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Abstract
Falling can have fatal consequences for the elderly people especially if the fallen person is unable to
call for help due to loss of consciousness or any other associated injury. Automatic fall detection
systems can assist in overcoming this issue through prompt fall alarms which then allow the
triggering of a third party response, and to minimize the fear of falling when living independently at
home. Vision-based fall detection systems detect human regions in the scene and use information
from these regions to train classifiers for fall recognition. However, the performance of these systems
lack generalization to unseen environments due to factors such as errors in the human detection
stage and the unavailability of large-scale fall datasets to learn robust features for fall recognition. In
this paper, we present a deep learning based framework towards automatic fall detection from RGB
images captured by a single camera. Our framework learns human skeleton and segmentation based
fall representations purely from synthetic data generated in a virtual environment. This de-identifies
personal information contained in the original images and preserves privacy which is highly desirable
in health informatics. Experiments on challenging real-world fall datasets show that our framework
performs successful transfer of fall recognition knowledge from synthetic to real-world data and
achieves high sensitivity and specificity scores showcasing its generalization capability for highly
accurate fall detection in unseen real-world environments.

1. Introduction

Falling on the ground is considered to be one of the most critical dangers for the elderly people
living alone at home which can cause serious physical injuries and restricts normal activities because
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of the fear of falling again Fleming and Brayne (2008). Automated fall detection systems can
produce prompt alerts in hazard situations. Furthermore, these systems allow automatic collection
and reporting of fall incidents which can be used to analyse the causes of the falls and thus improving
the quality of life of the elderly people living alone at home. In this context, wearable devices based
systems use sensors such as switches, accelerometers and gyroscopes (embedded in wrist bands,
garments, or walking sticks). These devices capture high velocities (which occur during the fall),
and provide alerts when abnormalities are detected in the sensor data. Although these devices are
low-cost, they require frequent recharging and therefore pose problems for older people or persons
with coginitive impairment. Vision-based fall detection systems provide a low cost solution to fall
detection using videos or images. These systems do not cause sensory side effects on the human
health and do not affect the normal routines of people Zhao et al. (2012). In a typical vision-based fall
detection approach, features are extracted from the visual data and fed to a machine learning classifier
for fall recognition. For instance, methods such as Mirmahboub et al. (2013); Huang et al. (2004)
extracted human shape information from camera images and used different classification models to
distinguish fall from other activities. The performance of these automatic systems depend on factors
including: i) the quality of human-region detection in the scene, ii) the type of information extracted
from the detected human-regions, and iv) the classifiers used to learn features for fall recognition.
Furthermore, the data used to train the classifiers plays a critical role in learning robust features that
can generalize to unseen environments. Due to the unavailability of large-scale public fall datasets,
most of the existing fall detectors are trained and evaluated using simulated environments only or
using restricted datasets (which cannot be shared publicly due to privacy concerns). Consequently, the
existing systems lack generalization capabilities for fall detection in unseen real-world environments
which is highly desirable for a commercial product in the health care industry.

In this paper, we explore ways to overcome the above mentioned challenges and improve human
fall recognition generalization to unseen real-world environments while preserving privacy of the
people. For this, we present a deep learning based framework for automatic fall detection using
human pose and segmentation information from color images captured by a video camera. In
summary, the main contributions of this paper are as follows:

1. We present HPES, a Human Pose Estimation and Segmentation module (Sec. 3.1), which
combines multiple CNN structures to generate human proposals in the form of human bounding
boxes, segmentation masks, and body joints estimates. We also present a novel method to
refine the generated proposals based on joint confidence scores and convex hull based heuristic
rules.

2. We present a human-pose based fall representation (Sec. 3.1.2) which is invariant to changes
in human physical appearances (person identity), backgrounds, lighting conditions, and person
spatial locations in the scene. This de-identifies personal information contained in the original
images and preserves privacy which is highly desirable in health informatics. Experiments
show that the proposed fall representation enables a deep CNN to learn highly robust features
which successfully generalize to unseen real-world environments for fall recognition.

3. We present FallNet (Sec. 3.2), an ensemble of multiple CNN structures which learn fall
representations based on human pose and segmentation information. Given a multi-modal
input data (in the form of human pose and segmentation masks), FallNet takes advantage
of both modality-specific and the complimentary information among the two modalities and
improves the quality of fall predictions compared to independent classifiers.
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4. We present Synthetic Human Fall Dataset, a large-scale dataset (Sec. 3.4) containing syntheti-
cally generated human pose and segmentation data rendered using real-world human motion
captures of fall and other events. Our dataset open up new possibilities for advancing human
pose based fall detection using purely synthetic data.

5. We perform an ablation study of our framework in terms of different variations of our fall
representation and present Human Fall Detection (HFD) models which learn highly robust
mappings between the input representations and their corresponding fall or no-fall labels.
Experiments show that our HFD models when trained with only synthetic data produced high
fall recognition accuracy on an unseen real-world fall dataset.

2. Related Work

Existing vision-based fall detection approaches focus on detecting human regions in the scene
through motion segmentation or background subtraction, and use the information from the detected
regions to train classifiers for fall recognition. For instance, the methods of Miaou et al. (2006);
Töreyin et al. (2005) used background subtraction to detect human bounding boxes and compared
the boxes against different thresholds in consecutive frames of the MultiCam fall dataset Auvinet
et al. (2010) to detect fall events. The methods of Mirmahboub et al. (2013) combined shape and
context information from the human bounding boxes and used Support Vector Machine (SVM) for
fall recognition. The method of Huang et al. (2004) used extreme learning machines with shape
features and achieved fast computation. Most of the above mentioned methods strongly rely on the
assumption that the change in the visual information between subsequent image frames is significant
to achieve appropriate motion segmentation. This restricts their application in situations where the
change in information between subsequent frames is not sufficient (e.g., if a person moves towards
the camera). To overcome this limitation, 3D vision based methods used information from multiple
cameras or depth sensors (such as Microsoft Kinect), and learned 3D features for fall recognition.
For instance, the method of Hung et al. (2013) used visual data from multiple cameras and produced
decisions through voting amongst different viewpoints. The methods of Gasparrini et al. (2014);
Mastorakis and Makris (2014) used Kinect depth maps to extract 3D silhouettes and 3D bounding
box based features for detecting falls. Although these multi-camera based systems produce more
accurate fall detection results compared to the single-camera based methods, the performance of
these methods are largely affected by hardware limitations. For instance, multiple camera based
methods require accurate synchronization between the individual cameras. On the other hand, depth
camera based methods are affected by sensor inherent noise, narrow fields of view and limited depth
sensing restrictions. Furthermore, many public places such as elderly care centres and health-care
facilities restrict the use of depth-based camera systems due to health related concerns. Consequently,
accurate fall detection from monocular images is considered to be highly relevant application domain
in health care industry.

In this paper, we present a deep learning based framework which uses RGB images to detect a fall
in the scene. Compared to the existing methods, our work differs in several ways. First, our frame-
work integrates multiple CNN structures for human detection, pose estimation, and segmentation. It
uses a refinement method to correct pose and segmentation errors and generates high quality human
proposals especially for scenes with multiple people or scenes with partial occlusions, compared to
the methods Miaou et al. (2006); Töreyin et al. (2005) which use background-foreground subtraction
techniques for human region detection and produce low true positives in these challenging situations.
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Figure 1: Overview of the proposed framework. Given an RGB image as input, our framework uses
a Human Pose estimation and Segmentation (HPES) module (A) and generates human
proposals with joint locations and segmentation masks. The proposals are refined through
joints filtering (C) and segmentation correction (G). The refined proposals fed into the
proposed FallNet (E), a CNN model with modality-specific layers, and a multi-modal
embedding layer G. It learns high-level feature embeddings (from the input pose and
segmentation data) to distinguish between fall and no-fall poses.

Second, we using human-skeleton and segmentation based visual representations for deep feature
learning. Our visual representations preserve human privacy and they are invariant to appearance
variations and spatial translations of people in the scene. This enables our framework to successfully
generalize to unseen real-world environments compared to the methods (e.g., Mirmahboub et al.
(2013); Miaou et al. (2006)) which learn fall recognition using appearance data and suffer from poor
generalization in the presence of large changes in appearance characteristics.

3. The Proposed Framework

Fig. 1 shows the overall architecture of our framework which has three main components. i) Human
Pose Estimation and Segmentation (HPES) module, which uses multiple CNN structures to generate
human proposals in the form of body joint estimates and segmentation masks in the scene. ii)
Visual fall representation generation module, which encodes human pose information in the form
of a skeleton representation and a corresponding segmentation mask. iii) FallNet, a CNN model
which uses the skeleton and segmentation based visual representations and learns high-level feature
embeddings for fall recognition. In the following, we describe in detail the individual components of
the proposed framework.
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Figure 2: Overview of the proposed Human Pose Estimation and Segmentation (HPES) module.
It is composed of two main models. Model 1 starts with a Region Proposal Network
to generate human-specific proposals, which are fed into fully connected layers fcbbox
and fccls to produce human-centered bounding boxes and their confidence scores. The
proposals are also fed into a segmentation branch consisting of fully convolutional layers
Smask and Skps, which estimate human segmentation masks and joint coordinates. Model
2 uses an independent human detector to generate human proposals, which are spatially
corrected through a Spatial Transformation Network (STN), and finally fed into a Stacked
Hourglass Network to produce joint estimates.

3.1. The Proposed Human Pose Estimation and Segmentation (HPES) Module (Fig. 1-A)

Our HPES module is composed of two models termed Model 1 and Model 2 as shown in Fig. 1-A.
These models generate multiple human proposals in the scene which are then refined to correct errors
of the individual models.

3.1.1. MODEL 1 (FIG. 2-A) AND MODEL 2 (FIG. 2-B)

Our Model 1 uses the CNN model of He et al. (2017) to generate human-specific region proposals
as shown in Fig. 2-A. These proposals are then fed into a classification branch consisting of fully
connected layers (fbbox, fcls) which estimate the bounding box coordinates and confidence scores
of the input proposals. The proposals are also fed into a segmentation branch consisting of fully
convolutional layers (Smask, Skps) which predicts human-specific segmentation masks and joint
locations. The output of Model 1 consists of human segmentation masks, joint locations, and their
corresponding confidence scores. Our Model 2 uses the detector of Liu et al. (2016) to generate
human-specific bounding boxes which are then fed into a stacked hourglass network Newell et al.
(2016) based pose estimator which produces joint coordinates of the corresponding input proposals
as shown in Fig. 2-B. It also uses a Spatial Transformation Network to select dominant proposals for
pose estimation. The output of Model 2 consists of human-specific bounding boxes, joint estimates,
and their corresponding confidence scores.
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3.1.2. THE PROPOSED FALL VISUAL REPRESENTATIONS (FIG. 1-B)

Here, we build visual representations from the body joints estimates and human segmentation masks.
We considered two visual representations as shown in Fig.1-B. A binary skeleton, where we construct
a binary image by drawing the joint estimates and bones connecting the joints for a target pose, and a
segmentation mask representing the silhouette information of the target pose.

3.1.3. THE PROPOSED POSE REFINEMENT (FIG. 1-C AND FIG. 1-G)

Human detectors inevitably make errors in joint estimates and pixel-wise segmentation predictions,
which in turn produce incorrect skeletons and segmentation information. To overcome these chal-
lenges, we present a pose refinement method which eliminates pose redundancies and reject pose
proposals with low-confidence joints and the proposals with joints less than the minimum joints
threshold (δkps = 7). Fig. 1-C illustrates our pose refinement method. Let us denote poses P hi and
P h+1
i generated by models h and h+1. The pose Pi has m joints denoted by {[k1i , c1i ], ..., [kmi , cmi ]},

where kji and cji denote the jth location and confidence score of the joints respectively. We compare
the poses P hi and P h+1

i by joint types, and reject a joint in proposal P hi if its score ci is less than
the score of its corresponding joint type in P h+1

i . We iteratively process all the joints in P hi and
reject the proposal P hi if the number of filtered joints in P hi is less than those in P h+1

i . Similar
to joint estimation errors, pixel-wise segmentations produced by Model 1 (Fig. 2-A) are prone to
errors due to occlusions and variations in appearance characteristics. This can lead to incorrect
pose encodings for fall recognition. To corrects errors in segmentation predictions, we compare the
segmentation mask of a proposal with the convex hull estimation of its corresponding joints data
and reject the segmentation if the intersection area between the segmentation and the convex hull is
less than a threshold. Subsequently, we generate a new segmentation using the joints data (through
image dilation and binary thresholding) as shown in Fig. 1-G. The refined joints and segmentation
proposals are then used to build the proposed visual fall representations as shown in Fig. 1-B.

3.2. The Proposed FallNet (Fig. 1-E)

FallNet consists of two sub-modules: a modality-specific module Fφ, φ ∈ {Q,S}, and an embedding
module G as illustrated in Fig. 1-E. The terms Q and S denote the skeleton and segmentation
based visual representations, respectively. The modality-specific module Fφ has a CNN structure
similar to ResNet18 He et al. (2016). It is composed of bottle-neck convolutions (with 3 × 3 and
1× 1 sized filters) with Batch Normalization (BN) and Rectified Linear Units (ReLUs). It produces
512× 7× 7−dimensions feature maps which are squeezed to 512−dimensional vectors through a
global average pooling operation. There is one Fφ module for each visual representation. Output
feature vectors from the modality-specific modules are then fed into the embedding module G which
combines the multi-modal feature inputs through summation and uses a Softmax operation on the
combined feature vectors and produces probabilistic distributions with respect to the target classes
(fall and no-fall). Let ρi denote the outputs of G for the ith image. We define the loss over K images
as:

Loss =
∑
i∈K
Lcls(ρi, ρ∗i ), (1)
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where ρ∗i represent the ground-truths. The term Lcls is a Cross Entropy Loss defined as:

Lcls(x, C) = −
NC∑
C=1

Yx,C log(px,C), (2)

where Y is a binary indicator if class label C is the correct classification for observation x, and p is
the predicted probability of observation x of class C.

3.3. Training and Implementation

We initialized the weights of the networks of the HPES module with the weights pre-trained on
MS COCO Keypoints dataset Lin et al. (2014), which contains 64K images including 260K person
instances and 150K instances with key-point annotations. For FallNet, we initialized the weights
of the convolutional layers with the weights pre-trained on ImageNet and initialized the weights of
the embedding layers with zero-mean Gaussian distributions (standard deviations were set to 0.01
and biases were set to 0). We trained the convolutional and the embedding layers in an end-to-end
manner for 150 epochs. The starting learning rate was set to 0.01 and divided by 10 at 50% and 75%
of the total number of epochs. The parameter decay was set to 0.0005 on the weights and biases.
Our implementation is based on the framework of Torch library Paszke et al. (2017). Training was
performed using ADAM optimizer and an Nvidia Tesla K80 GPU.

3.4. The proposed Synthetic Human Fall Dataset

We present a synthetic human fall dataset which contains around 767K samples with body pose and
their corresponding segmentation ground truths, categorized into fall and no-fall classes. Specifically,
there are around 480K poses representing fall and 287K poses for no-fall. For data generation, we
first used the MakeHuman tool to generate 3D humanoid models with associated pose skeletons.
Next, we used Blender to create a rich library of scene templates containing humanoid meshes with
the required cameras and lights configurations. Finally, we simulated the humanoid models using
the MoCap data from CMC (2003) (which provides motion capture pose data of human individuals
performing everyday life activities in an indoor environment). For each MoCap motion sequence,
we generated outputs in the form of i) segmentation masks, ii) body joint locations, and iii) a label
representing the pose as “fall” or “no-fall” for each pose in the motion sequence. Fig. 3-left shows
some sample frames from the proposed Synthetic Human Fall dataset.

4. Experiments

To evaluate the generalization capability of our framework for fall detection in unseen real-world
environments, we trained framework using the proposed synthetic dataset and tested framework
on the public MultiCam fall dataset of Auvinet et al. (2010). The MultiCam dataset consists of
24 different scenarios where each scenario is comprised of a video sequence of people performing
a number of activities. Each scenario is recorded using 8 different cameras installed at different
locations in an indoor environment. For all scenarios, the video data is annotated for 9 different
activities (such as walking, falling, lying on the ground, crouching, moving up/down, sitting, lying
on a sofa, and moving horizontally). The dataset is challenging for single camera based fall detection
because, different camera viewpoints produce occlusions and significant variations in the spatial
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Table 1: Ablation study of the proposed framework in terms of different visual representations for
fall recognition on the MultiCam fall dataset Auvinet et al. (2010) and the Le2i fall dataset
Charfi et al. (2013). Our Human Fall Detection Models were trained only on the synthetic
data and evaluated on the test datasets.

Human Fall MultiCam fall dataset Le2i fall database
Detection models F1Score Precision Recall F1Score Precision Recall

Skeleton 0.8677 0.8685 0.8671 0.8517 0.8668 0.8529
Segmentation 0.8071 0.8448 0.7964 0.8529 0.8535 0.8529

Multi-modal (MM) 0.8708 0.8703 0.8715 0.9244 0.9245 0.9244
MM (without pose refinement) 0.8384 0.8380 0.8441 0.9034 0.9031 0.9032

Table 2: Ablation study of our framework in terms of model generalization when trained on one
dataset and tested on a different dataset for different input data modalities.

Training data Modality
Testing data

MultiCam fall dataset Le2i fall database
F1Score Precision Recall F1Score Precision Recall

MultiCam
RGB 0.9860 0.9860 0.9861 0.7351 0.7604 0.7405

Multi-modal 0.9627 0.9627 0.9628 0.8449 0.8512 0.8456

Synthetic
RGB 0.8631 0.8671 0.8699 0.6421 0.7874 0.6775

Multi-modal 0.8708 0.8703 0.8715 0.9244 0.9245 0.9244

locations, scale, and orientations of the fall events. We also used the the Le2i fall dataset Charfi
et al. (2013) for our evaluations. The Le2i dataset contains 221 videos of different actors performing
fall actions and various other normal activities in different environmets. The dataset is challenging
due to variable lighting conditions and occlusions. To quantify the recognition performance of our
framework, we computed the weighted F1 score, precision and recall scores. We used these measures
as they are not biased by imbalanced class distributions which make them suitable for the test datasets
where the number of fall samples are considerably small compared to the number of non-fall samples.

4.1. Results

Here, we evaluated the generalization capability of our framework for fall detection in unseen
real-world environments. For this, we trained our models using only the proposed synthetic data
and evaluated the models on the test datasets. Table 1 shows the results of these experiments, where
we present different variants of our framework termed “Human Fall Detection (HFD) models”,
trained using different visual representations. The results show that our framework achieved high
precision, recall, and F1 scores which demonstrate the generalization capability of our framework
in successfully transferring fall recognition knowledge learnt purely from synthetic data to unseen
real-world environments. Fig. 3-right shows qualitative results on sample images from the MultiCam
fall dataset Auvinet et al. (2010). From the results, we observe that our fall detector is robust to
partial occlusions, and variations in the spatial locations, scale, and orientations of falls in the scene.
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Figure 3: Left: Sample frames from our Synthetic Human Fall dataset with a variety of poses and
viewpoints. Right: Qualitative results of our fall detection on the MultiCam fall dataset.

We attribute this successful generalization of our fall detector from synthetic-to-real data to our three
key contributions as described in the following sub-sections.

4.1.1. IMPROVED HUMAN PROPOSAL GENERATION

Our framework utilizes the domain knowledge of human pose estimation learnt from the large
scale MS COCO database and produces multiple human proposals which are refined by our pose
refinement method. Consequently, our HPES module produces highly accurate and reliable human
proposals compared to motion-segmentation based proposals Wang et al. (2016) which suffer errors
if there is no significant change between subsequent frames of the video sequence. Table 1 shows
the improvements in fall recognition precision and recall scores obtained using the proposed pose
refinement method.
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4.1.2. MULTI-MODAL CNN ARCHITECTURE

Our FallNet combines modality-specific convolutions and multi-modal embedding layers and takes
advantage of both the modality-specific and complimentary information in the body pose and
segmentation based visual representations for discriminating fall and no-fall poses. This enables
our model to learn features which are more robust compared to the methods such as Hung et al.
(2013) which only utilize modality-specific feature learning for fall recognition. Table 1 shows the
improvements in fall recognition precision and recall scores obtained using the proposed multi-modal
architecture compared to independent data modalities.

4.1.3. INVARIANCE TO PHYSICAL APPEARANCES AND BACKGROUND

Here we further evaluate the generalization capability of our fall detector by training the model
on one dataset and testing the model on a different dataset. Table 2 shows the results of these
experiments. From Table 2, we see that an RGB-based detector (using color information of human
proposals for fall recognition), when trained on the MultiCam dataset Auvinet et al. (2010) produced
good fall recognition accuracy on the MultiCam test set but did not generalize well on the Le2i
dataset Charfi et al. (2013). This is due to the differences in the physical appearance of human actors
and different backgrounds of Le2i dataset Charfi et al. (2013) compared to the MultiCam dataset
Auvinet et al. (2010). On the other hand, our multi-modal skeleton-segmentation based representation
produced competitive fall recognition performance when trained and tested on the MultiCam fall
dataset Auvinet et al. (2010). Also, our model produced improvements of at least 11% in the average
weighted f1 scores on the Le2i dataset demonstrating its generalization capability across multiple
real-world datasets. Similarly, an RGB-based model trained on our synthetic dataset produced inferior
generalization across the MultiCam and Le2i datasets compared to our skeleton-segmentation based
model. These improvements are attributed to our human pose-based fall representation which is
invariant to appearance characteristics, thus making our framework robust to different human actors
and unknown background in real-world scenes. On the contrary RGB-based fall detector fails to
generalize to scenes which have large variations in the appearance characteristics of people and
backgrounds.

5. Conclusion and Future Work

In this paper we present a deep learning framework towards automatic human fall detection from
images captured by a single camera. Our framework produces human proposals with body joint
locations and segmentation information. These proposals are refined and transformed into multi-
modal visual representations for input to FallNet, a CNN model which uses modality-specific and
multi-modal layers and learns highly discriminative feature embeddings for fall recognition. We
also present a human fall dataset which consists of human pose and segmentation data synthetically
generated under different camera viewpoints. Experiments on challenging public fall datasets show
that our framework trained using only synthetically generated pose data successfully generalizes to
unseen environments and achieves high precision and recall scores for fall recognition. Trained on
pure synthetic data, our framework is highly robust to variations in appearance characteristics, scale
changes, and different camera viewpoints. This opens up new possibilities for advancing privacy
preserving human fall detection which is highly desirable in health informatics. In future, we plan
to expand our framework for the recognition of other activities to enhance its potential for general
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human activity recognition. We also plan to reduce the computational burden of our fall detector
through parameter-pruning and memory efficient CNN structures for low-powered GPU devices.
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