is difficult. This method is very close to (Kaizhu et al.,
2006). The Support Vector Machine (SVM) classifier can also be tuned in order to minimize
the maximum class-conditional risks. The study proposed in (Davenport et al., 2010) is
limited to the linear classifiers (using or not a feature mapping) and to the classification
problems between only two classes. In (Farnia and Tse, 2016), the authors proposed an
approach which fits a decision rule by learning the probability distribution which minimizes
the worst-case of misclassification over a set of distributions centered at the empirical
distribution. When the class-conditional distributions of the training set belong to a known
parametric family of probability distributions, the competitive minimax approach can be an
interesting solution (Feder and Merhav, 2002). Finally, in (Guerrero-Curieses et al., 2004),
the authors proposed an interesting fixed-point algorithm based on generalized entropy
and strict sense Bayesian loss functions. This approach alternates a resampling step of the
learning set with an evaluation step of the class-conditional risk, and it leads to estimate
the least-favorable priors. However, the fixed-point algorithm needs the minimax rule to
be an equalizer rule. We can show that this assumption is in general not satisfied when
considering discrete features.

Contributions In this paper, we propose a new method for computing the minimax
classifier addressing all the previously mentioned issues. It is well known that the usual
minimax classifier aims at finding the priors which maximize the minimum empirical risk over
the probabilistic simplex (Poor, 1994). These class proportions are called the least favorable
priors. They are generally very difficult to obtain as underlined in (Fillatre and Nikiforov,
2012) and (Fillatre, 2017). However, as discussed in (Alaiz-Rodŕıguez et al., 2007), it appears
that sometimes a minimax classifier can be too pessimistic since its associated least favorable
priors might be too far from the state of nature, and the risk of misclassifications becomes
too high. In this case, our approach is suitable to consider some box constraints on the priors
in order to find an acceptable trade-off between addressing the priors issues and satisfying
an acceptable risk. The resulting decision rule is the box-constrained minimax classifier.
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The contributions of the paper are the following. First, we calculate the optimal minimum
empirical risk of the training set, also called the empirical Bayes risk. Second, we show
that the empirical Bayes risk is a non-differentiable concave multivariate piecewise affine
function with respect to the priors. The box-constrained minimax classifier is obtained by
seeking at the maximum of the empirical Bayes risk over the box-constrained region. Third,
we derive a projected subgradient algorithm which finds the least favorable proportions
over the box-constrained simplex. In section 2, we present the box-constrained minimax
classifier. In section 3, we study the empirical Bayes risk. Section 4 proposes an optimization
algorithm to compute the box-constrained minimax classifier. Section 5 proposes some
numerical experiments on the Framingham Heart dataset (University et al., From 1948).
Finally, Section 6 concludes the paper.

2. Principle of box-constrained minimax classifier

Given K ≥ 2 the number of classes, let Y = {1, . . . ,K} be the set of class labels and Ŷ = Y
the predicted labels. Let X be the space of all feature values. Let L : Y × Ŷ → [0,+∞)
be the loss function such that, for all (k, l) ∈ Y × Ŷ, L(k, l) := Lkl corresponds to the loss,
or the cost, of predicting the class l whereas the real class is k. For example, the L0-1 loss
function is defined by Lkk = 0 and Lkl = 1 when k 6= l. Given a multiset {(Yi, Xi) , i ∈ I}
containing a number m of labeled learning samples, the task of supervised classification is to
learn a decision rule δ : X → Ŷ which assigns each sample i ∈ I to a class Ŷi ∈ Ŷ from its
feature vector Xi := [Xi1, . . . , Xid] ∈ X composed of d observed features, and such that δ
minimizes the empirical risk r̂(δ) = 1

m

∑
i∈I L(Yi, δ(Xi)) (Vapnik, 1999; Hastie et al., 2009;

Duda et al., 2000). As explained in (Poor, 1994), this risk can be written as

r̂ (δπ̂) =
∑
k∈Y

π̂k R̂k (δπ̂) , (1)

where π̂ = [π̂1, . . . , π̂K ] corresponds to the class proportions of the training set satisfying,
for all k ∈ Y, π̂k = 1

m

∑
i∈I 1{Yi=k},

1 and where R̂k (δπ̂) corresponds to the empirical
class-conditional risk associated to class k defined as

R̂k (δπ̂) =
∑
l∈Ŷ

Lkl P̂(δπ̂(Xi) = l | Yi = k). (2)

Here, P̂(δπ̂(Xi) = l | Yi = k) denotes the empirical probability for the classifier δ to assign
the class l given that the true class is k. Note that in (1) and (2), the notation δπ̂ means
that the decision rule δ was fitted under the priors π̂. More generally, we will use the
notation δπ to denote that the decision rule δ was fitted under the priors π, for any π in the
K-dimensional probabilistic simplex S defined by S := {π ∈ [0, 1]K :

∑K
k=1 πk = 1}. In the

following, ∆ := {δ : X → Ŷ} denotes the set of all possible classifiers.

2.1. Minimax classifier principle

Let {(Y ′i , X ′i) , i ∈ I ′} be the multiset containing a number m′ of test samples satisfying
the unknown class proportions π′ = [π′1, . . . , π

′
K ]. The classifier δπ̂ fitted with the samples

1. The indicator function of event E is denoted 1{E}.
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{(Yi, Xi) , i ∈ I} is then used to predict the classes Y ′i of the test samples i ∈ I ′ from their
associated features X ′i ∈ X . As described in (Poor, 1994), the risk of misclassification with
respect to the classifier δπ̂ and as a function of π′ is defined as r̂ (π′, δπ̂) =

∑
k∈Y π

′
kR̂k (δπ̂).

Figure 1, left, illustrates the risk r̂ (π′, δπ̂) for K = 2. In this case, it can be rewritten as

r̂
(
π′, δπ̂

)
= π′1 R̂1 (δπ̂) + π′2 R̂2 (δπ̂) = π′1

(
R̂1 (δπ̂)− R̂2 (δπ̂)

)
+ R̂2 (δπ̂) . (3)

It is then clear that r̂ (π′, δπ̂) is a linear function of π′1. It is easy to verify that the maximum
value of r̂ (π′, δπ̂) is M(δπ̂) := max{R̂1 (δπ̂) , R̂2 (δπ̂)}. Since M(δπ̂) is larger than r̂ (π′, δπ̂),
it involves that the risk of the classifier can change significantly when π′ differs from π̂. More
generally, for K classes, the maximum risk which can be attained by a classifier when π′

is unknown is M(δπ̂) := max{R̂1 (δπ̂) , . . . , R̂K (δπ̂)}. Hence, a solution to make a decision
rule δπ̂ robust with respect to the class proportions π′ is to fit δπ̂ by minimizing M(δπ̂).
As explained in (Poor, 1994), this minimax problem is equivalent to consider the following
optimization problem:

δBπ̄ = argmin
δ∈∆

max
π∈S

r̂(π, δπ) = argmin
δ∈∆

max
π∈S

r̂(δπ). (4)

As shown in (Ferguson, 1967), the famous Minimax Theorem establishes that

min
δ∈∆

max
π∈S

r̂(δπ) = max
π∈S

min
δ∈∆

r̂(δπ). (5)

This theorem holds because our classification problem involves only discrete features. In
the following, given π ∈ S, we define δBπ := argminδ∈∆ r̂(δπ) as the optimal Bayes classifier
for a given prior π. Hence, according to (5), provided that we can calculate δBπ for any
π ∈ S, the optimization problem (4) is equivalent to calculate the least favorable priors
π̄ = argmaxπ∈Sr̂(δ

B
π ). The minimax classifier δBπ̄ is the Bayes classifier calculated with the

prior π̄.

2.2. Benefits of Box-constrained minimax classifier

Sometimes, the minimax classifier may appear too pessimistic since the least favorable priors
π̄ may be too far from the priors π̂ of the training set, and experts may consider that the
class proportions π̄ is unrealistic. For example in Figure 1, right, let us suppose that the
proportions of class 1 are bounded between a1 = 0.1 and b1 = 0.4. If we look at the point b1,
it is clear that the classifier δBπ̂ fitted for the class proportions π̂1 of the training set is very
far from the minimum empirical Bayes risk r̂

(
π′, δBπ′

)
. The minimax classifier δBπ̄ is more

robust and the box-constrained minimax classifier δBπ? has no loss. If we look now at the
point a1, the minimax classifier is disappointing but the loss of the box-constrained minimax
classifier is still acceptable. In other words, the box-constrained minimax classifier seems to
provide us with a reasonable trade-off between the loss of performance and the robustness
to the prior change. To our knowledge, the concept of box-constrained minimax classifier
has not been studied yet. More generally, in the case where we bound independently each
class proportion, we therefore consider the box-constrained simplex

U := S ∩ B, (6)
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where B := {π ∈ RK : ∀k = 1, . . . ,K, 0 ≤ ak ≤ πk ≤ bk ≤ 1} is the box constraint which de-
limits independently each class proportion. Hence, to compute the box-constrained minimax
classifier with respect to B, we consider the minimax problem δBπ? = argminδ∈∆ maxπ∈U r̂(δπ),
and according to (5), provided that we can calculate δBπ for any π ∈ U, this problem leads
to the optimization problem

π? = arg max
π∈U

r̂(δBπ ). (7)

Figure 1: Comparison between the empirical Bayes classifier δBπ̂ , the minimax classifier δBπ̄
and the box-constrained minimax classifier δBπ? .

3. Discrete empirical Bayes risk

This section defines the empirical Bayes risk and studies its behavior as a function of the
priors.

3.1. Empirical Bayes risk for the training set prior

For all k ∈ Y, let Ik = {i ∈ I : Yi = k} be the set of learning samples from the class k, and
mk = |Ik| the number of samples in Ik. Thus with these notations and in link with (2), we
can write

P̂(δπ̂(Xi) = l | Yi = k) =
1

mk

∑
i∈Ik

1{δπ̂(Xi)=l}. (8)

Since each feature Xij is discrete, it takes on a finite number of values tj . It follows that
the feature vector Xi := [Xi1, . . . , Xid] takes on a finite number of values in the finite set
X = {x1, . . . , xT } where T =

∏d
j=1 tj . Each vector xt can be interpreted as a “profile vector”

which characterizes the samples. Let us note T = {1, . . . , T} the set of indices. Let us define
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for all k ∈ Y and for all t ∈ T ,

p̂kt =
1

mk

∑
i∈Ik

1{Xi=xt} (9)

the probability estimate of observing the features profile xt ∈ X with the class label k. In
the context of statistical hypothesis testing theory, (Schlesinger and Hlavác, 2002) calculates
the risk of a statistical test with discrete inputs. We can extend this calculation to the
empirical risk of a classifier δπ̂ ∈ ∆ with discrete features in the context of machine learning,
and in the next Theorem, we show that we can compute the non-näıve empirical Bayes
classifier δBπ̂ which minimizes (1) over the training set.

Theorem 1 The empirical Bayes classifier δBπ̂ fitted on the training set with the class
proportions π̂ ∈ S is

δBπ̂ : Xi 7→ arg min
l∈Ŷ

∑
t∈T

∑
k∈Y

Lkl π̂k p̂kt 1{Xi=xt}. (10)

Its associated empirical Bayes risk is r̂
(
δBπ̂
)

=
∑

k∈Y π̂kR̂k
(
δBπ̂
)
, where the empirical class-

conditional risk is

R̂k
(
δBπ̂
)

=
∑
t∈T

∑
l∈Ŷ

Lkl p̂kt 1{λlt=minq∈Ŷ λqt}, ∀k ∈ Y, (11)

and λlt =
∑

k∈Y Lkl π̂k p̂kt for all l ∈ Ŷ and all t ∈ T .
Proof The proof is omitted for the lack of space.

According to Theorem 1, the non-näıve Bayes classifier δBπ̂ is easily calculable in the
case of discrete features since we only need to compute the probabilities p̂kt and the priors
π̂k. This classifier outperforms, on the training set, any more advanced classifiers like deep
learning based classifiers.

3.2. Empirical Bayes risk extended to any prior over the simplex

Since we can only consider the samples from the training set, the probabilities p̂kt defined
in (9) are assumed to be estimated once for all. Indeed, the statistical estimation theory
(Rao, 1973) has established that the estimates p̂kt correspond to the maximum likelihood
estimates of the true probabilities pkt for all couples (k, t) ∈ Y × T . By estimating these
probabilities with the full training set, we get the best unbiased estimate with the smallest
variance. This paper assumes that these class-conditional probabilities are representative
of the test set. However, as explained in Section 2, we can not be confident in the class
proportions estimate π̂k. For this reason, the empirical Bayes risk must be viewed as a
function of the class proportions.

Let us denote δBπ the empirical Bayes classifier fitted on a training set with the class
proportions π ∈ S, keeping unchanged the class-conditional probabilities p̂kt:

δBπ : Xi 7→ arg min
l∈Ŷ

∑
t∈T

∑
k∈Y

Lkl πk p̂kt 1{Xi=xt}. (12)
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From Theorem 1, it follows that the minimum empirical Bayes risk extended to any prior π
is given by the function V : S→ [0, 1] defined by

V (π) = r̂
(
δBπ
)

=
∑
k∈Y

πk R̂k
(
δBπ
)
, (13)

where R̂k
(
δBπ
)

=
∑
t∈T

∑
l∈Ŷ

Lkl p̂kt 1{∑
k∈Y Lkl πk p̂kt=minq∈Ŷ

∑
k∈Y Lkq πk p̂kt

}, ∀k ∈ Y. (14)

The function V : π 7→ V (π) gives the minimum value of the empirical Bayes risk when the
class proportions are π and the class-conditional probabilities p̂kt remain unchanged. In
other words, a classifier can be said robust to the priors if its risk remains very close to V (π)
whatever the value of π.

It is well known in the literature (Poor, 1994; Duda et al., 2000) that the Bayes risk, as
a function of the priors, is concave over S. The following proposition shows that this result
holds when considering the empirical Bayes risk (13), and studies the differentiability of V
over S. Let us note that these results hold over the box-constrained probabilistic simplex U
since U ⊂ S.

Proposition 2 The empirical Bayes risk V : π 7→ V (π) is a concave multivariate piecewise
affine function over S with a finite number of pieces. Finally, if there exist π, π′ ∈ S and
k ∈ Y such that R̂k

(
δBπ
)
6= R̂k

(
δBπ′
)
, then V is non-differentiable over the simplex S.

Proof The proof is omitted for the lack of space.

According to (13), the optimization problem (7) is equivalent to the optimization problem

π? = arg max
π∈U

V (π). (15)

We have established in proposition 2 that V : π 7→ V (π) is concave and non-differentiable over
U provided that there exist π, π′ ∈ U, k ∈ Y such that R̂k

(
δBπ
)
6= R̂k

(
δBπ′
)
. It is therefore

necessary to develop an optimization algorithm adapted to both the non-differentiability of
V and the domain U.

4. Maximization over the box-constrained probabilistic simplex

We are interested in solving the optimization problem (15). In order to compute the least
favorable priors π? which maximize V over the box-constrained simplex U in the general
case where V is non-differentiable, we propose to use a projected subgradient algorithm
based on (Alber et al., 1998) and following the scheme

π(n+1) = PU

(
π(n) +

γn
ηn
g(n)

)
. (16)

In (16), at each iteration n, g(n) denotes a subgradient of V at π(n), γn denotes the sub-
gradient step, ηn = max{1, ‖g(n)‖2}, and PU denotes the projection onto the box-constrained
simplex U. Let us note that this algorithm also holds in the case where the condition “for
all (π, π′, k) ∈ U× U× Y, R̂k

(
δBπ
)

= R̂k
(
δBπ′
)
” is satisfied, i.e. the function V is affine over

U. Theorem 3 establishes the convergence of the iterates (16) to a solution π? of (15).
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Theorem 3 Given π ∈ U, the vector R̂
(
δBπ
)

:=
[
R̂1

(
δBπ
)
, . . . , R̂K

(
δBπ
)]
∈ RK composed

of the class-conditional risks is a subgradient of the empirical Bayes risk V : π 7→ V (π) at

the point π. Moreover, when g(n) = R̂
(
δB
π(n)

)
and the sequence of steps (γn)n≥1 satisfies

inf
n≥1

γn > 0,

+∞∑
n=1

γ2
n < +∞,

+∞∑
n=1

γn = +∞, (17)

the sequence of iterates following the scheme (16) converges to a solution π? of (15), whatever
the initialization π(1) ∈ S.
Proof The proof is a consequence of Theorem 1 in (Alber et al., 1998).

Remark 4 When the empirical Bayes risk V is not zero everywhere, the subgradient
R̂
(
δBπ?
)

at the box-constrained minimax optimum does not vanish, otherwise the associated
risk V (π?) would be null too. This would contradict the fact that π? is a solution of (15). In

this case, the sequence of iterates (16) with g(n) = R̂
(
δB
π(n)

)
at each step is infinite.

According to Remark 4, we need to consider a stopping criterion. We propose to follow
(Boyd et al., 2003) which shows that the difference between the box-constrained minimax
risk V (π?) = maxπ∈U V (π) and the worst empirical Bayes risk computed until the iteration
N is bounded by: ∣∣∣∣max

n≤N

{
V
(
π(n)

)}
− V (π?)

∣∣∣∣ ≤ ρ2 +
∑N

n=1 γ
2
n

2
∑N

n=1 γn
, (18)

where ρ is a constant satisfying ‖π(1) − π?‖2 ≤ ρ. Since (18) converges to 0 as N →∞, we
can choose a small tolerance ε > 0 as a stopping criterion. Moreover in (16), to perform
the exact projection onto the box-constrained probabilistic simplex U at each iteration
n, we propose to consider the algorithm provided by (Rutkowski, 2017). The procedure
for computing our box-constrained minimax classifier is summarized in the step by step
Algorithm 1 in Appendix A.

5. Numerical experiments

Dataset description For illustrating the interest of our box-constrained minimax classifier
in health care field, we applied our algorithm to the Framingham Heart database (University
et al., From 1948). This database contains the clinical observations of 3,658 individuals
(after removing individuals with missing values) who have been followed for 10 years. The
objective of the Framingham study was to predict the development of a Coronary Heart
Disease (CHD) within 10 years based on d = 15 observed features measured at inclusion. We
therefore have K = 2 classes, with class 2 corresponding to individuals who have developed a
CHD, and class 1 corresponding to the others. Among the 15 features, 7 are categorical (sex,
education, smoking status, previous history of stroke, diabetes, hypertension, antihypertensive
treatment) and 8 are numeric (age, number of cigarettes per day, cholesterol levels, systolic
blood pressure, diastolic blood pressure, heart rate, body mass index (BMI), glycemia). The
dataset is imbalanced: π̂ = [0.85, 0.15], which means that 15% of the individuals have
developed a CHD within 10 years. For this experiment, we considered the L0-1 loss function.
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Features discretization In order to apply our algorithm, we need to discretize the
numerical features. To this aim, many methods can be applied as explained in (Dougherty
et al., 1995; Peng et al., 2009). We can use supervised discretization methods such as
(Kerber, 1992; Liu and Setiono, 1995; Kurgan and Cios, 2004), or unsupervised methods
such as the Kmeans algorithm (MacQueen, 1967). Here we decided to quantize the features
using the Kmeans algorithm with a number T ≥ K of centroids. In other words, each
real feature vector Xi ∈ Rd composed of all the features is quantized with the index of
the centroid closest to it, i.e., Q(Xi) = j where Q : Rd 7→ {1, . . . , T} denotes the Kmeans
quantizer and j is the index of the centroid of the cluster in which Xi belongs to. The choice
of T is important since it has an impact on the generalization error of the classifier. When
a classifier is fitted with respect to a given training dataset (the whole training dataset or
just a group of training subsets when cross-validation is employed), the best choice of T is
estimated by using a 10-fold cross-validation procedure. In other words, at each iteration
of this cross-validation, we perform the Kmeans quantizer with different values of T for
discretizing the features and, for each T , we compute the training risk and the validation
risk. We then compare the average training risk with the average validation risk and we
choose T such that the validation risk does not exceed the training risk by more than 1%.
An example of this procedure is given in Figure 3, left.

Box-constraint generation In order to illustrate the benefits of the box-constrained
minimax classifier δB

π? compared to the minimax classifier δB
π̄ and the discrete Bayes classifier

δB
π̂ , we consider a box-constraint Bβ centered in π̂, and such that, given β ∈ [0, 1],

Bβ =
{
π ∈ RK : ∀k ∈ Y, π̂k − ρβ ≤ πk ≤ π̂k + ρβ

}
, ρβ := β ‖π̂ − π̄‖∞. (19)

Our box-constrained probabilistic simplex is therefore Uβ = S ∩ Bβ. Thus, when β = 0,
B0 = {π̂}, U0 = {π̂} and π? = π̂. When β = 1, π̄ ∈ B1, hence π̄ ∈ U1 and π? = π̄. For the
next experiment, after having estimated the proportions π̂ and π̄ over the main dataset, we
chose β = 0.5 which results that B0.5 = {π ∈ R2 : 0.68 ≤ π1 ≤ 1, 0 ≤ π2 ≤ 0.32}. In other
words, we consider that the proportion of sick patients should not exceed 0.32%. Let us
note that here and in the following, the least favorable priors π̄ were estimated using our
box-constrained minimax algorithm when considering B = [0, 1]× [0, 1], so that U = S. The
minimax classifier is a particular case of the box-constraint minimax classifier.

Results We performed a 10-fold cross-validation and we applied our box-constrained
minimax classifier δB

π? when considering the box B0.5 described above. We compared δB
π? to

the Logistic Regression δLR
π̂ , the Random Forest δRF

π̂ , the discrete Bayes classifier δB
π̂ (10),

and the minimax classifier δB
π̄ . We applied δLR

π̂ and δRF
π̂ to both the original dataset and the

discretized dataset, in order to evaluate the impact of the discretization. We can observe
in Figure 2 that the performances associated to δLR

π̂ and δRF
π̂ are similar when considering

real or discretized features. And these performances are moreover similar to the discrete
Bayes classifier δB

π̂ . However, when regarding the class conditional-risks, the classifiers δLR
π̂ ,

δRF
π̂ and δB

π̂ are not satisfying when predicting accurately the patients who tend to develop
a CHD. To do so, it is rather preferable to consider our minimax classifier δB

π̄ , even if it
appears globally too pessimistic. In the case where the global risk of δB

π̄ is not acceptable, it
is therefore preferable to reduce the box-constraint area and consider the box-constrained
minimax classifier δB

π? , which is a trade-off between δB
π̂ and δB

π̄ . The box-constraint area has
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Figure 2: The boxplots (training versus test) illustrate the dispersion of the global risks of
misclassification. The barplots correspond to the average class-conditional risk
associated to each classifier.

an impact on the results and this aspect is discussed in the next paragraph. Let us note that,
for the training steps of this procedure, our algorithm computed π̄ = [0.52±0.01, 0.58±0.01]
and π? = [0.68± 0.001, 0.32± 0.001] such as V (π̄) = 0.33± 0.01 and V (π?) = 0.28± 0.01.
Finally, the results associated to the test steps presented in Figure 2 were computed when
considering each whole fold test set satisfying the class proportions π′ = π̂.

Changes in the priors of the test set In order to study the robustness of each classifier
when the class proportions π′ of the test set are uncertain, we uniformly generated 1,000
random priors π(s), s ∈ {1, . . . , 1000}, over the box-constrained simplex U0.5 using the
procedure (Reed, 1974). For each repetition of the cross-validation, we generated 1000 test
subsets, each one containing around 50 samples and satisfying one of the random priors π(s).
Each fitted classifier was then tested when considering all the 1000 random priors uniformly
dispersed over U0.5. In Figure 3, right, we observe that when the class proportions of the
test set changed uniformly over U0.5, the minimax classifier δB

π̄ was the most robust since
the most stable, but it was also the most pessimistic contrary to the other classifiers. The
box-constrained minimax classifier δB

π? appears here again as a trade-off between δB
π̄ and δB

π̂ .

Impact of the Box-constraint area In order to measure the impact of the box-constraint
area on δBπ? , we resized the radius ρβ of Bβ in (19) by changing the value of β from 0 to 1.
Let consider the function ψ : ∆→ R+ such that

ψ(δ) = max
k∈Y

R̂k(δ)−min
k∈Y

R̂k(δ), (20)

which aims at measuring how equalizer a given classifier δ ∈ ∆ is. In Figure 4, left, we
observe that when β increases from 0 to 1, V (π?) increases from V (π̂) to V (π̄). At the same
time, in Figure 4, right, when β increases from 0 to 1, ψ

(
δBπ?
)

decreases from ψ
(
δBπ̂
)

to
ψ
(
δBπ̄
)
. Hence, the larger the box-constraint area is, the more equalizer the classifier δBπ? is,

10
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Figure 3: Left. Risks r̂
(
π̂, δBπ̂

)
as a function of the number of centroids T . The dashed

curves show the standard-deviation around the mean. Right. Evaluation of the
robustness of each classifier when π′ = π(s) changes over U0.5. Here, r̂(π(s), δ)
corresponds to the 10-fold cross-validation average risk associated to the test set
satisfying the priors π(s) ∈ U0.5, s ∈ {1, . . . , 1000}.

but the more pessimistic δBπ? becomes, since V (π?) becomes much bigger than V (π̂). In the
case where δBπ? appears globally too pessimistic, it would be rather interesting to reduce the
box-constraint area in order to find a trade-off between decreasing the empirical risk V (π?)
close enough to V (π̂), and keeping an acceptable conditional risk of missing the individuals
who tend to develop a CHD.

Figure 4: Impact of the box-constraint area on δB
π? when β increases from 0 to 1 in (19),

after a 10-fold cross-validation procedure. Results are presented as mean± std.

6. Conclusion

This paper proposes a box-constrained minimax classifier which i) is robust to the imbalanced
or uncertain class proportions, ii) includes some bounds on the class proportions, iii) can take
into account any given loss function, and iv) is suitable for working on discrete/discretized
features. In future work, we propose to investigate the robustness of the classifier with
respect to the class-conditional probabilities p̂kt.

11
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Appendix A.

The procedure for computing our box-constrained minimax classifier δBπ? is summarized step
by step in Algorithm 1. In practice, we choose the sequence of steps (γn)n≥1 = 1/n which
satisfies (17).

Algorithm 1 Box-constrained minimax classifier

1: Input: (Yi, Xi)i∈I , K, N .
2: Compute π(1) = π̂
3: Compute the p̂kt’s as described in (9).
4: r? ← 0
5: π? ← π(1)

6: for n = 1 to N do
7: for k = 1 to K do
8: g

(n)
k ← R̂k

(
δB
π(n)

)
see (14)

9: end for
10: r(n) =

∑K
k=1 π

(n)
k g

(n)
k see (1)

11: if r(n) > r? then
12: r? ← r(n)

13: π? ← π(n)

14: end if
15: γn ← 1/n
16: ηn ← max{1, ‖g(n)‖2}
17: z(n) ← π(n) + γn g

(n)/ηn
18: π(n+1) ← PU

(
z(n)

)
19: end for
20: Output: r?, π? and δBπ? provided by (12) with π = π?.
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