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Abstract
Despite the recent success in applying supervised deep learning to medical imaging

tasks, the problem of obtaining large and diverse expert-annotated datasets required for
the development of high performant models remains particularly challenging. In this work,
we explore the possibility of using Generative Adverserial Networks (GAN) to synthesize
clinical images with skin condition. We propose DermGAN, an adaptation of the popular
Pix2Pix architecture, to create synthetic images for a pre-specified skin condition while
being able to vary its size, location and the underlying skin color. We demonstrate that
the generated images are of high fidelity using objective GAN evaluation metrics. In a
Human Turing test, we note that the synthetic images are not only visually similar to real
images, but also embody the respective skin condition in dermatologists’ eyes. Finally, when
using the synthetic images as a data augmentation technique for training a skin condition
classifier, we observe that the model performs comparably to the baseline model overall
while improving on rare but malignant conditions.

1. Introduction

The combination of large scale data and compute has catalyzed the success of supervised
deep learning in many domains including computer vision (Mahajan et al., 2018), natural
language processing (Devlin et al., 2018) and speech recognition (Hannun et al., 2014). Over
the last few years, several efforts have been made to apply supervised deep learning to various
medical imaging tasks such as disease classification, detection of suspicious malignancy and
organ segmentation on different imaging modalities including ophthalmology, pathology,
radiology, cardiology, and dermatology (Esteva et al., 2017; Ghorbani et al., 2019; Gulshan
et al., 2016; Ardila et al., 2019; Rajpurkar et al., 2017). Despite this progress, developing
effective deep learning models for these tasks remain non trivial mainly due to the data
hungry nature of such algorithms. Most previous efforts that report expert-level performance
required large amounts of expert annotated data (multiple thousands and sometimes even
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millions of training examples). However, the cost of obtaining expert-level annotations
in medical imaging is often prohibitive. Moreover, it is near impossible to collect diverse
datasets that are unbiased and balanced. Most of the data used in medical imaging and other
healthcare applications come from medical sites which may disproportionately serve certain
specific demographics. Such datasets also tend to have very few examples of rare conditions
because they naturally occur sparingly in the real world. Models trained on such biased and
unbalanced datasets tend to perform poorly on test cases drawn from under-represented
populations or on rare conditions (Adamson and Smith, 2018). To ameliorate these issues,
generative models present an intriguing alternative to fill this data void.

There has been remarkable progress in generative models in recent years. Generative
Adverserial Networks (GAN) (Goodfellow et al., 2014), in particular, have emerged as the de
facto standard for generating diverse and high quality samples, with many popular extensions
such as CycleGAN (Zhu et al., 2017), StarGAN (Choi et al., 2018), StyleGAN (Karras
et al., 2019) and BigGAN (Brock et al., 2018). GAN have been effectively used in many
applications, including super resolution (Ledig et al., 2017), text-to-image generation (Zhang
et al., 2017) and image in-painting (Pathak et al., 2016). In the medical domain, applications
include generating medical records (Choi et al., 2017), liver lesion images (Frid-Adar et al.,
2018), bone lesions (Gupta et al., 2019) and anomaly detection (Zenati et al., 2018).

In this work, we explore the possibility of synthesizing images of skin conditions that
were taken by consumer grade cameras. We formulate the problem as an image to image
translation task and use an adapted version of the existing GAN-based image translation
architectures (Isola et al., 2017; Wang et al., 2018). Specifically, our model learns to translate
a semantic map with a pre-specified skin condition, its size and location, and the underlying
skin color, to a realistic image that preserves the pre-specified traits. In this way, images
of rare skin conditions in minority demographics can be generated to diversify existing
datasets for the downstream skin condition classification task. We demonstrate via both
GAN evaluation metrics and qualitative tests that the generated images are of high fidelity
and represent the respective skin condition. When we use the synthetic images as additional
data to train a skin condition classifier, we observe that the model improves on rare malignant
classes while being comparable to the baseline model overall.

Motivation and distinction from related work In dermatology, prior efforts (Baur
et al., 2018a,b; Chi et al., 2018) on applying generative models to synthesize images have
focused on datasets of dermoscopic images (Codella et al., 2018; Tschandl et al., 2018).
Dermoscopic images are acquired using specialized equipment (dermatoscopes) in order to
have a clean, centered, and zoomed-in image of the skin condition under normalized lighting.
However, access to dermatoscopes is limited: they are often only available in dermatology
clinics and are used to examine certain lesion conditions. On the other hand, clinical
images are taken by consumer grade cameras (point-and-shoot cameras or smartphones),
and are thus much more accessible to general users. Such images can be used either in a
teledermatology setting, where patients or general practitioners can send such photographs to
remote dermatologists for diagnosis, or to directly leverage AI based tools for self diagnosis.
However, acquisition of such images is not part of the standard clinical workflow, leading to a
data void to develop performant skin disease classification models (Yang et al., 2018; Mishra
et al., 2019). Last but not least, unlike dermoscopy images, clinical images of skin conditions
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have diverse appearances in terms of scale, perspective, zoom effects, lighting, blur and other
imaging artifacts. In addition, presence of hair, various skin colors, and body parts, age
induced artifacts (e.g., wrinkles), and background also contribute to the diversity of clinical
data. Such diversity makes it challenging for generative models to learn the underlying image
representation. Fig. 1(a) contrasts examples of a dermascopy dataset (on the left) (Tschandl
et al., 2018) to that of a clinical dataset (on the right). To the best of our knowledge, no
prior work has attempted to synthesize clinical images with skin pathology.

(a)

(b)

Figure 1: Sample skin images in different datasets Comparison between samples of
dermatoscopic images (left) (Tschandl et al., 2018) and samples of cropped clinical
images in our dataset (right) are shown in (a). Our original, uncropped images
are shown in (b), collected from a real-world teledermatology service with varying
size, scale, and quality.

2. Methods

Dataset For this work, we used a dataset provided by a teledermatology service, collected
in 17 clinical sites in two U.S. states from 2010 to 2018. This dataset consisted of 9897 cases
and 49920 images; each case contains one or more high resolution images (resolution range:
600× 800 to 960× 1280). Ground truth of the skin condition was established for each case
by an aggregated opinion of several board-certified dermatologists to differentiate among
26 common skin conditions and an additional ’other’ category. It is important to note that
even though the 26 skin conditions are known to be highly prevalent, the dataset itself was
unbalanced, especially for certain malignant conditions like Melanoma, which has less than
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Figure 2: Image pre-processing Using the human-provided ROI annotation of skin con-
ditions, we are able to create cropped images with clear skin condition in focus.

200 examples. More details on the original dataset can be found in (Liu et al., 2019). In
addition to the skin condition, we make use of two additional pieces of information: 1) For
each condition, its presence in the image is marked by a Region of Interest (ROI) bounding
box (Fig. 1(b)) and 2) the skin color given for each case based on the Fitzpatrick skin color
scale that ranges from Type I (“pale white, always burns, never tans”) to Type VI (“darkest
brown, never burns”) (Fitzpatrick, 1988). Both the ROI and the skin color annotations are
determined by the aggregated opinions of several dermatologist-trained annotators.

Data Preprocessing Fig. 1(b) shows the heterogeneous nature of this dataset. As stated
previously, the region occupied by the skin condition varies significantly and the backgrounds
are non-uniform and unique to each individual image (walls, hospitals, clothing, etc). As a
result, the signal to noise ratio is very low in most of the images. To alleviate this problem,
using the annotated ROI bounding boxes, we create a more uniform version of the dataset
where the skin conditions is prominent in each image (Fig. 2) We devise a simple heuristic
that crops a random window around an ROI or a group of adjacent ROIs while removing
the presence of background information. This results in 40000 images of size 256× 256 for
training the generative models and 24000 images for evaluation.

Problem Formulation Given a set of input-output pairs {(xi,mi)}Ni=1, for each image
xi ∈ RW×H×C , mi ∈ RW×H×C′ is its corresponding semantic map that encodes the skin
color, the skin condition present in the image and the location of the condition in the image
(Fig. 3). For a fully defined semantic map m, due to the possible variations (amount of
hair on the skin, shooting angles, lighting conditions, morphology of the condition, etc),
the corresponding image x is not unique. The variations can be modeled by a conditional
probability distribution P (x|m). Our goal is to be able to sample from P (x|m) for arbitrary
and valid m. This image to image translation problem can be addressed using the conditional
GAN framework (Mirza and Osindero, 2014) which has been successfully used in similar
settings (Isola et al., 2017; Wang et al., 2018; Chen and Koltun, 2017; Choi et al., 2018).

For each image in our dataset, the semantic map is an RGB image. The R-channel
encodes the skin color and the condition is encoded in the G & B channels by a non-zero
value corresponding to its ROI bounding box(es). An example is shown in Fig. 3.
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Figure 3: DermGAN architecture A semantic map encoding the skin condition and its
region of presence (orange rectangle) and the skin color (red background) is passed
through the generator to produce a synthetic image. The generator is a modified
U-Net (Ronneberger et al., 2015) where the deconvolution layers are replaced with
a resizing layer followed by a convolution to mitigate the checkerboard effect. The
discriminator has a fully-convolutional architecture. The two architectures are
trained to minimize four loss components: `1 reconstruction loss for the whole
image, `1 reconstruction loss for the pathological region, feature matching loss for
the second to last activation layer of the discriminator, and the min-max GAN
loss.

Given the pairs of preprocessed skin images and their semantic maps, the problem of
synthetic image generation reduces to mapping any arbitrary semantic map to a corresponding
skin condition image. Pix2Pix (Isola et al., 2017) model gives a two-fold solution to this
problem: An encoder-decoder architecture such as U-Net (Ronneberger et al., 2015) is
trained with an `1 reconstruction loss to reproduce a given real image from its semantic
map. The main drawback, however, is that such a model produces blurry images that lack
the details of a realistic image. Therefore, a second model is added to discriminate real
images from synthetic ones. The addition of this min-max GAN loss results in generation of
realistic images with fine-grained details. Later on, subsequent works improved the Pix2Pix
method by applying various adaptations to the original algorithm: using several discriminator
networks with various patch-sizes, progressively growing the size of generated images, using
conditional normalization layers instead of instance normalization layers, and so forth (Park
et al., 2019; Choi et al., 2018; Lin et al., 2018). Similarly, in this work, based on the specifics
of our data modality we apply three main adaptations to the original pix2pix algorithm:
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• Checkerboard effect reduction The original pix2pix generator implementation
makes use of transposed convolution layers. As discussed by Odena et al. (2016), using
deconvolution layers for image generation can results in “checkerboard” effect. The
problem was resolved by replacing each deconvolution layer with a nearest-neighbor
resizing layer followed by a convolution layer.

• Condition-specific loss The original pix2pix loss function uses the `1 distance between
the original and synthetic image as a loss function component. For skin condition images,
generator model’s reconstruction performance is more important in the condition ROI
compared to its surrounding skin. Therefore, we add a condition-specific reconstruction
term which is simply the `1 distance between the condition ROIs in the synthetic
and real images. We should mention that unlike the reconstruction loss, adding an
additional condition-specific discriminator model in order to include a condition-specific
min-max GAN loss did not result in improvement.

• Feature matching loss Feature matching loss enforces the generated images to follow
the statistics of the real data through matching the features of generated and real
images in a chosen layer(s) of the discriminator. It is computed as the `2 distance
between the activations of synthetic images in a chosen discriminator layer (or layers)
and that of the real images. Apart from improving the quality of generated images,
feature matching loss results in a more stable training trajectory (Salimans et al., 2016).
We used the output of the discriminator’s second to last convolutional layer to compute
the feature matching loss.

All in all, the resulting model has four loss terms: reconstruction loss, condition-specific re-
construction loss, min-max GAN loss, and feature-matching loss. Grid-search hyperparameter
selection was performed to choose the weighting coefficients for each loss component.

3. Experiments

Using the pre-processed dataset, we trained a DermGAN model to generate synthetic skin
images with a chosen skin color, skin condition, as well as the size and region of the condition.
In order to focus more on the critical and rare conditions, of the 26 classes in the original
data, we choose 8 conditions that have fewer samples compared to other classes (17% of
the dataset combined). In order to generate synthetic images, we first need to generate
the corresponding semantic map. Different conditions have semantic maps with different
statistics of bounding box size, shape, etc. As a result, in order to prevent domain shift
between semantic maps the DermGAN is trained on and the ones it will see during test
time, we use the maps in the validation set. For each synthetic image, we randomly sample
a semantic map from the validation set and then apply random transformations on it: We
apply random translations on the bounding boxes and if there are more than one bounding
boxes in the map, we randomly select a subset of them. As a result, the same semantic map
in the validation set could be used to generate diverse synthetic images. Examples of our
generated images are shown in Fig. 4.

Synthetic images with different skin colors In this and the subsequent experiment,
we train a DermGAN model on all of the 26 conditions of the dataset to use images of wider
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Figure 4: Generated vs real images For each condition, the top row shows samples of
generated images and the bottom row shows samples of real images.

demographics. For a given semantic map in the test set, we vary the encoded background
color and observe the respective changes in the generated image. Fig. 5 depicts examples of
this experiment, in which the encoded skin color of a semantic map is replaced with each
of the six types. As illustrated in the figure, the DermGAN model is able to change the
background skin color while adjusting the condition itself to reflect this change. For instance,
for Melanocytic Nevus, the generated image for the darker tones has also a darker mole,
which mimics real data.

Synthetic images with different sizes of the skin condition For a given semantic
map, we can vary the sizes of the pathological region for each skin condition and observe
the respective changes in the generated image. Fig. 6 shows examples of this experiment, in
which the size of the bounding box of a semantic map is gradually increased. We observe
that as the size of the skin condition changes, the visual appearance also changes, which is
consistent with real world occurrences. Note that in this experiment, the semantic maps we
fed into the model are generated synthetically (not by applying random transformations on
semantic maps in the validation dataset.)
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Figure 5: Skin color variation By changing the encoded skin color in the semantic map,
we are able to create synthetic images with diverse skin colors. It should be noted
that as the skin color varies, the change in surrounding visuals is consistent with
real world occurrences.

GAN evaluation metrics A perfect objective evaluation of GAN generated images
remains a challenge (Theis et al., 2015). One widely-used measure is the inception score (Sal-
imans et al., 2016) that works as a surrogate measure of the diversity and the amount of
distinct information in the synthetic images. It is computed as the average KL-divergence
between the class probabilities assigned to a synthetic sample by an Inception-V3 model (Rus-
sakovsky et al., 2015) trained on the ImageNet dataset (Szegedy et al., 2016) and the average
class probabilities of all synthetic samples. The main drawback that makes the use of
inception score inadmissible in our case is that it assumes the classes in the dataset at
hand to be a subset of the 1000 ImageNet classes (Barratt and Sharma, 2018). Another
widely-used measure is the Frechet Inception Distance (FID) (Heusel et al., 2017). FID
directly measures the difference between the distribution of generated and real images in the
activation space of the “Pool 3” layer of the Inception-V3 model. We perform an ablation
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Figure 6: Skin condition size variation As DermGAN generates synthetic images given
the condition’s ROI, we are able to generate the same condition with various sizes.
For specific conditions (e.g. Basal Cell Carcinoma), the change in size results
in a change in the surrounding visuals, which is consistent with the real world
occurrences.

study of the DermGAN model. Results of the FID scores on our test set (24000 images) are
reflected in Table 1 (confidence intervals are for 50 trials).

Human Turing test For a subjective measure of how realistic the generated images
are, we conducted two qualitative experiments. The first test was a Turing test with 10
participants. Each participant was asked to choose the skin images they found realistic in a
collection of 80 real and 80 randomly selected synthetic images. On average the true positive
rate (TPR) (the ratio of real images correctly selected) is 0.52 and the false positive rate
(FPR) (the ratio of synthetic images detected as real) is 0.30. Results for each condition are
demonstrated in Fig. 7(a), with average TPR ranging from 0.51 to 0.69 and average FPR
from 0.37 to 0.50. As expected, the TPR is higher than FPR for all conditions. However,
the high FPR rate among all conditions indicate the high fidelity of synthetic images. The
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standard deviation of participants’ performances is large and we hypothesize that it is due
to the fact that they come from various backgrounds with different levels of experience with
skin images.

The second experiment was designed to measure the medical relevance of the synthetic
images. In this experiment, two board certified dermatologists answered a set of 16 questions.
In each question, the participants were asked to choose the images relevant to a given
skin condition among a combined set of real and randomly selected synthetic images. The
average recall (ratio of related images correctly chosen) is 0.61 and 0.45 for the real and
synthetic images respectively. Results for each condition are shown in Fig. 7(b), with recall
ranging from 0.3 to 1.00 for real images and from 0.00 to 0.67 for synthetic images. For
Melanocytic nevus, Melanoma, and Seborrheic Keratosis / Irritated Seborrheic Keratosis
(SK/ISK), synthetic images were identified to better represent the respective skin condition,
indicating that our approach is able to preserve the clinical characteristics of those skin
conditions.

(a) (b)

Figure 7: Human Turing test Results for discriminating between real and synthetic im-
ages are shown in (a), whereas results for whether images correctly describe the
respective skin condition are shown in (b). Error bars represent standard deviation.

Synthetic images as data augmentation for skin condition classification We first
trained a MobileNet model (Howard et al., 2017) on our original (uncropped) data to
differentiate between 27 skin condition classes (26 plus “other”) from a single image. This

Real
Data

Derm
GAN

No
checkerboard

effect
mitigation

No
condition-specific
reconstruction

loss

No
feature
matching

loss
FID (± 1.96 STD) 83.6 ±2.5 122.4 ±3.4 151.6 ±3.4 174.0 ±4.7 140.7 ±2.5

Table 1: Ablation study of GAN evaluation using FID scores. Note that a lower
FID score means a better performance.
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baseline model achieves a top-1 accuracy of 0.496 on a test set of 5206 images, with poor
performance on some of the rare conditions. To help alleviate this issue, we generate 20000
synthetic images using the 8-class DermGAN model and add them to the existing training
data. We trained another MobileNet skin condition classifier using this enriched dataset
and evaluated its performance on the same test set. While the top-1 accuracy remains
relatively unchanged (p = 0.56 using paired T-test), performance improves for some of
the malignant minority classes: Melanoma F1 score increases from 0.148 ([0.067, 0.193],
95% confidence interval using bootstrapping) to 0.282 ([0.110, 0.356]), whereas Basal cell
carcinoma F1 score increases from 0.428 ([0.343, 0.439]) to 0.458 ([0.301, 0.534]), though at
the cost of misclassifying Melanocytic nevus (0.113 decrease in F1). For the other 5 classes,
the performances between the two models are comparable. (Fig. 8). Conventional data
augmentation techniques (flipping, saturation, jitters) are used in both of the training setups.

Figure 8: Augmenting training data with synthetic images. We added 20000 syn-
thetic images to the original training data of size 49920. The overall performance is
comparable to the baseline, but the performance on rare conditions like Melanoma
and Basal cell carcinoma has noticeable improvement.

4. Discussion and Conclusion

In this work, we tackle the problem of generating clinical images with skin conditions as seen
in a teledermatology setting. We frame the problem as an image to image translation task
and propose DermGAN, an adaptation of the popular Pix2Pix GAN architecture. Using the
proposed framework we are able to generate realistic images for pre-specified skin condition.
We demonstrate that when varying the skin color or the size and location of the condition,
the synthetic images can reflect such changes, while maintaining the characteristics of the
respective skin condition. We further demonstrate that our generated images are of high
fidelity using objective GAN evaluation metrics and qualitative tests. When using the
synthetic images as data augmentation for training a skin condition classifier, the model is
comparable to baseline, with improved performance on rare skin conditions. Further work is
needed to improve the resolution and the diversity of the generated images, to effectively
utilize such images for classification tasks by using techniques such as (Grover et al., 2019),
and to explore the benefit of image synthesis in other clinical applications.
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