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Abstract
Previous work on automated pain detection from facial expressions has primarily focused

on frame-level pain metrics based on specific facial muscle activations, such as Prkachin
and Solomon Pain Intensity (PSPI). However, the current gold standard pain metric is the
patient’s self-reported visual analog scale (VAS) level which is a video-level measure. In this
work, we propose a multitask multidimensional-pain model to directly predict VAS from
video. Our model consists of three stages: (1) a VGGFace neural network model trained to
predict frame-level PSPI, where multitask learning is applied, i.e. individual facial action
units are predicted together with PSPI, to improve the learning of PSPI; (2) a fully connected
neural network to estimate sequence-level pain scores from frame-level PSPI predictions,
where again we use multitask learning to learn multidimensional pain scales instead of VAS
alone; and (3) an optimal linear combination of the multidimensional pain predictions to
obtain a final estimation of VAS. We show on the UNBC-McMaster Shoulder Pain dataset
that our multitask multidimensional-pain method achieves state-of-the-art performance
with a mean absolute error (MAE) of 1.95 and an intraclass correlation coefficient (ICC)
of 0.43. While still not as good as trained human observer predictions provided with the
dataset, when we average our estimates with those human estimates, our model improves
their MAE from 1.76 to 1.58. Trained on the UNBC-McMaster dataset and applied directly
with no further training or fine-tuning on a separate dataset of facial videos recorded during
post-appendectomy physical exams, our model also outperforms previous work by 6% on
the Area under the ROC curve metric (AUC).

1. Introduction

Reading facial expressions is one of the most useful ways that humans perceive pain in
others (Fordyce, 1976). Accurate measurement of the pain severity, however, is difficult
even for trained professionals. The current clinical gold standard and most widely employed
method of assessing clinical pain is patient self-report (Zamzmi et al., 2016). However, this
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method is vulnerable to social and self-presentation biases and requires substantial cognitive,
linguistic, and social competencies (Zamzmi et al., 2016; Sikka et al., 2015; Aung et al.,
2016). The goal of an automated facial pain recognition model is to generate a pain level
based on facial videos that predicts the patient’s self-reported visual analog scale (VAS)
pain level. The model should be able to generalize to new patients, for example those with
communication disabilities.

Pain is multidimensional. Major dimensions of pain include physiological, sensory,
affective, cognitive, behavioral, and sociocultural (McGuire, 1992) aspects. Self-reported
VAS reports the subjective nature of pain but other multidimensional assessments have also
been useful (Ramelet et al., 2007; Ahles et al., 1983; Clark et al., 2002). In this paper, we
analyze the relationship between several pain measurements and their predictions from a
machine learning model, and propose a novel method to learn a pain score as a combination
of several dimensions of pain to better approximate the patient’s reported VAS level.

A natural way to predict a pain score using video is to use a 3D CNN. However, this
is not feasible in clinical pain detection because (1) clinical pain datasets are usually too
small to train a deep model and (2) the length of the video is not fixed. By contrast,
there exist a lot of models designed and trained for face analysis tasks in images, and we
only need to fine-tune such a model to apply to pain data frames. This paper proposes an
efficient three-stage model to estimate pain in video. In the first stage, we use deep neural
networks pre-trained on other face datasets to predict frame-level pain features such as
Prkachin and Solomon Pain Intensity (PSPI) (Prkachin and Solomon, 2008) scores directly
from raw images. We then extract statistics from the output of the first stage, and send
them into a neural network to get the sequence-level multidimensional pain scales. Further,
we find an optimal linear combination of these pain scales to estimate VAS. We also use
multitask learning in each of the first two stages, and show that both helped improve the
final VAS estimation. We show on the UNBC-McMaster Shoulder Pain dataset (Lucey et al.,
2011) and a post-surgery child pain dataset (Xu et al., 2018a; Hawley et al., 2019) that the
proposed extended multitask-learning multidimensional-pain approach outperforms current
state-of-the-art methods on pain intensity estimation in video.

1.1. Contributions

• We propose a three-stage model to evaluate the current gold standard pain metric VAS in
video from video frames directly
• We show that multitask learning of pain-related ratings improves the learning of target

pain ratings
• We propose to learn VAS as a combination of several dimensions of pain which are learned
through multitask learning, and show that this extended multitask learning method
performs significantly better than predicting VAS directly
• Our model beats the current state-of-the-art performance on two datasets
• Our model when combined with human estimates improves human estimation of pain.

1.2. Related Work

Two types of pain metrics are considered in pain studies (Ashraf et al., 2009). In facial video
pain recognition, frame-level pain metrics are calculated from the intensity of objective facial

2



Pain Evaluation in Video using Extended MTL and Multidimensional Pain

action units (AUs), such as PSPI in individual video frames. Sequence-level pain metrics are
rated by observers or subjects themselves for a collection of frames or video.

Most research on automatic pain detection using facial expression has focused on frame-
level pain metrics. Early studies have primarily involved two steps: extracting features from
facial images, and then using machine learning models to predict pain levels. Ashraf et al.
(2009) and Lucey et al. (2011) used AAM (Active Appearance Model)-based features and
SVM (Support Vector Machine) to detect pain. Monwar and Rezaei (2006) extracted location
and shape features of the face and used a neural network to recognize pain expressions.
Rudovic et al. (2013) proposed the heteroscedastic Conditional Ordinal Random Field to
change the variance in the ordinal probit model to adapt to the pain expressiveness level
specific to each subject. Recently, deep learning has been increasingly used to assess pain
directly from raw pixels. Wang et al. (2017) fine-tuned a face verification network. Zamzmi
et al. (2018) combined deep features from pre-trained VGGFace with traditional features for
neonates’ pain facial expression detection. There is also work considering spatiotemporal
information when estimating pain in a single frame. Rodriguez et al. (2017) linked CNNs
to a Long Short-Term Memory Networks (LSTM) model. Tavakolian and Hadid (2018)
used 3D CNNs to capture a wide range of spatiotemporal variations of the faces. Other
work has attempted to detect peak pain intensity of the entire video using multiple-instance
learning (Sikka et al., 2013; Ruiz et al., 2016).

None of the above methods estimate a sequence-level self-reported pain measure, but
pain is a subjective experience and self-rating with measures such as VAS is still the most
commonly used pain score in clinical settings. Only a few papers have addressed the problem
of estimating VAS score in facial videos. Sikka et al. (2015) and Xu et al. (2018a) detected
postoperative pain in children using AUs extracted by iMotions (imotions.com). Liu et al.
(2017) proposed a two-stage method to first train a NN (Neural Network) model at frame
level using sequence-level VAS as label and AAM landmarks as inputs, and then obtained
video VAS score from frame-level predictions using a Gaussian process regression model.
Martinez et al. (2017) used a bidirectional LSTM model to predict PSPI of each video frame
using AAM landmarks and then applied personalized HCRFs (Hidden Conditional Random
Fields) to predict VAS using the PSPI sequences.

Our model can be decomposed to frame-level and sequence-level predictions in a similar
way to the two stages in Liu et al. (2017); Martinez et al. (2017); Xu et al. (2018a) but our
model takes raw images as inputs in Stage 1, which involves the use of deep learning and
transfer learning, and doesn’t require AAM landmarks or AUs on test data which require
expensive trained human annotation of key frames and automated landmark/AU detector
and tracking algorithms.

2. Method

We developed our model based on the widely used UNBC-McMaster Shoulder Pain dataset (Lucey
et al., 2011). It includes facial videos of participants suffering from shoulder pain while
performing a series of active and passive range-of-motion tests to their affected and unaffected
limbs on two separate occasions. The dataset has 25 subjects, 200 videos and 48,398 frames
of size 320 x 240 pixels in total with two types of labels: frame-level labels and sequence-level
labels. Frame-level labels include 66 AAM landmarks, 11 facial action unit (AU) intensities
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and 1 PSPI score. Both of the previous papers predicting VAS using this dataset (Martinez
et al., 2017; Liu et al., 2017) used AAM landmarks as input features but in this work we
only used images as inputs. We also used AUs and PSPIs as outputs during training.

AUs are defined by the FACS (Facial Action Coding System) (Ekman and Friesen, 1976)
to code nearly all anatomically possible facial expressions. In this dataset, the 11 AUs are
brow lowering (AU4), cheek raising (AU6), eyelid tightening (AU7), nose wrinkling (AU9),
upper-lip raising (AU10), oblique lip raising (AU12), horizontal lip stretch (AU20), lips
parting (AU25), jaw dropping (AU26), mouth stretching (AU27) and eye closure (AU43)
coded by trained human FACS coders. These AUs are among those believed to be related to
pain expression (Lucey et al., 2011).

PSPI (Prkachin and Solomon, 2008) is a pain evaluation metric computed from a specific
set of pain-related AU intensities:

PSPI = AU4 +max(AU6, AU7) +max(AU9, AU10) +AU43

AU intensities are integers ranging from 0-5 (weakest trace to maximum intensity possible),
except for AU43 which is only scored with values of 0 or 1, so PSPI rating is also an integer
and ranges from 0-16 (with larger values reflecting more pain).

Sequence-level labels include the gold standard self-rating VAS pain score ranging from
0-10, as well as three other pain ratings: OPR (Observers Pain Rating) 0-5, AFF (Affective-
motivational scale) 0-16 and SEN (Sensory Scale) 0-16. The properties of AFF and SEN are
discussed in Gracely et al. (1978); Heft et al. (1980). OPR is an estimation of pain intensity
given by independent trained observers from the recorded video. The observers are shown to
have high inter-observer reliability (Lucey et al., 2011).

With the help of the labels described above, our goal is to train a model that predicts
VAS from the video or image sequence directly. We chose the hyper-parameters of the neural
networks based on training/validation learning curves and validation performance. The
learning rates were selected using grid search at logarithmic intervals. The number of epochs
and early stopping criterion were decided by observing the learning curves. The choice of
optimizer doesn’t affect the validation performance much so we chose it based on previous
work (Parkhi et al., 2015; Xu et al., 2018a) and experience.

2.1. Stage 1: PSPI Estimation in Facial Images

Our first stage predicts frame-level PSPI score from RGB images. We built our model
based on the VGGFace model (Parkhi et al., 2015). The architecture was designed and
pre-trained to classify 2622 individuals, and we simply replaced the last layer with our
own linear fully-connected regression layer. During training, we updated all parameters in
the neural network, but we used different initial learning rates (1e-4 for the last layer and
1e-5 for other layers). We used Adam optimization and weight decay of 5e-4. We applied
batch-weighted (Sellami and Hwang, 2019) Mean Squared Error (MSE) loss, where the weight
of a sample in loss is inversely proportional to the proportion of its label (which is PSPI
score here) in the current batch, to overcome the class imbalance problem. We used a batch
size of 32, max epochs of 50, and early stopping when the validation loss hadn’t decreased
for 20 epochs.

We did the same image pre-processing as done in the VGGFace model (Parkhi et al.,
2015). Specifically, we used the cascade DPM Face Detector (Wolf et al., 2011; Mathias et al.,
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2014) to detect the face and then extended the bounding box by a factor of 0.1 and resized
the cropped image to 224 × 224. We normalized the images with the mean and standard
deviations per RGB channel over the pre-training data.

2.2. Stage 2: VAS Estimation in Facial Videos using Sequence of Predictions

After we obtained PSPI predictions of each frame in Stage 1, we extracted 9 statistics (mean,
max, min, standard deviation, 95th, 85th, 75th, 50th, 25th percentiles) over all frames of a
video to form a video feature vector which was fed to a fully connected neural network with
one 18-unit hidden layer to predict VAS in a linear output unit using batch-weighted MSE
loss similar to Stage 1. We used Adam with initial learning rate 1e-2. Batch size was set to
32 and max epochs to 200; early stopping, when the validation loss hadn’t decreased for 20
epochs, was used.

Combining Stage 1 and 2 we obtained our baseline model which predicts VAS score from
video. This is illustrated in Figure 1 by solid blocks. Stage 1 and 2 were trained separately
due to memory capacity limitations of our GPU.

2.3. Multitask Learning

The UNBC-McMaster Shoulder Pain dataset contains other pain metrics besides VAS and
PSPI at both the frame and sequence level. At the frame level, there are 11 manually coded
FACS AUs. At the sequence level, besides VAS, three other pain ratings are available. We
hypothesized that a multitask network (Caruana, 1997) learning these metrics with the same
hidden layer/representations as those learning to predict PSPI and VAS may be better able
to learn PSPI and VAS.

For example, in the first stage, PSPI is a non-linear combination (due to the max
operation) of 6 AUs. The same PSPI score could be due to many different combinations of
AU scores and underlying facial expressions. Thus there is a noisy many to one mapping
between facial muscle activations and PSPI scores. Learning individual AU activations is a
simpler mapping, and a network that performs well on the underlying AU representations
should be able to compute PSPI.

Similarly, in the second stage, OPR, AFF, and SEN are related to the VAS pain score.
OPR in particular is more directly related to the video than VAS. The OPR scores resulted
from trained human observers estimating pain using only the video. On the other hand,
a person’s self-reported VAS may not be fully reflected in their video; if the person is
particularly expressive or stoic, their VAS score may be more or less related to the video
features.

Our proposed multitask architecture is illustrated in Figure 1. In Stage 1, instead of only
one output estimating PSPI, we concatenated several AU values and the PSPI score to form
a multitask vector output. During training, we scaled the labels into the same range to make
sure all elements contribute equally to the loss. AU labels are even more sparse than PSPI
labels, so we only used the 9 AUs (AU4, 6, 7, 10, 12, 20, 23, 26, 43) labeled in more than
500 frames out of the 48398 frames in the dataset. For a similar reason, we weighted the loss
function using PSPI score distribution and only looked at PSPI for validation loss for early
stopping.
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Figure 1: The proposed three-stage structure. The baseline model is represented by solid
blocks, and shaded blocks with dashed outlines show added parts in multitask
learning and ensemble learning with multidimensional pain scales. During training,
Stage 1 is first trained with batches of frames and used to predict a sequence of
PSPI scores. Then Stage 2 is learnt using batches of video features obtained from
PSPI sequences. The network can’t be trained end-to-end due to limited GPU
memory.

In Stage 2, similarly, we used a 4-dimensional vector representing the four pain ratings
instead of a single value representing VAS as output. The losses are weighted based on the
distribution of VAS scores, and the validation loss is the mean MSE of the 4 outputs.

2.4. Stage 3: Ensemble Learning of Multidimensional Pain Measurement

On the UNBC-McMaster dataset, each of the 4 sequence-level scores (VAS, OPR, AFF, and
SEN) can be seen as pain estimates that focus on different aspects of pain. For example, VAS
reflects how much pain the patient perceives and relies on the patient’s personal understanding
of pain, whilst OPR is based on third-party observation of facial expressions, and will be
influenced by how much “pain expression” the patient shows on his/her face and how good
the observer is at reading facial expressions of pain. They also have different properties. For
example, OPR may be more consistent across subjects when scored by the same observer.
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As OPR entirely depends on facial video it should be more easily learned from facial video
than VAS in the same way that AUs should be more learnable from video than a non-linear
function of them. At the same time, OPR may be limited as a measure of actual pain as it
is only able to reflect pain revealed by facial expressions and will be biased if the subject
hides it, but that will also be a limitation of our system and any computer vision system
unless it incorporates features from other sensors (Xu et al., 2018b).

OPR, AFF, and SEN are all highly correlated with VAS and can be considered as
predictions of VAS. In fact, after scaling the outputs of Stage 2 to the same range as VAS,
all 4 outputs do a reasonable job at estimating VAS. That is, we have 4 “experts” each with
its own prediction of pain level. This suggests an ensemble averaging method to reduce
variance at no cost to bias (Hashem, 1997). This corresponds to Stage 3 in Figure 1. The
optimal linear combination of experts to form a least mean squared error estimation of the
target score was discussed in Hashem (1997). Below we briefly discuss the derivation of our
ensemble model weights.

Consider each data point (x, y) as an observation of random variables (X, Y ) from an
unknown multivariate distribution over R9 × R. And fi : R9 → R (i = 1, 2, 3, 4) maps Stage
2 inputs to a real number, each corresponding to one of the 4 scores.

We learn the final prediction of VAS as a weighted sum of the four experts. If each expert
is fi, then the overall model f̃ can be defined as:

f̃(x) =
4∑

i=1

αifi(x)

where we apply the constraint
∑4

i=1 αi = 1 (and α0 = 0) as suggested by Clemen (1986);
Trenkler and Liski (1986); Hashem (1997).

The MSE loss of the final model is:

MSE(f̃(X)) = E[(f̃(X)− Y )2] = E[(
4∑

i=1

αifi(X)− Y )2] = E[(
4∑

i=1

αi(fi(X)− Y ))2]

Our goal is to minimize MSE subject to
∑4

i=1 αi = 1. The Lagrangian expression is:

L(X, λ) = MSE(f̃(X))− λ(

4∑
i=1

αi − 1) (1)

where λ is the Lagrange multiplier.
Differentiating Equation (1) with respect to αk:

∂L(X, λ)

∂αk
= E[2

4∑
i=1

αi(fi(X)−Y )(fk(X)−Y )]−λ = 2

4∑
i=1

αiE[(fi(X)−Y )(fk(X)−Y )]−λ

and setting the derivative to 0 gives us the optimal α = [α1, α2, α3, α4]
T as:

α =
Ω−11

1TΩ−11
(2)

where Ω = [ωij ] = E[(fi(X)− Y )(fj(X)− Y )]

7



Pain Evaluation in Video using Extended MTL and Multidimensional Pain

3. Experiments

On the UNBC-McMaster dataset, we performed 5-fold cross validation with each fold
consisting of 5 subjects. We used the same training/test splits for the three stages in each
iteration.

Our results are reported in Table 1 and Table 2. We report Mean Absolute Error (MAE),
Mean Squared Error (MSE), Intraclass Correlation Coefficient (ICC) and Pearson Correlation
Coefficient (PCC) averaged over five cycles of 5-fold cross validation (along with the standard
deviation over the 5 runs). To ensure reproducibility, we used the same set of random seeds
to make sure all models are trained and tested on the same data and have the same initial
states. In Table 1, the predictions of the final extended multitask learning model are given in
the last row, and the previous rows are discussed in the next subsections and reflect ablation
analyses to examine the effect of different components of our model. In Table 2, we compare
our model to previously published research.

We run all our experiments on a single GPU (NVIDIA GeForce RTX 2080); it takes
about 4 hours to train a three-stage model using 4 folds of the UNBC-McMaster data.

3.1. Stage 1: PSPI Estimation using Multitask Learning

We obtained an MAE of 0.84± 0.06 in PSPI estimation in Stage 1. We could likely improve
the performance by using temporal information, but as our final goal is to estimate VAS using
the PSPI predictions, we decided to focus on that aspect and looked at the final performance
on VAS directly.

In Table 1, the second row compared to the first row shows the benefit of multitask
learning in Stage 1. It should be noticed that in multitask learning although the AUs are
learned in Stage 1, they are not fed into the next stage, but having them as targets during
Stage 1 training helps the net learn more informative PSPI predictions for predicting VAS.

To better understand this aspect, we plot the contributions of image pixels to the outputs
using SHAP introduced by Lundberg and Lee (2017) in Figure 2. SHAP is a framework that
interprets complex models by assigning each feature an importance value for a particular
prediction. Pixels with larger absolute values of SHAP (darker color on image) reflect a
greater influence on the output. In the 3rd column of Figure 2 (a), the PSPI output of the
MTL model has captured more meaningful pixels on the face compared to the baseline model
shown in the 2nd column of Figure 2 (a). We can see clearer shapes of the eyebrows and
the mouth, and even the nasolabial folds in the 3rd column relative to the 2nd. Figure 2
(b) shows that many of these areas are relevant for the prediction of several AUs, such as
eyebrows in AU4, eye area in AU7 and AU43, corners of the lip and nasolabial furrows in
AU12, mouth in AU25, etc. Note this is true even though some of the AUs are not well
learned because of a lack of training data (AU10 and AU20 both are present in less than
1000 frames).

3.2. Stage 2 and 3: VAS Estimation using Extended Multitask Learning of
Multidimensional Pain Scales

Using the PSPI estimations from Stage 1, we trained a neural network to predict VAS. Again
multitask learning was used and the 4 pain scales shared the same hidden layer. In Table 1,
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(a) Baseline (2nd col) vs MTL (3rd col)

(b) MTL PSPI (2nd col) and AUs (remaining cols)

Figure 2: Contributions in Stage 1 of pixels for two frames are explained in the figures above.
(a) compares PSPI predictions and pixel contributions for the baseline model (that
outputs only PSPI) with the MTL model (that outputs 9 AUs in addition to PSPI).
(b) shows the processing of the PSPI as well as the 9 AUs in the MTL model. The
first column in both (a) and (b) show two frames from different videos (top row
for PSPI=0, bottom row for PSPI=5). The rest of each row reflect processing of
each of these frames. The second column in (a) shows the contributions of pixels
to the baseline Stage 1 model using SHAP. The third column in (a) shows the
contributions of pixels to the MTL model predicting both PSPI and 9 AUs. In
(b) this column is reproduced next to plots of the SHAP contributions towards
predicting the AU outputs. Positive SHAP value means a positive contribution
of a pixel to the corresponding output, and negative SHAP value means negative
contribution. For example, in (b), when predicting AU4, the model focuses on the
area around eyes and eyebrows, especially the inner portion of the eyebrows and
the area between them, which is consistent with the description of AU4.

we show in row 3 compared to row 1 (as well as row 4 compared to row 2) that multitask
learning in Stage 2 improves VAS prediction slightly.

We first observed the performance of each of the 4 outputs from Stage 2, shown in Figure 3.
Interestingly, the best approximation of a metric is not always given by its corresponding
trained output. The OPR output does a better job in estimating OPR than other outputs.
The same is true for AFF. However, the OPR output gives a better estimate of VAS than
the VAS output.

One way to solve this problem is to consider them as four different estimators of VAS and
learn an ensemble model on top of them. This third stage of our model has been discussed
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Figure 3: Average MAE matrices on training, validation and test data. The y-axis gives the
true label, and the x-axis the prediction (or the mean of the 4 predictions). Each
entry is the mean absolute difference between the two variables.

Table 1: Sequence-level VAS Prediction using Frame-level Predictions from Stage 1
Model MAE MSE ICC PCC
Baseline 2.34± 0.09 7.27± 0.51 0.34± 0.04 0.50± 0.04

MTL (AUs) 2.23± 0.08 6.76± 0.37 0.37± 0.02 0.52± 0.03

MTL (pain scores) 2.30± 0.06 7.06± 0.31 0.37± 0.04 0.52± 0.02

MTL (AUs + pain scores) 2.20± 0.06 6.53± 0.30 0.37± 0.03 0.54± 0.02

MTL (AUs) + Ensemble 1.97± 0.04 6.10± 0.26 0.40± 0.03 0.52± 0.03

MTL (AUs + pain scores) + Ensemble 1.95± 0.06 5.98± 0.22 0.43± 0.02 0.54± 0.03

in Section 2.4 and experimental results are shown in the last row in Table 1. The optimal
weights were found on training and validation data, and the ensemble outperforms each of
the 4 outputs on the test data.

In order to show that multitask learning in Stage 2 is also helpful, we also trained 4
separate networks for the 4 scores with no shared parameters. Then we combined these
scores using the same method for learning an ensemble model and obtained a final prediction
of VAS. The performance (body row 5 in Table 1) is slightly worse than using multitask
learning at this stage.

It should also be noted that learning the weights in Stage 2 and 3 together through back
propagation didn’t give as much improvement as in the extended multitask learning where
we learned to predict multiple pain dimensions first and combine them afterward.

Overall, the multitask and ensemble contributions to our model (bottom row Table 1)
improve the performance by 17% over the baseline model (top row Table 1).

3.3. Comparison with Other Work

Our results are compared with previous work estimating VAS using the UNBC-McMaster
dataset or a child pain dataset in Table 2. The child pain dataset contains facial video from
children aged 10 to 15 who had undergone medically necessary laparoscopic appendectomy.
Details of this dataset can be found in Xu et al. (2018a). Without any retraining or fine-
tuning, we tested the model trained on the UNBC-McMaster dataset with 134 videos of 70
subjects from the child pain dataset. Our model performs significantly better than previous
work. Our 95% Confidence Interval of MAE on the shoulder pain dataset is 1.95±0.0526 and
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that of ICC is 0.43± 0.0175. If we assume equal variability for the previous state-of-the-art
(Liu et al., 2017) (not provided in the paper), our MAE is significantly lower (p = 0.0002).
Similarly, our AUC on the child pain data is significantly higher than that in Xu et al. (2018a)
with p = 0.00001.

Table 2: Comparison with Other Work
Model Dataset MAE ICC AUC

pRNN-HCRF (p=1) (Martinez et al., 2017) UNBC 2.47± 0.18 0.36± 0.08 -
pRNN-HCRF (p=2) (Martinez et al., 2017) UNBC 2.46± 0.23 0.34± 0.04 -

DeepFaceLIFT (Liu et al., 2017) UNBC 2.18 0.35 -
Extended MTL (Our Model) UNBC 1.95 ± 0.06 0.43 ± 0.02 -

TransferLearning (Xu et al., 2018a) Child - - 0.72± 0.02

Extended MTL (Our Model) Child 2.22± 0.10 0.33± 0.05 0.76 ± 0.01

4. Discussion and Conclusion

We designed an automatic system which takes in facial videos and outputs a pain score. It
can either be applied to new videos directly without any human annotation (as we did for the
child pain dataset), or retrained with new data following our method for possible performance
improvement. The new dataset doesn’t have to be annotated with the same labels. For
example, other pain dimensions/action units can also be helpful using the extended multitask
learning framework.

We can compare our result to trained human raters (the provided OPR value). When the
given OPR is used to estimate VAS, the MAE is 1.76. The machine learning model (MAE
1.95) is not quite as good as expert human observers for now, but it is close and cheaper,
more consistent, and available 24 hours a day. More usefully, in situations where an observer’s
rating is available, averaging our model output with the real OPR gives better performance
than real OPR (HUMAN) alone. With this simple averaging, the MAE is reduced to 1.58.
A Wilcoxon signed-rank test revealed that the absolute errors are significantly lower for the
average of OPR and our output than OPR alone (p = 4.06e-7). Thus our system can
help expert humans estimate VAS better.

To summarize, we propose a three-stage model to predict VAS in facial videos directly,
and propose a method using multitask learning, multidimensional pain measurement and
ensemble learning to effectively improve the performance of the model. Our approach achieves
state-of-the-art performance on the UNBC-McMaster Shoulder Pain dataset and a child
pain dataset. Our approach can also be easily transferred to other healthcare tasks and
general machine learning application tasks. The three-stage structure can be used when
end-to-end training is not feasible with limited computational memory and data. Breaking
the problem into separate stages allows the use of transfer learning from pre-trained models
and well-studied structures and simplifies the learning and interpretation of the system. Our
idea of extended multitask learning and the usage of multidimensional measurements can
be applied to other healthcare data which are noisy, high-dimensional, and limited in the
number of samples.
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