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Abstract

The task of localizing and categorizing objects in medical images often remains formu-
lated as a semantic segmentation problem. This approach, however, only incompletely
solves the object-level task, which then requires additional ad-hoc heuristics for map-
ping pixel- to object-level scores. State-of-the-art object detectors allow for individual
object scoring in an end-to-end fashion. Ironically, being supervised by bounding box an-
notations, they currently achieve this only by trading in potentially precious pixel-wise
annotations. This can be particularly disadvantageous in the setting of medical image
analysis, where data sets are notoriously small and pixel-wise annotations are commonly
available. In this paper, we propose Retina U-Net, a simple architecture, which natu-
rally fuses the Retina Net one-stage detector with the U-Net architecture widely used
for semantic segmentation in medical images. The proposed architecture combines ob-
ject detection with an auxiliary semantic segmentation task, thus achieving end-to-end
object-level analysis while leveraging full segmentation supervision. Our evaluation com-
prises in-depth comparisons to the most prevalent object detectors in 2D and 3D (code
available at https://github.com/pfjaeger/medicaldetectiontoolkit) using two in-
dependent medical data sets (1035 lung CTs and 331 breast MRIs) and a series of toy
experiments.

1. Introduction

Semantic segmentation algorithms, such as the U-Net architecture (Ronneberger et al.
(2015)), are essential for tasks like radiation therapy planning or tumor growth monitoring,
where pixel-wise information is clinically required. In many settings, however, clinicians are
interested in “how many lesions were detected or missed and what is their grading score?”
rather than in information corresponding to individual pixels. In other words, in such
scenarios downstream decisions are made on an object-level, requiring potentially brittle
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post-processing to bridge between pixel-wise predictions from semantic segmentation and
object-level evaluation. To avoid this and allow end-to-end object scoring directly within
one model, the state of the art converged to the natural solution of deriving object-level
predictions from coarser representation levels of feature pyramid networks (FPNs), an ar-
chitecture that most current object detectors are based on (Lin et al. (2017)). So-called
two-stage detectors first discriminate objects from background while simultaneously re-
gressing bounding box coordinates (He et al. (2017); Liu et al. (2018); Dai et al. (2016)).
Subsequently proposals are categorized after resampling them to a fixed grid, thus ensuring
scale-invariance for categorization. One-stage detectors, on the other hand, have been pro-
posed to perform categorization directly on the coarse FPN representations, in concurrence
to the box regression (Liu et al. (2016); Lin et al. (2018); Redmon et al. (2016)). Both ap-
proaches come at the price of disregarding potentially helpful pixel-wise annotations, which
are reduced to bounding boxes (or cubes). This information loss contradicts the need for
data-efficient training especially in the medical domain, where comparably small data sets
are quite common. Previous work in the non-medical domain has addressed this problem
(Shrivastava and Gupta (2016); Mao et al. (2017); Dvornik et al. (2017)), but has either used
the extra supervision signal in a sub-optimal fashion (e.g. at lower resolutions or without
surrounding context) or has employed approaches of arguably significant model complexity.

This study demonstrates a straight-forward yet effective strategy on how to convert
available pixel-wise annotations into significant performance gains on object-level detection
tasks. Retina U-Net is based on the plain one-stage detector Retina Net, which is com-
plemented by architectural elements of the U-Net, a very successful model for semantic
segmentation of medical images (Ronneberger et al. (2015)). Specifically, the decoding part
of Retina Net is complemented by additional high resolution levels to learn the auxiliary
task of semantic segmentation. From a segmentation perspective, the proposed architecture
retrofits the U-Net with two sub-networks operating on coarser feature levels of the decoder
part to allow for end-to-end object scoring. Regarding the choice of a one-stage detector,
we argue that the explicit scale invariance enforced by the resampling operation in two-
stage detectors is not helpful in the medical domain, since unlike in natural images scale
is not a function of varying distances between object and camera, but encodes semantic
information. We demonstrate the effectiveness of our model on the task of detecting and
categorizing lesions on two medical data sets and support our analysis by a series of toy
experiments that help shed light on the reasons behind the observed performance gains.
The contributions are the following:

• A simple but effective method for leveraging semantic segmentation training signals
in object detection focused on application in medical images.

• An in-depth analysis of the prevalent object detectors (operating in 2D as well as 3D)
by means of comparative studies on medical data sets.

• A comprehensive framework including e.g. modular implementations of all explored
models, with code available at
https://github.com/pfjaeger/medicaldetectiontoolkit.
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Figure 1: The Retina U-Net architecture in 2D. From a Retina Net perspective we add
pyramid levels (i.e. feature maps) P0 and P1, so as to backpropagate rich training
signals from a full resolution pixel-wise loss into the feature pyramid network,
thereby facilitating the learning process in coarser feature maps used for object
detection. From a U-Net perspective we enable end-to-end object detection via a
head network operating on the coarse pyramid levels P2-P5.

2. Related Work

Since object detection in natural images is increasingly formulated as an instance segmenta-
tion problem, several two-stage object detectors utilize additional instance-based segmenta-
tion labels during training (He et al. (2017); Chen et al. (2018a); Liu et al. (2018)). However,
we argue that this setup does not fully exploit semantic segmentation supervision:

• The mask loss is only evaluated on cropped proposal regions, i.e. context gradients of
surrounding regions are not backpropagated.

• The proposal region as well as the ground truth mask are typically resampled to a
fixed-sized grid (known as RoIAlign (He et al. (2017))).

• Only positive matched proposals are utilized for the mask loss, which induces a de-
pendency on the region proposition performance.

• Gradients of the mask loss do not flow through the entire model, but merely from the
corresponding pyramid level upwards.
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Auxiliary tasks for exploiting semantic segmentation supervision have been applied in two
stage detectors with bottom-up feature extractors (i.e. encoders) (Shrivastava and Gupta
(2016); Mao et al. (2017)). In the one-stage domain, the work of Uhrig et al. (2018) performs
semantic segmentation on top of a single-shot detection (SSD) architecture for instance seg-
mentation, where segmentation outputs are assigned to box proposals in a post-processing
step. Zhang et al. (2018) propose a similar architecture, but learn segmentation in a weakly-
supervised manner, using pseudo-masks created from bounding box annotations.

As opposed to bottom-up backbones for feature extraction, we follow the argumentation of
feature pyramid networks (Lin et al. (2017)), where a top-down (i.e. decoder) pathway is
installed to allow for semantically rich representations at different scales. This concept is
adapted from state-of-the-art segmentation architectures (Ronneberger et al. (2015); Chen
et al. (2018b)) and used in both current one- and two-stage detectors. Recent approaches
report to use semantic segmentation as an auxiliary training signal, but apply it to lower
resolution feature maps only (Peng et al. (2018); Dvornik et al. (2017)). Araújo et al. (2018)
learn semantic segmentation at full resolution, but downsample all feature maps to the bot-
tleneck’s spatial resolution before feeding them to the detection module, thereby discarding
all multi-scale information in the detection task. In contrast, we propose a FPN-based one-
stage detector performing semantic segmentation on full resolution and object detection on
multiple scales, which allows to naturally fuse existing state-of-the-art models from both do-
mains resulting in the simple Retina U-Net architecture. Shah et al. (2018) converged to an
architecture similar to ours while working on the inverse setup, i.e. enhancing segmentation
performance by additionally training on bounding box labels.

3. Methods

3.1. Retina Net

The basis of our proposed model is the Retina Net, a simple one-stage detector based on
a FPN for feature extraction (Lin et al. (2018)), where two sub-networks operate on the
pyramid levels P3-P6 for classification and bounding box regression, respectively (see Figure
2c). Here Pj denotes the feature-maps of the jth decoder level, where j increases as the
resolution decreases. In this study, we compare various state-of-the-art one- and two-stage
object detectors in both 2D (slice-based) and 3D (volumetric patches). For the sake of unre-
stricted comparability, all methods including Retina Net are implemented in one framework,
using the same backbone FPN (Lin et al. (2017)) based on a ResNet50 (He et al. (2016))
as identical architecture for feature extraction. In our FPN implementation, anchor sizes
are divided by a factor of 4 to account for smaller objects in the medical domain resulting
in anchors of size {42, 82, 162, 322} for the corresponding pyramid levels {P2, P3, P4, P5}. In
the 3D implementation, the z-scale of anchor-cubes is set to {1, 2, 4, 8}. For Retina Net,
two adaptations were made deviating from the original version: To factor in the existence
of small object sizes in medical images, we shifted sub-network operations by one pyramid
level towards P2-P5. This comes at a computational price, since a vast number of dense
positions are produced in the higher resolution P2 level. We further exchanged the sigmoid
non-linearity in the classification sub-network for a softmax operation, to account for mu-
tual exclusiveness of classes due to non-overlapping objects in 3D images.
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3.2. Retina U-Net

Retina Net is complemented with architectural elements from the U-Net, resulting in the
proposed Retina U-Net. Training signals for full semantic supervision are added to the top-
down path by means of additional pyramid levels P1 and P0, including the respective skip
connections. The resulting Feature Pyramid resembles the symmetric U-Net architecture
(see Figure 1), which in the following we refer to as U-FPN for clarity. The detection sub-
networks do not operate on P1 and P0, which keeps the number of parameters at inference
time unchanged. The segmentation loss is calculated from P0 logits. In addition to a pixel-
wise cross entropy loss LCE, a soft Dice loss is applied, which has been shown to stabilize
training on highly class imbalanced segmentation tasks e.g. in the medical domain (Isensee
et al. (2018)):

L = LCE −
2

|K|
∑
k∈K

∑
i∈I uikvik∑

i∈I uik +
∑

i∈I vik
, (1)

where u is the softmax output of the network and v is a one hot encoding of the ground
truth segmentation map. Both u and v have shape I ×K with i ∈ I being the number of
pixels in the training batch and k ∈ K being the classes.

3.3. Baseline methods.

The following baseline methods were implemented:

• Mask R-CNN (He et al. (2017)): Adjustments for the 3D implementation: The num-
ber of feature maps in the region proposal network is lowered to 64 to account for
increased GPU memory usage. The poolsize of 3D-RoIAlign, a 3D implementation of
the resampling operation mentioned in Section 1, is set to (7, 7, 3) for the classification
head and (14, 14, 5) for the mask head. The matching IoU for positive proposals is
lowered to 0.3 (see Figure 2a).

• Faster R-CNN+: In order to single out the Mask R-CNN’s performance gain obtained
by segmentation supervision from the mask head, we run ablations on the toy data
sets while disabling the mask-loss, thereby effectively reducing the model to the Faster
R-CNN architecture (Girshick (2015)) except for the RoIAlign operation (indicated
in the method’s name by an additional +) (see Figure 2b).

• Retina U-Net2stage: To analyze the gain of additional semantic segmentation supervi-
sion in two-stage detectors, we implemented a two-stage variant of Retina U-Net by
deploying Faster R-CNN+ on top of U-FPN. (see Figure 2d).

• U-Net+Heuristics: Essentially formulating the problem as a semantic segmentation
task, as commonly done in medical imaging, we implement a U-Net-like baseline using
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Figure 2: The upper panel shows all baselines utilizing a regular FPN feature extractor
while the lower panel depicts baselines that employ a symmetric FPN akin to a
U-Net (U-FPN). Subfigures a) - e) show the detection sub networks (heads) that
are characteristic of each model and operate on FPN features. All models employ
their respective head topology to different decoder scales which are denoted in
red. Boxes in green indicate logits that are trained on an auxiliary semantic
segmentation task.

U-FPN. Therefore, softmax predictions were extracted from P0 via 1x1 convolution
and utilized to identify connected components for all foreground classes. Subsequently,
bounding boxes (or cubes) are drawn around connected components and the highest
softmax probability per component and class is assigned as object score (see Figure
2e).

4. Experiments

4.1. Clinical Datasets

A lung nodule detection and categorization task is performed on the publicly available
LIDC-IDRI data set (Armato III et al. (2015)), consisting of 1035 lung CT scans with
pixel-wise lesion annotations and malignancy likelihood scores (1-5) from four experts. We
fuse annotations of raters per lesion by applying a pixel-wise majority voting and averag-
ing the malignancy scores. Scores are then re-labelled into benign (1-2: 1319 cases) and
malignant (3-5: 494 cases). A breast lesion detection and categorization task is performed
on an in-house Diffusion MRI data set of 331 Patients with suspicious findings in previous
mammography. Pixel-wise annotations of lesions are provided by experts. Categorisation
labels are given by subsequent pathology results (benign: 141 cases, malignant: 190 cases).
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Both clinical data sets require the detection and categorisation (benign vs. malignant) of
lesions. This is both a difficult and very frequent problem setting in radiology and therefore
constitutes a highly-relevant domain of application. Example images with model predictions
are shown in Figure 3

4.2. Toy Datasets

We created a series of three toy experiments to separately evaluate on sub-tasks commonly
involved in object-categorisation on medical images (see Figure 4). More specifically, the
aim is to investigate the importance of full segmentation supervision in the context of limited
training data:

1. Distinguishing object shapes: Two classes of objects are to be detected and distin-
guished, circles and donuts (cut-out hole in the middle). Here, the corresponding
segmentation mask’s shape explicitly contains the discriminative feature (the cut-out
hole), hence, full semantic supervision is expected to yield significant performance
gains.

2. Learning discriminative object patterns: This task is identical to the previous one,
except the central hole is not cut out from the segmentation masks of the donuts
(class 2). This requires the model to pick up the discriminative pattern without
explicitly receiving the respective training signal by means of the mask’s shape. This
setup could be considered more realistic in the context of medical images.

3. Distinguishing object scales: Circles of two different sizes (19 vs. 20 pixel diameter)
are to be detected and distinguished. Here, class information is entirely encoded in
object scales and hence in target box coordinates. No significant gain from semantic
supervision is expected.

Each toy data set consists of 2500 artificially generated 2D images of size 320×320 (1000
train / 500 val / 1000 hold-out test). Images are zero-initialized and foreground objects
imprinted by increasing intensity values by 0.2. Subsequently, uniform noise is added to all
pixels.

4.3. Training & Evaluation Setup.

For comparability, experiments for all methods are run with identical training and inference
schemes, as described below. In this study, we compare slice-wise 2D processing, feeding the
±3 neighbouring slices as additional input channels (2Dc) (Yan et al. (2018)), against 3D
convolutions. Oversampling of foreground regions is applied when training on patch crops.
To account for the class-imbalance of object level classification losses, we stochastically
mine the hardest negative object candidates according to softmax probability. Models are
trained in a 5-fold cross validation (splits: train 60% / val 20% / test 20%) with batch size
20 (8) in 2D (3D) using the Adam optimizer (with default settings) at a learning rate of
10−4. Extensive data augmentation in 2D and 3D is applied to account for overfitting. To
compensate for unstable statistics on small data sets, we report results on the aggregated
inner loop test sets and ensemble by performing test-time mirroring as well as by testing
on multiple models selected as the 5 highest scoring epochs according to validation metrics.
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Figure 3: Example predictions of a malignant lesion in a CT scan of the lung (left) and a
benign lesion on a Diffusion MRI of the breast (right). The numbers before and
after the vertical bar denote the predicted class-id and the prediction confidence
in percent, respectively.

Figure 4: left: Example images for tasks 1 (distinguishing object shapes) and 2 (learning
discriminative object patterns) of the toy experiment series. The left object is a
filled circle, while the object on the right is a donut (cut-out hole in the middle).
right: Example images for task 3 (distinguishing object scales), the circle on the
left has a diameter of 19 pixels, as opposed to 20 pixels diameter of the circle on
the right.

Consolidation of box predictions from ensemble-members and overlapping tiles is done via
clustering and weighted averaging of scores and coordinates. Experiments are evaluated
using mean average precision (mAP) (Everingham et al. (2010)). We determine mAP
at a relatively low matching intersection over union (IoU) threshold of IoU = 0.1, which
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Figure 5: Results of the of toy experiment series. The three tasks are displayed as (a) dis-
tinguishing objects of different shapes, (b) learning discriminative image patterns
unrelated to an object’s shape, and (c) distinguishing objects of different scales.
Explored models are divided into two groups: One-stage methods have blue/green
color, while two-stage methods are drawn in red. n denotes the number of training
images.

Table 1: Results for lung lesion detection on CT (LIDC) and breast lesion detection on
DWI, reported as [%].

LIDC Breast DWI
Dim. Model mAP10 APpatm mAP10 APpatm

Retina U-Net (ours) 50.2 73.9 33.4 86.9
Mask R-CNN 45.4 69.1 32.3 86.4

2Dc Retina Net 48.2 71.5 33.2 84.4
Retina U-Net2stage (ours) 49.1 71.6 33.2 84.7
U-Net+Heuristics 41.1 66.1 25.8 81.6

Retina U-Net (ours) 49.8 70.4 35.8 88.0
Mask R-CNN 48.3 71.8 34.0 84.8

3D Retina Net 45.9 68.8 31.9 86.4
Retina U-Net2stage (ours) 50.5 70.7 35.1 86.5
U-Net+Heuristics 36.6 62.8 26.9 85.1

respects the clinical need for coarse localization and also exploits the non-overlapping nature
of objects in 3D. Note that evaluation and matching is performed in 3D for all models and
processing setups. Additionally, we report the AP of patient-scores, which are determined
as the maximum of scores per class and patient (aggregating predictions as well as labels
over potentially multiple lesions per patient). In our setting, however, patient scoring is
to be taken with a grain of salt: Since the information about assignment of overall-patient
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scores to the specific lesion is lost in the aggregation process, this metric is blind to the issue
of ‘being right for the wrong reasons’ and further potentially biased by class-imbalances.

5. Results & Discussion

5.1. Clinical Datasets

Results for the lesion detection and categorization tasks are shown in Table 1. Retina U-
Net performs best on the 2Dc setups (50.2 mAP on LIDC and 33.4 mAP on Breast DWI).
In 3D, Retina U-Net performs best on Breast DWI (35.8 mAP) and only slightly worse
(49.8 mAP) than Retina U-Net2stage (50.5 mAP) on LIDC. Comparing these results to the
remaining baselines shows the importance of semantic segmentation supervision. Mask-R-
CNN for instance, which is trained with instance segmentation supervision instead, shows
overall worse performance presumably due to the issues discussed in Section 2. U-Net
performs worse with notable margins, seemingly suffering from high confidence false positive
predictions caused by the necessary max-score aggregation (aggregating scores via mean
in an alternative experiment did not improve performance). Evaluating on patient-level,
Retina U-Net performs best on all tasks except 3D LIDC, where Mask R-CNN achieves the
highest score. This finding could be related to the brittle aggregation heuristics of patient
scores described above.

5.2. Toy Datasets

Results for the toy experiments are shown in Figure 5. In the first task, where explicit class
information is contained in segmentation annotations, models which optimally leverage
those, i.e. Retina U-Net and Retina U-Net2stage, perform best (again, the instance-based
segmentation training of Mask R-CNN seems to yield inferior performance presumably due
to issues discussed in Section 2). The resulting margin increases with decreasing amount of
available training data. The second task, where class information is effectively removed from
segmentation annotations, shows similar margins of Retina U-Net and Retina U-Net2stage
to other models. This indicates the importance of full semantic segmentation supervision
even in implicit setups and shows a particularly strong edge in the small data set regime,
where models that discard this supervision essentially collapse. In the third task, where class
information is entirely contained in the target boxes, no gain from segmentation supervision
is observed, at least for small training data sets. Surprisingly, two-shot detectors perform
better at this task, which seems counter-intuitive given the scale-invariance enforced by
the RoIAlign operation. We hypothesize, that discarding the spatial scale effectively forces
the optimizer to encode this information into the feature maps previous to the RoIAlign
operation, which seems to not hamper performance and possibly even cause a beneficial
regularization effect. Comparing Mask R-CNN to Faster R-CNN+, the sub-optimal mask-
supervision seems to yield no gains in detection performance when working with limited
training data.
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6. Conclusion

In this paper, we address the challenge of aligning the output structure of predictive models
to the requirements of the intended clinical task while maintaining data efficient training
on small data sets. Specifically, we propose Retina U-Net, a simple but effective method
for leveraging segmentation supervision in object detection. We show the importance of
exploiting these training signals on multiple data sets, input dimensions and meticulously
compare against the prevalent object detection models with a particular emphasis on the
context of limited training data. Therefore, we consider the task of localizing and classifying
lesions, which constitutes a difficult and very frequent problem setting in radiology and
therefore a highly-relevant domain of application. On the publicly available LIDC-IDRI
lung CT dataset as well as on our in-house breast lesion MRI dataset, Retina U-Net yields
detection performance superior to models without full segmentation supervision. By means
of a set of toy experiments we shed light on an important set of scenarios that can profit
from the additional full supervision: Any such problem where there is discriminative power
in features beyond mere scale can expect to pocket an edge in detection performance.
Among other distinguishing characteristics, the domain of medical image analysis holds one
prominent feature: scarcity of labelled data. Retina U-Net is designed to make the most
of the given supervision signal which is a key advantage on small datasets as high-lighted
by our experiments. Our architecture stands out with another feature: its embarrassingly
simple model formulation that takes aim at broad applicability and lays the foundation for
future work on clinical requirements such as interpretability and robustness.
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