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Abstract
Medical concept normalization aims to map a variable length message such as, ‘unable to sleep’ to
an entry in a target medical lexicon, such as ‘Insomnia’. Current approaches formulate medical
concept normalization as a supervised text classification problem. This formulation has several
drawbacks. First, creating training data requires manually mapping medical concept mentions to
their corresponding entries in a target lexicon. Second, these models fail to map a mention to the
target concepts which were not encountered during the training phase. Lastly, these models have to
be retrained from scratch whenever new concepts are added to the target lexicon. In this work we
propose a method which overcomes these limitations. We first use various text and graph embedding
methods to encode medical concepts into an embedding space. We then train a model which
transforms concept mentions into vectors in this target embedding space. Finally, we use cosine
similarity to find the nearest medical concept to a given input medical concept mention. Our model
scales to millions of target concepts and trivially accommodates growing target lexicon size without
incurring significant computational cost. Experimental results show that our model outperforms the
previous state-of-the-art by 4.2% and 6.3% classification accuracy across two benchmark datasets.
We also present a variety of studies to evaluate the robustness of our model under different training
conditions.

1. Background

Social media is being increasingly used for patient care, patient support (Attai et al., 2015), pharma-
covigilance (Nikfarjam et al., 2015), treatment (Hawn, 2009), enhancement of professional networks
(Ventola, 2014), public health monitoring (Paul et al., 2016) and medical education (Cheston et al.,
2013). Medical social media is the subset of social media where the interests of the group is dedicated
to healthcare. Medical social media spans generic channels such as web logs, chat rooms, Twitter,
Facebook, YouTube, and LinkedIn, as well as specific portals which are restricted to healthcare issues
such as Mayo Clinic Social Media Network, patient.info and caregiving.com.

Identifying the medical concepts from medical social media posts is of great value to several
organizations. For instance, pharmaceutical firms could use them to identify the adverse events
associated with a particular drug (pharmacovigilance). Hospitals and clinics could use them to
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identify what are patient groups discussing and offer timely advice. Governments could use it to
study and improve population health.

The authors of medical social media are usually multi-lingual, multi-cultural and have varying
expertise levels and backgrounds. It is therefore difficult for them to adhere to a common standard
medical terminology. The variability in medical language, excessive usage of acronyms, jargon, and
spell variations allows one to express the same concept in a variety of different ways. These factors
make identification and disambiguation of medical concepts a very hard task. Embeddings trained
on medical text (Moen and Ananiadou, 2013; Zhu et al., 2018; Alsentzer et al., 2019) have been
proved to be useful for such tasks. The task of Medical Concept Normalization (MCN) aims to map
a variable length message, such as ‘it feels like ma head is bursting’ to a medical concept in a target
lexicon, such as ‘Headache’1.

Limsopatham and Collier (2015) proposed the use of phrase based machine translation model
for this task. They trained a model which translates a medical concept mention (informal text) to its
corresponding medical term (formal text). Limsopatham and Collier (2016) were amongst the first to
set MCN as a supervised text classification task. They have trained multiple deep neural models using
pretrained word embeddings along with Convolutional Neural Networks(CNN) and Recurrent Neural
Networks (RNN). Tutubalina et al. (2018) proposed a model which uses attention mechanism with
Recurrent Neural Networks. The aforementioned models use word-level neural network methods,
which are efficient at learning informal expression features but fail to learn character structure features
inside words and ignore the Out-of-vocabulary (OOV) words. In order to overcome this problem,
Niu et al. (2019) present a multi-task character-level attentional network model for MCN.

Recently, Miftahutdinov and Tutubalina (2019) proposed three models for this task. The first
model uses Gated Recurrent Units (GRU) and Long Short Term Memory (LSTM) with an attention
mechanism and a hyperbolic tangent activation function on top of pretrained word embeddings to
obtain vector representation of concept mentions. The second model uses a bidirectional layer with
attention on top of deep contextualized word representations ELMo (Peters et al., 2018) and the third
model uses the multilayer bidirectional transformer encoder BERT (Devlin et al., 2018) to extract
the vector representation of concept mentions. Finally, they train a softmax based classifier using
these representations. They also propose a variant for each of the aforementioned models where they
concatenate these representations with semantic similarity features based on prior knowledge from
the UMLS Metathesaurus (Bodenreider, 2004). Out of the three models, the BERT based model is
the current state-of-the-art for MCN and it achieves the highest classification accuracy of 79.83%
and 77.52% across two benchmark datasets.

Previous approaches such as (Limsopatham and Collier, 2016; Tutubalina et al., 2018; Mif-
tahutdinov and Tutubalina, 2019) formulate MCN as a supervised text classification problem. This
formulation has several drawbacks. First, creating training data requires manually mapping medical
concept mentions to entries in a target lexicon such as SNOMED-CT2 which is effort intensive.
Second, these models fail to map a mention to target concepts which were not encountered during the
training phase. The number of medical concepts increase with advancements in human knowledge.
Figure 1 depicts the number of unique medical concepts in SNOMED-CT from 2002 to 2019. Current
models have to be retrained from scratch whenever new concepts are added to the target lexicon,
which is computationally expensive. In this work, we build an MCN model which overcomes these

1. We use italics to denote mentions and typewriter to denote medical concept
2. SNOMED-CT is an acronym for Systematized Nomenclature of Medicine – Clinical Terms. The Jan 2019 version of

International SNOMED-CT contains more than 450,000 unique medical concepts
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limitations. Our model scales to millions of target concepts and trivially accommodates growing
target lexicon size without incurring significant computational cost. Experimental results show that
our models outperforms the previous state-of-the-art on two benchmark datasets. We also present a
variety of studies to evaluate the robustness of our model under different training conditions. We
would release the code and the trained models to facilitate research in this direction.

Figure 1: Number of unique SNOMED-CT Concepts across the last 18 years. A base-10 logarithmic
scale is used for the Y-axis. Findings, Disorders and Procedures are the major concept
types in SNOMED-CT. Color viewing advised.

2. Method

Our method is divided into two stages. In the first stage, we encode all SNOMED-CT medical
concepts such as Headache, SCTID: 25064002 into fixed size embeddings, such that similar
concepts are closer in the embedding space. In the second stage, we train a model which transforms a
given input concept mention such as it feels like ma head is bursting into an embedding in the above
mentioned space. Finally, we use cosine similarity to find the nearest medical concept to a given
input medical concept mention.

We now describe various methods to encode target concepts into embeddings. Our aim is to map
medical concepts to embeddings such that related concepts are closer in the target embedding space.
The idea of mapping the target labels to vectors has been previously used to solve text and image
classification problems (Akata et al., 2013; Lin et al., 2014; Wang et al., 2018; Akata et al., 2015).
However, our work is the first to explore target embeddings for MCN. For the extent of this work, we
assume that the target lexicon is SNOMED-CT. SNOMED-CT contains medical concepts indexed
by a unique concept ID (such as 42539006). Each medical concept is associated with a concept
description (such as Parkinson disease). We work with two distinct views of SNOMED-
CT. First, SNOMED-CT as a collection of strings representing the medical concepts and second,
SNOMED-CT as a graph where each vertex is a unique medical concept and related concepts are
connected through labeled edges. Figure 2 depicts a sample graph view of SNOMED-CT concepts.
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Figure 2: A sample subgraph of the SNOMED-CT Depicting the connected Medical Concepts

Sections 2.1 and 2.2 propose different methods to encode SNOMED-CT concepts by exploiting
the lexical and semantic relationships between them.

2.1. Text Embedding Methods

AvgEmb method encodes text by averaging the pre-trained word embeddings of all the words present
in it. For the extent of this work, we use the pretrained embeddings released by Mikolov et al. (2013).

BERT uses bidirectional transformer based neural model to solve the task of masked language
modeling (Devlin et al., 2018). It generates low dimensional contextualized token embeddings which
were shown to be useful for several NLP tasks such as text classification, sentiment analysis, etc.
BERT model uses sub-word level information to generate token embeddings, thereby circumventing
the problem of OOV words.

Universal Sentence Encoders (USE) use transformer based encoders to encode sentences into
embedding vectors (Cer et al., 2018). The encoder uses attention to compute context-aware word
embeddings which are then aggregated to obtain the sentence embedding. The sentence embedding
is fed to several downstream tasks such as natural language inference and sentence classification.
The encoder is trained to foster transfer learning to other NLP tasks.

Embeddings from Language Models (ELMo) uses bi-directional LSTM based encoders to encode
a sentence into a fixed size representation (Peters et al., 2018). The model is trained to obtain context
aware word embeddings by working on sequence of characters thereby avoiding the problem of OOV
words at inference stage.

We obtain embeddings for each SNOMED-CT concept by encoding the corresponding concept
description using the pretrained AvgEmb, BERT, USE and ELMo models.
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2.2. Graph Embedding Methods

Graph embedding methods embed vertices of a graph such that the similarity in the original graph is
approximated by the similarity in the embedding space. The similarities between any two vertices
is defined based on whether or not the vertices are connected, share neighbours or have similar
structural roles.

DeepWalk (Perozzi et al., 2014) uses random walks to generate sequences of vertices (vertex
sentences) which are subsequently fed to a skip-gram model to learn the embeddings corresponding
to the vertices.

Node2Vec (Grover and Leskovec, 2016) uses biased random walks to optimize a neighborhood
preserving objective function such that the nodes which are highly interconnected and the nodes with
similar roles in the graph are closer in the embedding space.

LINE (Tang et al., 2015) tries to directly optimize the vertex embeddings based on one hop and two
hop random walk probabilities. Their objective function is designed to preserve first and second
order proximity thereby preserving the local and global network structure respectively.

HARP (Chen et al., 2018) proposes a meta-strategy for embedding vertices of a graph such that
they preserve the higher-order structural features. They use graph coarsening to create a hierarchy
of smaller graphs such that the smaller graphs preserve the global structure of original graph. The
vertex embeddings of the coarsest graph are then obtained using DeepWalk, Node2Vec or LINE.
They then iteratively prolong and refine the vertex embeddings from the coarsest to the finest graph
and finally obtain the vertex embeddings corresponding to the finest (original) graph.

A comprehensive survey of various graph embedding approaches, their performance analysis,
time and space complexities are detailed by Goyal and Ferrara (2018). We formulate SNOMED-CT
as a directed graph as shown in Figure 2, where vertices are the concepts and relationships between
the concepts form the edges. We then train DeepWalk, Node2Vec, LINE and HARP models to obtain
the concept embeddings. To the best of our knowledge, our work is the first to explore SNOMED-CT
graph embeddings for MCN.

2.3. Transforming Concept Mentions into Embeddings

For each mention, we first obtain the mention representation mi by passing it through the pre-trained
RoBERTa model (Liu et al., 2019), which is a 12-layered transformer encoder. We transform this
representation into an embedding using Equations 1 and 2 where Ww, bw,Wr and br are trainable
parameters. In order to avoid overfitting, we use dropout layer (Srivastava et al., 2014) to modify mi

and ui.
ui = tanh(Wwmi + bw) (1)

ri = Wrui + br (2)

We train the model parameters using stochastic optimizer AdamW (Loshchilov and Hutter, 2018)
which aims to minimize the cosine embedding loss shown in Equation 3 between the projected
representation ri and the corresponding target embedding ti. We keep the target embeddings of the
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concepts fixed throughout the training.

loss = 1− Cosine Similarity(ri, ti) (3)

3. Datasets

CADEC: CSIRO Adverse Drug Event Corpus (CADEC) (Karimi et al., 2015) is one of the first
publicly available datasets for MCN. It contains medical forum posts sourced from AskAPatient3

which describe adverse drug events resulting from the usage of Diclofenac and Lipitor. These
posts are largely written in colloquial language and often deviate from formal English grammar and
punctuation rules. In this dataset, human annotators have marked the candidate medical concept
mentions, such as nt able 2 sleep 2nite. Subsequently, each mention was manually mapped to a
medical concept in the SNOMED-CT lexicon. Overall, it contains 6754 concept mentions which
are mapped to 1029 SNOMED-CT concepts. Limsopatham and Collier (2016) randomly split this
dataset into five folds and report the classification accuracy using five fold cross validation. However,
Tutubalina et al. (2018); Miftahutdinov and Tutubalina (2019) discover that these folds contain nearly
66% redundant samples which causes high overlap between training and testing split, which in turn
results in highly optimistic classification accuracy. In order to avoid this, Tutubalina et al. (2018)
create custom folds without any overlap. These folds are made publicly available4.

PsyTAR: Psychiatric Treatment Adverse Reactions (PsyTAR) corpus (Zolnoori et al., 2019) is
another publicly available dataset for MCN which contains 887 posts sourced from AskAPatient
about psychiatric medications: Zoloft, Lexapro, Effexor and Cymbalta. In this dataset, 6556 concept
mentions were extracted from these posts and were manually mapped to 618 SNOMED-CT codes.
Miftahutdinov and Tutubalina (2019) discovered that this dataset also contains about 56% redundant
examples and therefore random folds create a high overlap between train and test splits. In order to
overcome this, they create custom folds with minimal overlap. These folds are also made publicly
available5.

SMM4H 2017: This dataset is part of a shared task, Social Media Mining for Health (SMM4H)
which was organized by Sarker et al. (2018). It consists of mappings between user generated medical
phrases extracted from Tweets and Medical Dictionary for Regulatory Activities (MedDRA) concepts.
We do not use this dataset in this work as we restrict our attention to SNOMED-CT target concepts
only.

SNOMED-CT Synonyms: The SNOMED-CT lexicon contains synonyms corresponding to each
medical concept. We exploit this resource to generate labeled examples for MCN by treating each
synonym as a medical concept mention. Table 1 depicts few example medical concepts and their
synonyms.

3. https://www.askapatient.com
4. https://yadi.sk/d/GZoWm1wBxzyW_w
5. https://doi.org/10.5281/zenodo.3236318
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Medical Concept
ID

Concept Description SNOMED-CT Synonyms

3424008 Tachycardia rapid heart rate, increased heart
rate

25064002 Pain in head headache, head pain, cephalalgia,
cephalgia, cephalodynia

68962001 Myalgia muscle pain, muscle ache, myo-
dynia, myosalgia, myoneuralgia

81680005 Cervicodynia neck pain, painful neck, cervical-
gia

18963009 Emotionally Labile labile in mood, mood swing, vari-
able mood, changeable mood, un-
stable mood, labile mood

Table 1: SNOMED-CT Medical Concepts and their Synonyms

4. Experimental Details

For the extent of this work, we use the custom folds released by Tutubalina et al. (2018) (for CADEC
corpus) and Miftahutdinov and Tutubalina (2019) (for PsyTAR corpus). We augment each train
fold with labeled examples obtained from SNOMED-CT Synonyms dataset described in Section
3. We compute the classification accuracy for each of the five test folds and finally report the mean
classification accuracy across all folds.

In order to obtain the optimal values for hyperparameters, we use 20% of training examples of
each fold as validation set. We perform a random search over the hyperparameter space and choose
the configuration which results in minimum validation loss. We also conduct experiments by keeping
the weights of the pre-trained RoBERTa model fixed. We noticed that, this adversely affects the
performance of our model.

5. Results

Table 2 details the comparative performance of our approach all the models proposed by the previous
state-of-the-art (Miftahutdinov and Tutubalina, 2019) across CADEC and PsyTAR datasets. We
observe almost all our models outperform the best models of Miftahutdinov and Tutubalina (2019).
The highest performance of 83.18% and 82.42% was achieved by using graph base embeddings
Node2Vec and LINE respectively. The previous state-of-the-art is a BERT based model which
achieves a classification accuracy of 79.83%, 77.52% across CADEC and PsyTAR respectively. In
comparison to this, our model demonstrates an improvement of 4.2%, 6.3% across these datasets. We
observe that, the performance of graph embedding based methods: DeepWalk, Node2Vec, LINE and
HARP is superior to that of text embedding based methods. We also notice that Universal Sentence
Encoder (USE) based model consistently performs better as compared to other text embedding based
methods.
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Method CADEC PsyTAR

GRU + Attention 66.56 65.98
GRU + Attention with Semantic features 70.05 68.59

ELMO + GRU + Attention 71.68 68.34
ELMO + GRU + Attention with semantic features 74.70 70.05

BERT 79.83 77.52
BERT with Semantic Features 79.25 77.33

RoBERTa with AvgEmb target embedding 79.34 79.76
RoBERTa with ELMo target embedding 80.94 80.36
RoBERTa with USE target embedding 81.62 81.16
RoBERTa with BERT target embedding 80.16 79.66
RoBERTa with Deepwalk target embedding 82.90 81.36
RoBERTa with Node2Vec target embedding 83.18 82.16
RoBERTa with LINE target embedding 82.44 82.42
RoBERTa with HARP target embedding 82.42 81.82

Table 2: The performance of the proposed approach and the state-of-the-art methods in terms of
classification accuracy. The first six rows depict the performance of various approaches
proposed by Miftahutdinov and Tutubalina (2019)

6. Analysis and Discussion

6.1. Failure Analysis

We discover that our model based on USE target embeddings is good at mapping mentions which
have a lexical overlap with the target concept description. For instance, mapping stomach discomfort
to Stomach ache. We observed that the model performance decreases when mapping mentions
which do not contain any medical words. For instance, mapping had me dodging parked cars like i
’m keanu reeves to hallucinations. We also notice that our model wrongly maps mentions to
the medical concepts whose embeddings are closer to the target embedding.

6.2. Semantic Similarity between Concept Mentions and Medical Concepts

Our model projects the concept mentions and the medical concepts to a common embedding space.
As illustrated in Figure 3 these embeddings can be trivially used to visualize the semantic similarity
between concept mentions and medical concepts.

6.3. Model performance when trained on SNOMED-CT Synonyms

In this study we wish to discover how well our model performs in mapping phrases to medical
concepts when the human labeled mappings (such as not able to sleep 2nite and Insomnia) are
not present in the training set. We therefore conduct experiments, where we train our model using
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Figure 3: Heatmap depicting the strength of association between concept mentions and medical
concept embeddings using USE based target embeddings.

Method CADEC PsyTAR

RoBERTa with LINE 59.2 56.0
RoBERTa with Node2Vec 62.9 52.8
RoBERTa with Deepwalk 63.2 53.4
RoBERTa with HARP 64.8 54.6
RoBERTa with USE 58.8 58.4
RoBERTa with BERT 47.5 39.9
RoBERTa with ELMO 53.8 46.0
RoBERTa with AvgEmb 58.3 53.0

Table 3: The performance of all proposed models across CADEC and PsyTAR datasets when trained
on SNOMED-CT synonyms dataset.
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SNOMED-CT Synonyms only and evaluate the model on CADEC and PsyTAR datasets. Table
3 demonstrates the performance of our approach across these datasets. We find that our model
based on HARP embeddings and USE embeddings achieve a classification accuracy of 64.8%
and 58.4% on these datasets. We also observe that the classification accuracy in case of CADEC
dataset is comparable to the GRU + Attention based model proposed by the current state-of-the-art
(Miftahutdinov and Tutubalina, 2019) (refer Table 2).

6.4. Model performance on Medical Concepts Not Encountered during Training

Method CADEC PsyTAR

RoBERTa with LINE 13.23 02.27
RoBERTa with Node2Vec 73.52 28.88
RoBERTa with Deepwalk 75.00 23.40
RoBERTa with HARP 73.52 27.65
RoBERTa with USE 39.70 57.44
RoBERTa with BERT 20.58 29.78
RoBERTa with ELMO 55.88 55.32
RoBERTa with AvgEmb 26.47 42.55

Table 4: The Recall at Rank 10 of all proposed models across CADEC and PsyTAR datasets. The
target labels were not encountered during training phase.

In this study we wish to discover how well our model performs in mapping phrases to medical
concepts which were not present in the training set. We create two groups of mutually exclusive
medical concepts. We train our model on the samples whose target concepts are present in the first
group and evaluate it on examples whose target concept belong to the second group. As expected,
we observed that this adversely affects the performance of our models. However, we noticed that our
models are able to fetch the correct target concept amongst the top ten predictions. Table 4 shows
the performance (Recall at rank 10) of the proposed models. We find that Deepwalk and USE based
embeddings outperform other models on CADEC and PsyTAR datasets respectively. We also notice
that the LINE based embedding method consistently underperforms compared to other methods. We
wish to investigate the cause for this phenomenon in future. Our experiments show that although
we cannot completely eliminate the need for labeled examples, our formulation helps minimize the
labeling effort.

7. Conclusions and Future Work

In this work, we propose a novel method for Medical Concept Normalization which maps a medical
concept mention to its corresponding medical concept in a target lexicon. Unlike previous works, our
method scales to millions of concepts and even handles increase in target lexicon size. Experiments
on two major datasets show that our model outperforms the previous state-of-the-art MCN models.
We conduct several studies to study the robustness of our model under different training conditions.
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In this work, we explored two types of methods to encode target knowledge - text and graph
embedding based methods. We reported the performance of eight different target encoding methods.
We see a great scope for improvement using ensemble methods where multiple embedding types can
be combined to obtain heterogeneous concept embeddings. Our current implementation does not take
into account the nature of the relationship between concepts. In future, we would like to overcome
this problem by encoding the target knowledge using Knowledge Base embeddings. Finally, we
would also like to experiment with other deep learning based approaches to encode SNOMED-CT
graph.
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