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Abstract

Pulmonary embolisms (PE) are known to be one of the leading causes for cardiac-related
mortality. Due to inherent variabilities in how PE manifests and the cumbersome nature
of manual diagnosis, there is growing interest in leveraging Al tools for detecting PE.
In this paper, we build a two-stage detection pipeline that is accurate, computationally
efficient, robust to variations in PE types and kernels used for CT reconstruction, and most
importantly, does not require dense annotations. Given the challenges in acquiring expert
annotations in large-scale datasets, our approach produces state-of-the-art results with very
sparse emboli contours (at 10mm slice spacing), while using models with significantly lower
number of parameters. We achieve AUC scores of 0.94 on the validation set and 0.85 on
the test set of highly severe PE. Using a large, real-world dataset characterized by complex
PE types and patients from multiple hospitals, we present an elaborate empirical study and
provide guidelines for designing highly generalizable pipelines.

1. Introduction

A pulmonary embolism (PE) manifests as blocks in pulmonary arteries triggered by blood
clots, air bubbles, or accumulation of fat tissues that occur typically during surgery, pregnancy
or cancer. PE is known to be one of the leading causes of cardiac-related mortality, where
an early diagnosis and treatment is expected to have a significant impact in controlling the
mortality rate. It is estimated that between 300,000 to 600,000 individuals are affected
by PE every year in the US Beckman et al. (2010). Computed tomographic pulmonary
angiography (CTPA) is the primary diagnostic exam to detect arterial diseases, given the
high spatial resolution of CT scanners. Each CTPA study is a 3D image containing hundreds
of slices, some of which show evidence of PE as irregularly shaped filling defects.

In practice, each occurrence of PE can belong to one of the following broad categories:
peripheral, segmental, subsegmental, lobar, or saddle type, which can be typically determined
based on its arterial location. In particular, subsegmental PE is considered to be the hardest
to detect, since it often occurs subtly in subsegmental branches of the pulmonary artery.
Consequently, radiologists are required to painstakingly examine every slice in a CT image for
detecting PE, thus making this process highly cumbersome and time-consuming. Moreover,
unlike other common diseases visualized in chest CTs such as lung nodules, which usually
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Figure 1: Illustration of the proposed two-stage pipeline for PE detection. Stage 1 is
comprised of a mask generator GG, based on 2D context-augmented U-Net, and Stage 2 is
comprised of a PE detector D, involving a 2D Conv-LSTM model coupled with multiple
instance learning. Both the raw input CTs (X) and sparsely annotated masks M are fed
into G to produce prediction masks (M). Subsequently, X and M are multiplied to obtain
X = X ® M that is fed as input to Stage 2. Finally, D outputs a prediction g € [1,0]
indicating the presence or absence of PE.

appear spherical, or emphysema, which can be observed across the entire lung, PE is known
to appear much more asymmetrically only in isolated regions of pulmonary vasculature.

Given the afore-mentioned challenges in detecting PE, computer-aided diagnostic tools Liang
and Bi (2007) have become prominent. More specifically, data-driven approaches based on
deep learning have produced promising results for automatic PE detection Tajbakhsh et al.
(2015). The most successful solutions in medical image analysis often comprise multi-stage
pipelines tailored for a specific organ/disease. Without loss of generality, such a pipeline in
turn includes a segmentation stage for candidate generation, i.e. semantically meaningful
regions that are likely to correspond to the disease occurrence, and a classification stage for
the actual detection. A crucial bottleneck of this approach is the need for large annotated
datasets. Acquiring expert annotations for 3D volumes, where every instance of disease
occurrence is annotated (often referred to as dense annotations), is time-consuming and
error-prone. Furthermore, there is a dearth of standard benchmark datasets for PE detection
using CTPA, and most of the research in this space is conducted on custom datasets or
small-scale challenge dataset de Radiodiagnostico and the M+Vision consortium (2013).
In practice, the small-data challenge is often combated by adopting a transfer learning
strategy that refined classifiers pre-trained on natural image data Tajbakhsh et al. (2016).
Recently, Huang et al. (2019) showed that such a strategy, where 500K video clips were used
to pre-train a 77-layer 3D convolutional network, could be effectively fine-tuned for learning
a PE classifier using dense annotations.

In this paper, we adopt an alternate approach of building an accurate PE detection
system using only sparsely labeled CT volumes. More specifically, we develop a two stage
detection pipeline (shown in Figure 1) designed exclusively using 2D CNNs, wherein the
candidate generation state utilizes a novel context-augmented U-Net and the classifier stage
employs a simple 2D Conv-LSTM model coupled with multiple instance learning Zhu et al.
(2017); Ilse et al. (2018); Braman et al. (2018), compared to the 77—layer 3D CNN in Huang
et al. (2019). We find that, even with significantly smaller number of parameters and with
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Subsegmental PE | Segmental PE | Lobar PE | Ground Truth | CA U-Net

Table 1: Example CT studies showing various types of PE. We also show the ground truth
annotation and the prediction from Stage 1 for the Lobar PE example.

no pre-training, our approach produces state-of-the-art detection results on a challenging,
large-scale real-world dataset. Further, we study its generalization across hospitals/datasets,
given the large disparity across image acquisition systems and protocols, and demonstrate
the proposed approach to be highly robust.

Our contributions can thus be summarized as follows:

e We develop a novel two-stage approach for PE detection — Stage 1 is comprised of
a 2D U-Net based Ronneberger et al. (2015) mask generator and Stage 2 utilizes a
ConvLSTM Xingjian et al. (2015) based PE detector.

e Our approach does not require expensive dense annotations and operates exclusively
on sparse annotations generated for every 10 mm of positive CT scans.

e We use a context-augmentation strategy that enables the 2D U-Net in Stage 1 to
produce high-quality masks.

e By modeling each 3D CT volume as a bag of instances, i.e., features for each 2D slice
obtained using a Conv-LSTM, we propose to employ multiple instance learning, based
on feature aggregation, to detect PE.

e For the first time, we evaluate our approach using a large-scale, multi-hospital chest
CT dataset that well represents real-world scenarios through the inclusion of complex
PE types and diverse imaging protocols.

e We present insights from an elaborate empirical study, while discussing the impact of
different architectural design choices on the generalization performance.

e We show that our approach achieves state-of-the-art detection performance, with AUC
scores of 0.94 on a validation set of all PE types and 0.85 on a test set of high-severity
PE.

2. Dataset Description

We collected 1,874 PE positive and 718 negative anonymized, contrast-enhanced chest
CT studies and their corresponding radiology reports. Note that, due to the specific
anonymization protocol used in our data curation process, we are unable to determine if
two studies belong to the same patient. Our dataset is curated to represent variations
across multiple imaging centers (> 100) and different contrast-enhanced imaging protocols,
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Figure 2: Histogram of number of image slices in each CT study across the train and
validation datasets. Our PE detector (D) as part of Stage 2 is designed to use CTs of 100
slices during training.

Label Train | Validation | Test | Total
Positive 1,053 264 385 1,702
Negative | 473 118 127 718

Table 2: Sample sizes of the custom CT dataset sourced from multiple hospitals.

namely PE and CTA. In comparison, currently reported studies in the literature including
the state-of-the-art PENet Huang et al. (2019) focus exclusively on the PE protocol, and
study generalization to only two hospitals. Consequently, the problem setup we consider is
significantly more challenging and further, we do not assume access to dense annotations.
Table 2 shows sample sizes used for train, validation and test phases of our algorithm. Further,
the number of slices in each of the volumes can vary significantly, as illustrated in Figure 2.

2.1. Sparse Annotations

As part of the data preparation, we adapt the NLP pipeline described in Guo et al. (2017) to
identify PE positive studies from a patient’s radiology report, while detecting the radiologist
recommended phrase 'no evidence of pulmonary embolism’ to identify PE negative studies.
The positive studies were further vetted by board-certified radiologists who annotated the
scans by drawing a contour around every embolism occurrence on slices approximately
10mm apart. This process naturally results in multiple unannotated slices between every
pair of annotated slices, depending on the slice spacing. We refer such CT studies to be
sparsely annotated. While each study was annotated by only one clinical expert, a total of
17 radiologists served as annotators in the process. Out of the 1,874 positive studies that
were processed, 172 of those were discarded due to reasons including the lack of definitive
evidence for presence of PE (discrepancy between annotator and the reporting radiologist),
insufficient contrast, metal or motion artifacts, etc.
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3. Proposed Methodology

3.1. Approach Overview

We develop a two stage approach for PE detection from CT images. While the first stage
processes the raw CT volumes to produce a mask that identifies candidate regions that are
likely to correspond to emboli regions, the latter stage operates on the masked volume from
Stage 1 to perform the actual detection. In contrast to existing solutions, our approach
relies exclusively on 2D convolutions and does not require dense annotations. As illustrated
in Figure 1, Stage 1 is implemented using a novel context-augmented 2D U-Net, and for
Stage 2, we adopt a multiple instance learning (MIL) formulation, wherein each 3D volume
X is viewed as a bag of instances defined using the individual 2D slices x1,...,x7. Here, T
denotes the total number of slices in X. Broadly, existing MIL methods focus on inferring
appropriate aggregation functions either on (i) the instance-level predictions (y1,...,yr) to
produce bag-level prediction y Zhu et al. (2017); Braman et al. (2018), or (ii) the instance-level
latent features {z1,..., 27} to construct the bag-level feature z, which can be subsequently
used to obtain the prediction y Ilse et al. (2018). We adopt the latter approach, where the
instance features are obtained using a 2D Conv-LSTM model and the feature aggregation is
carried out using different functions including mean, max and learnable attention modules.

3.2. Stage 1: Candidate Mask Generation

The role of Stage 1 is to segment an image and identify PE candidates which are localized
regions with semantics indicative of the disease. As an initial preprocessing step, each input
CT scan is resampled to a volume with 2mm slice spacing. The architecture for the mask
generator G is a standard 2D U-Net Ronneberger et al. (2015), an encoder-decoder style
network comprised of a contracting path to downsample the input image while doubling the
number of channels, followed by an expansive path to upsample the image. Though using a
2D U-Net significantly simplifies the computation, processing each 2D slice independently
fails to leverage crucial context information in the neighboring slices. In order to circumvent
this, we propose to extract slabs of 4 neighboring slices from either side of each 2D slice, to
form a stack of 9 slices. We treat the raw intensities from each the 9 slices as the channel
dimensions, thus producing slabs of size (9,512, 512) representing number of channels, height
and width. We refer to this architecture as the context-augmented U-Net (CA U-Net). We
observed from our experiments that this simple augmentation strategy consistently produced
high-quality masks (see example in Table 1).

Each downblock in our U-Net architecture contains 2D convolution layers with a 3x3
kernel, a batch normalization layer, a ReLLU activation layer and a maxpool layer with a
stride of 2 to downsample the image. While, each upblock upsamples and then concatenates
features at the same level or depth of the network, followed by a convolutional layer coupled
with batch normalization and ReLU activation. The depth of the network G was fixed
at 4. Upon training, G produces output probabilities for each pixel in the middle slice of
the slab, indicating the likelihood of being PE candidate. The training objective was to
achieve a high dice coefficient, a metric which describes the pixel-wise similarity between
prediction masks (M) and ground truth annotation masks (M), and has a range of [0 —1]. Tt
is defined as DC' = (2 Zi\il mlml)/(Zi\il i + Zfil m?), where N is number of voxels,
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Figure 3: Architecture of the proposed Stage 2 PE detector. Each instance (Z1,...,Z100)
is transformed using a single ConvLSTM layer followed by an AwvgPool layer to obtain
instance-level features (Z = z1,...,27). A feature aggregation function (e.g. maz) then
produces a bag-level feature that can be subsequently used for the actual classification.
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r; € M and m; € M Milletari et al. (2016). In practice, we adopt the continuous dice loss
as Lgice =1 —DC.

3.3. Stage 2: Pulmonary Embolism Detection

As described earlier, to perform the actual PE detection, we treat each CT volume as a bag
of multiple 2D slices (instances). Hence, the goal of Stage 2 is to assign a prediction label to
a bag indicating the presence or absence of PE. Multiple instance learning is a well-studied
problem, where each instance is processed independently, and their features (or predictions)
can be aggregated for obtaining bag-level predictions. However, we argue that processing
each slice independently in a 3D volume can produce noisy predictions since the local context
is not included. More specifically, we utilize a Conv-LSTM Xingjian et al. (2015) model to
produce instance features that automatically incorporates context from its neighboring slices,
and perform feature aggregation similar to any MIL system.

As illustrated in Figure 3, the PE detector D contains an instance-level feature extractor
followed by an MIL module. The feature extractor is a 2D Conv-LSTM architecture that
effectively captures spatio-temporal correlations in a CT volume and produces meaningful
instance-level features. All input-to-state and state-to-state transitions use a convolution
operation containing 64 filters, a 3x3 kernel and a padding size of 1. The input to D are
the masked CTs, denoted as X that is obtained as follows: First, the prediction masks, M,
from Stage 1 are multiplied with raw CT volumes X to create masked CT volumes. We
then reduce the z-dimension of the masked volumes for computational efficiency. To this
end, we use a lung segmentation algorithm to detect the boundary axial slices (2start, Zend)
that span the lung region. We then extract 7' = 100 middle slices from within this range,
crop to reduce image height and width to (384,384) and finally resize to (128,128), thus
transforming X to produce X € R100:1128,128 " Bach instance (Z1,...,%100) is transformed
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by the Conv-LSTM model as follows:

(input gate): iy = o(Waiy + Whihi—1 + Wei 0 ci—1 + by)

(forget gate): fi = o(Wypds + Whphi—1 + Wep o1 + by)

(cell state): ¢ = froci—1 + i o tanh (Wedy + Whehi—1 + be) (1)
(output gate): o = o(Wyoir + Whohi—1 + Weo 0 ¢t + by)

(hidden state): hy = o o tanh (¢)

The features are then average-pooled using a kernel of size 32 to produce dense 1024-
dimensional features z1, . .., 2100 for all slices in X. In order to perform feature aggregation
for MIL, we explored the use of maz, mean and learnable self-attention functions. The
self-attention function used is similar to the one described in Song et al. (2018), and was
implemented with multiple attention heads.

100 T T

R exp(U* tanh(V z

= E agzk; Qg = Z p( (UTt (h(‘/]'C )T))) (2)
=1 j XP aniv z;

Here, aj, denotes the attention coefficients and U, V' denote the learnable parameters for the
attention module. The aggregated feature from the multi-head self-attention was further
projected using a linear layer to obtain the final bag-level features. For training the detector
model D, we also explored using the standard binary cross-entropy (BCE) loss and the focal
loss Lin et al. (2017) defined as:

(9,y) = —y(1 —9)7 log(9) (3)

At inference time, we apply the preprocessing steps of cropping and resizing to (128, 128)
spatial resolution, but make predictions for moving windows of 7" = 100 slice (with 25 slice
overlap) and use the maximum detection probability as the final prediction for the test CT
scan.

4. Empirical Results

In this section, we present a detailed empirical analysis conducted to evaluate the performance
of the proposed pipeline and study its behavior with respect to different architectural choices.
In particular, we share insights from ablation studies focused on effect of the number of
instances T used in Stage 2 PE detection, the strategies used for feature extraction and
aggregation, and finally the choice of loss function used for training Stage 2.

4.1. Experiment Setup

All our experiments are based on modifying the PE detector in Stage 2, while retaining
the Stage 1 model to be the same. Details on sample sizes used in our empirical study are
provided in Table 2. Typically, for successful adoption of detection algorithms in clinical
practice, they are expected to have a high recall rate on the abnormal cases (also referred to
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PE Detector: Feature Extractor + Aggregation Strategy | Loss Function

Metrics C+SA+B| CL+SA+B| CL+MSA+B| CL+AP+B| CL+MP+B| CL+-MP-+F
Acc. 0.80 0.83 0.83 0.84 0.86 0.88
AUC 0.86 0.88 0.89 0.90 0.91 0.94
F1 0.86 0.88 0.87 0.88 0.90 0.91

Table 3: Validation performance comparison using different combinations of feature extractor,
aggregation strategy and loss function. Here, CL = Conv-LSTM, C = Conv. with no LSTM,
SA = Self-attention, MSA = Multi-head Self Attenion, B = BCE Loss, F = Focal Loss, MP
= Max pooling aggregation and AP = Average pooling aggregation.

— trai

— val
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epoch epoch
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Figure 4: Training behavior of the Stage 2 PE detection model. Using the focal loss produces
significantly better generalization when compared to the conventional BCE loss.

as sensitivity). However, in order to obtain a well-rounded evaluation of the performance we
report the following metrics: accuracy (Acc), sensitivity or recall (Rec) and precision (Prec).

tp+in tp tp 1 Prec.Rec
= ; ec = ———; ec = ———; =2 —
tp+ fp+ fn+in tp+ fn tp+ fp Prec + Rec

where tp, fp, fn,tn correspond to the number of true positives, false positives, false negatives
and true negatives respectively. Further, to obtain an overview on the performance we use
the fl-score and the area under receiver operator curve (AUROC).

Training: We trained the model D for Stage 2 using an adaptive learning rate of
le — 3, which is subsequently reduced based on plateauing behavior of the validation loss.
Other hyperparameters include a batch size of 8, the number of instances (T') set to 100
(unless specified otherwise), and the Adam optimizer with a weight decay of 0.01. All
implementations were carried out in Pytorch, and we performed multi-gpu training using 4
NVIDIA GTX GPUs.

Acc

4.2. Ablation Studies

In this section, we provide details on the various ablation studies carried out to understand
the effect of each architectural component towards the validation performance of the PE
detector.

e Study 1 - Effect of number of instances: Given the limited GPU memory sizes, and
the large sizes of CT volumes, we varied the number of instances (1) that were selected
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Figure 5: Performance characteristics - (a) Increasing number of instances (T") from 25 to
100 steadily improves model performance, (b) Histogram of various types of PE.

from the masked volume to invoke Stage 2 and studied its effect on the performance.
We found that increasing 1" expectedly improved the classifier performance as shown
in Figure 5(a).

e Study 2 - Feature Extraction and Aggregation: We studied the effect of using
LSTM for feature extraction by training a model with Conv-LSTM (CL) layer -+
Self-Attention (SA) and compared it to using only Conv. (C) + Self-Attention (SA).
As expected, the Conv-LSTM model appears to extract more representative features
from the slices, compared to treating each of the slices to be independent, as seen in
Table 3. A similar empirical analysis on the choice of feature aggregation strategy
was carried out. Surprisingly, using maz pooling achieved the best performance when
compared to even the self-attention module with learnable parameters. This is likely
due to the fact that the LSTM already captures dependencies between instances in the
bag, thus not requiring a dedicated attention module.

e Study 3 - Loss Functions: We also observed that using Focal (F) loss, with v = 2 in
Equation 3, significantly boosts the detection performance by countering the inherent
imbalance in the dataset as opposed to using the Binary Cross-Entropy (B) loss.

4.3. Test Performance - Variations across PE Types

Our dataset contains several kinds of PE with varying levels of severity, a distribution of
which is shown in Figure 5(b). We report performance of our pipeline on low severity types
such as subsegmental and segmental PE, as well as high severity types, namely saddle and
main pulmonary artery shown in Figure 7(a). As expected, our pipeline picks up evidence
for high severity PE more easily by achieving an AUC score of 0.85, while obtaining an
AUC of 0.70 in detecting low severity PE that are harder to find. When compared to the
PENet model Huang et al. (2019), our approach achieves improved test accuracies on a
dataset characterized by larger amounts of variability, while using a significantly reduced
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Figure 7: Test set performance — (a) AUROC when dataset includes all types of PE, versus
only mild PE, (b) AUROC when dataset includes CT studies with diverse convolution kernels
versus cases reconstructed using only the GE standard kernel.

number of parameters. Note that PENet has 28, 398, 705 parameters, while our model only
has 3,168,116 parameters where Stage 1 has 1,966,450 and Stage 2 has 1,201, 666.

4.4. Test Performance - Variations across CT Convolution Kernels

In addition, our dataset is comprised of CT images reconstructed using different convolutional
kernels, whose choice typically controls the image resolution and noise-levels. Figure 6 shows
the distribution of kernels for our dataset, where despite most cases using the ’GE Standard’
kernel, the dataset includes volumes reconstructed using a wide variety of other kernels.
From Figure 7(b), we find that our pipeline is robust to variations in kernels by consistently
achieving an AUC of 0.78 on all cases.

5. Relation to Existing Work

In medical imaging applications, commonly deployed disease detection algorithms often
involve multi-stage pipelines comprising both segmentation and classification models Ardila
et al. (2019). An early work on PE detection used custom feature extraction based on

10
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hierarchical anatomical segmentation of organs such as vessels, pulmonary artery, and aorta
Bouma et al. (2009). Though it appears natural to directly build a classifier model on the
3D volumes, in practice, algorithms that first identify semantically meaningful candidate
regions, and subsequently extract discriminative features from those regions to perform
detection are found to be more effective. These methods are inspired by the success of such
two-stage methods in object detection, examples include region-based RCNN  Girshick (2015).
However, it is important to note that, adapting those techniques to problems in medical
imaging have proven to be less trivial mainly for two reasons. One, these solutions require
large datasets with ground truth in the form of bounding boxes that characterize regions
of interest (ROIs) or dense annotations, which are usually harder to obtain in the clinical
domain. Second, the models need to be capable of handling the heavy imbalance between
number of positive cases against the more prevalent negative ROIs. Consequently, weakly
supervised approaches have gained research interest. Methods that leverage information
ranging from single-pixel labels Anirudh et al. (2016) to approximate segmentation labels
from class activation maps have been proposed Zhou et al. (2018). However, in the context
of PE detection, most existing methods have relied exclusively on supervised learning with
dense annotations, and the state-of-the-art solutions such as PENet Huang et al. (2019)
utilize transfer learning from pre-trained models for effective detection.

6. Conclusion

In this work, we present a generalizable two-stage pipeline for detecting pulmonary embolisms
(PE) observed in 3D CT images. The pipeline comprises of a context-augmented U-Net
model to generate segmentation masks, and a convolutional LSTM based classifier used in
a MIL setting to detect PE. The proposed approach achieves state-of-the-art results on a
challenging real-world dataset while alleviating need for dense annotations of CTs and using
models with substantially lower number of parameters compared to prior art. We achieve
AUC scores of 0.94 on the validation set and 0.85 on a test set of high-severity PE. Further,
our insights from the rigorous ablation studies conducted provide guidelines for designing
effective disease detection pipelines.
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