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Abstract

Sleep apnea is a common respiratory disorder characterized by breathing pauses during the
night. Consequences of untreated sleep apnea can be severe. Still, many people remain
undiagnosed due to shortages of hospital beds and trained sleep technicians. To assist in the
diagnosis process, automated detection methods are being developed. Recent works have
demonstrated that deep learning models can extract useful information from raw respiratory
data and that such models can be used as a robust sleep apnea detector. However, trained
sleep technicians take into account multiple sensor signals when annotating sleep recordings
instead of relying on a single respiratory estimate. To improve the predictive performance
and reliability of the models, early and late sensor fusion methods are explored in this work.
In addition, a novel late sensor fusion method is proposed which uses backward shortcut
connections to improve the learning of the first stages of the models. The performance of
these fusion methods is analyzed using CNN as well as LSTM deep learning base-models.
The results demonstrate a significant and consistent improvement in predictive performance
over the single sensor methods and over the other explored sensor fusion methods, by using
the proposed sensor fusion method with backward shortcut connections.

1. Introduction

Sleep apnea is a respiratory disorder consisting of breathing pauses, or apneaic events, during
the night (Guilleminault et al., 1976). These events are either classified as obstructive sleep
apnea (OSA) when the upper airway collapses or central sleep apnea (CSA) when the signals
to control the breathing are disturbed. When breathing becomes shallow, but is not yet
fully disturbed, it is classified as hypopnea.

Consequences of untreated sleep apnea can be severe ranging from hypertension, cardiac
arrhythmia to even strokes and heart failure (Somers et al., 2008; Yaggi et al., 2005). It is
estimated that 49.7% of male and 23.4% of female adults suffer from some form of sleeping
related breathing disorder (Heinzer et al., 2015). However, many of these patients are
unaware of their condition and suspected patients are faced with long waiting times for
diagnosis due to expensive setups and a limited amount of hospital beds and trained sleep
technicians. In the USA, waiting times of up to 60 months have been reported (Flemons
et al., 2004).
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Before diagnosis, patients are typically admitted for an overnight sleep study using
a polysomnography (PSG) (Berry et al., 2016). This device measures a wide range of
sensor data including respiration, heart rate, oxygen saturation and brain activity. After
the recording, trained sleep technicians inspect the signals of the entire night and manually
annotate the data for sleep events, including sleep apnea episodes, using a standard reference
such as the AASM guidelines (Berry et al., 2016). The severity of sleep apnea is then
summarized using the Apnea-Hypopnea-Index (AHI) which represents the number of apnea
or hypopnea events per hour of sleep.

To assist in this process, and reduce the load on personnel, automated scoring methods
have been investigated. These methods range from rule-based algorithms to machine learn-
ing approaches. The machine learning models generally use human-engineered features.
However, thanks to advancements in deep learning technology, researchers have been able
to use deep learning models for extracting features and detecting sleep apnea events in raw
respiratory data. Examples include a CNN based model proposed by Haidar et al. (2017)
which uses the nasal airflow signal and an LSTM based model proposed byVan Steenkiste
et al. (2019) which was tested on the abdominal respiratory belt, thoracic respiratory belt
and the ECG derived respiration signal.

Although these deep learning methods have offered an increase in detection performance
and robustness, a crucial limitation is their inclusion of only a single respiratory channel
whereas sleep technicians take into account a wide range of sensor data when analyzing the
sleep of a patient. In addition to respiration, other important parameters include the heart
rate (Snyder et al., 1964) and oxygen saturation (Berry et al., 2016). To further improve
the performance and reliability of these deep learning models, it is crucial that data from
the other recorded signals is included into the detection model.

Combining data from multiple sources is known as sensor fusion and has been success-
fully applied across a wide range of medical use-cases including activity recognition (Gravina
et al., 2017; Münzner et al., 2017), sleep quality analysis (Peng et al., 2007) and sleep de-
tection (Chen et al., 2017). When the data is combined in the beginning of the model,
the method is denoted as early fusion. When, on the other hand, the data is combined
at a later stage, the method is known as late fusion. In deep learning, the early fusion
method consists of a multi-input model where all data is simply concatenated. The late
fusion method consists of separate branch networks for each input, that are combined at a
later stage.

In this work, the performance of these two sensor fusion approaches is analyzed and a
novel late fusion method using backward shortcut connections is proposed for combining
data from the abdominal respiratory belt, thoracic respiratory belt, heart rate and oxygen
saturation into a single deep learning model. The performance and robustness is verified
using a CNN (LeCun et al., 1990) as well as an LSTM (Hochreiter and Schmidhuber, 1997)
based model.

In Section 2, the base single-input deep learning models are presented. Then, in Sec-
tion 3, the various sensor fusion methods are discussed and the novel approach is presented.
In Section 4, the experimental setup is detailed and in Section 5 the results of the experi-
ments are presented and discussed. Finally, conclusions are drawn in Section 6.

2



Sensor Fusion using Backward Shortcut Connections

2. Single Input Methods

Several deep-learning architectures for automated sleep apnea detection have been proposed.
Haidar et al. (2017) suggest a CNN based approach using data from the nasal airflow sensor.
Van Steenkiste et al. (2019) suggest an LSTM based approach which was validated for data
from the abdominal respiratory belt, thoracic respiratory belt and ECG derived respiration.
However, data from these multiple sensors has not yet been combined into a single model.
Based on these works, two baseline deep learning models are defined as shown in Figure 1.
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(b) LSTM-based model.

Figure 1: State-of-the-art baseline CNN and LSTM models for the automated detection of
sleep apnea events in raw respiratory data. The models are split into two parts
to be used by the sensor fusion methods. Here, X1 represents the raw respiratory
data input and y represents the binary sleep apnea prediction label.

The CNN-based model in Figure 1(a) consists of two convolutional layers (LeCun
et al., 1990) followed by a maxpooling layer, two more convolutional layers and a Global
Average Pooling (GAP) layer. A dropout layer is added for regularization (Srivastava
et al., 2014) and two dense layers provide the final predictions of the model. All layers have
relu activations except for the final dense layer which has a sigmoid activation for binary
prediction. The number of filters in the first two convolutional layers nf1 and nf2 is 100
whereas the number of filters in the final two convolutional layers nf3 and nf4 is 160. All
convolutional layers have a kernel size nk1, nk2, nk3 and nk4 of 10. The max pooling layer
has a pool size of np1 of 3 and the dropout probability p1 is 50%.

The LSTM-based model in Figure 1(b) consists of an LSTM layer (Hochreiter and
Schmidhuber, 1997) followed by three groups of dropout and dense layers. The number of
LSTM nodes n1 is 50 and their activation function is the tanh function. The first two dense
layers consist of n2 and n3 number of nodes equal to 25 with a relu activation function.
The final dense node has a sigmoid activation function for binary prediction. All dropout
probabilities p1, p2 and p3 equal 20%.
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3. Sensor Fusion Methods

Sensor fusion refers to the combination of data from multiple sensors into one single decision
model. This can be achieved at three different levels: The data level, the feature level and
the decision level (Gravina et al., 2017; Liggins II et al., 2017). In deep learning, features
can be automatically learned and extracted from raw data. In early fusion models, the data
is passed into the model as a single input matrix by concatenating all input data. In late
fusion models, the deep learning architecture is split up into several branches. The different
possible configurations are shown in Figure 2.
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Figure 2: Examples of different types of methods for fusion of multiple sensors. In the
examples, data from two sensors is used.

Figure 2(a) represents the Single Input Method (SIM) as presented in Section 2. The
original deep learning model is split up into a part A representing the first stages and a
part B representing the later stages as demonstrated in Figure 1. The SIM can only use a
single input signal. However, the method can easily be extended to include multiple inputs
as shown in Figure 2(b). This method is denoted as the Multi Input Method (MIM) and
consists of the same architecture as the SIM but with a concatenated input matrix. Using
this early fusion approach, the model is able to learn features that are correlated across the
sensors. However, there is no intrinsic incentive for the model to extract as much information
as possible form each input sensor individually as training and optimization procedures only
focus on the combined prediction. The MIM has, for example, been applied for activity
recognition (Münzner et al., 2017) based on CNN networks and sleep detection (Chen et al.,
2017) based on LSTM networks using human-engineered features.

In Figure 2(c), the deep learning architecture is split up into several branches for what
is denoted as the Branched Fusion Method (BFM). In this late fusion setup, correlations
are being learned at the feature level instead of at the data level. This type of fusion model
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is often used to fuse data from multiple streams in deep learning architectures. It has, for
example, been used in activity recognition (Münzner et al., 2017) based on CNN networks,
sleep quality monitoring (Peng et al., 2007) based on SVM models, and driver activity
anticipation (Jain et al., 2016) and medical procedure monitoring (Bernal et al., 2018) both
based on LSTM networks.

A disadvantage of the BFM is that the separate branches often do not reach their full
potential. There is no incentive for each of the branches to perform at their full potential.
This can be derived by inspecting the error function used during the backpropagation step
as defined in Equation 1 where LBi represents the final layer of branch i, Lf represents the
first layer of the fusion part, wLf ,LBi represents the weights between the branch and the
fusion part, zLf represents the weighted input to the fusion part and σ is the activation
function.

δ
LBi
BFM = ((wLf ,LBi )T δLf ) � σ′(zLf ) (1)

When one of the branches is able to capture the required behavior, the δo at the output
node will be near zero. This will be propagated via δLf to δLBi for each branch i, resulting
in small updates to the branches and the network in general. For the branch or branches
influencing this output the most, this is to be expected and desired as the output is close
to the target value. For the other branches, however, this can critically limit the learning
capacity as they are only subjected to small weight updates from that point forward. The
first branch or set of branches to accurately predict the events will lead the model and the
potential benefit of including the other sensors is lost.
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Figure 3: Error propagation in the BFM and BFM-SC. Here, LBi is the final layer of the
ith branch, Lf is the first layer of the fusion part and LSi is the first layer of the
shortcut connection for branch i.

In Figure 2(d), a novel approach is proposed which uses backward shortcut connections
to enhance the learning capacity of each separate branch: the Branched Fusion Method with
Shortcut Connections (BFM-SC). Shortcut connections have been used before, e.g. as skip
connections in residual neural networks (He et al., 2016). In that setting, the connections
are used to pass the input forward to the next layer. Here, they are used to pass the target
back to the different branches. This incentivizes each part of the model, i.e. the separate
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branches and the fusion layer, to work at maximum performance. The backward shortcut
connections can be implemented by adding a separate part B for each input branch, each
with its own output. The branch thus provides input to its own part B and the fusion
part B. This results in two different error measures being propagated back to the branch
as visualized in Figure 3. The error δLBi for branch i then consists of the combination of
the shortcut connection error δLSi and the original fusion part error δLf as demonstrated
in Equation 2.

δ
LBi
BFM−SC = ((wLf ,LBi )T δLf ) � σ′(zLf )/2 + ((wLSi

,LBi )T δLSi ) � σ′(zLSi )/2 (2)

When one or more of the branches of the BFM-SC take the lead, resulting in a small
δo and thus a small δLf , the other branches still get weight updates via their respective
δLSi and hence they can continue learning. The output of these branches will continue to
change, causing updates to the weights wLf ,LBi connecting the branch to the fusion part.
Consequently, the importance of the branch in the fusion output continuously changes while
the performance is increasing and branches that take longer to reach their full performance
can still be included into the model. When the BFM-SC is deployed and used, the additions
of to the backward shortcut connections can be removed and the model functions as a regular
BFM.

4. Experimental Setup

To analyze and compare the performance of the different methods, data from the Sleep-
Heart-Health-Study-1 database (Quan et al., 1997) is used which contains PSG recordings
of 5804 adults of age 40 and older. From this database, five non-overlapping datasets, or
groups, of 100 patients each are created. In order to accurately assess the performance for
sleep apnea detection in hospital settings, there are no specific inclusion criteria and patients
are simply sequentially included. Hence, the first group of patients corresponds to the first
100 patients in the SHHS-1 database. Each of the groups is split in 30 patients for training,
20 patients for validation and 50 patients for testing. An overview of patient characteristics
is provided in Table 1. For privacy, age is represented as a categorical variable with five
representing patients between 35 and 44 years of age and ten representing patients 85 year
or older. Each step represents an increase of 10 years.

For each patient, the abdominal respiratory belt (abdores), thoracic respiratory belt
(thorres), heart rate (HR) and oxygen saturation (SaO2) are extracted in addition to the
human-based annotations of OSA, CSA and hypopnea. All recorded signals are resampled to
5Hz. To reduce noise and enable the deep learning models to focus on the relevant aspects
of the signals, the data is passed through a basic preprocessing stage. The respiratory
belt signals are filtered using a fourth-order low-pass zero-phase-shift Butterworth filter
with a cut-off frequency of 0.7Hz to extract relevant respiratory information (Hettrick and
Zielinski, 2006). Next, they are normalized using the 5% and 95% percentile per patient.
Sensor artifacts in the HR and SaO2 signals are removed through linear interpolation of
missing values. The HR signal is normalized based on a minimum and maximum heart rate
of 50 and 105 beats per minute respectively. The SaO2 signal is normalized between an
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Table 1: Patient characteristics for the different groups used in this study. The AHI metric
demonstrates that group 2 has the most sleep apnea events per hour of sleep.

group AHI [events/h] BMI [kg/m2] gender [% male] age [category]

0 12.8 ± 13.5 27.0 ± 4.4 37 ± 48 7.1 ± 1.1
1 13.3 ± 16.4 27.5 ± 5.7 56 ± 50 6.7 ± 1.3
2 19.6 ± 17.3 27.3 ± 4.4 40 ± 49 7.2 ± 1.1
3 13.7 ± 12.2 27.2 ± 4.9 52 ± 50 7.0 ± 1.3
4 10.9 ± 10.0 26.8 ± 4.7 55 ± 50 7.3 ± 1.3

80% and 100% saturation interval. The three annotation signals OSA, CSA and hypopnea
are combined into a single binary indicator signal.

The preprocessed data are split up into epochs of 30 seconds with a stride of 1 second.
If, at any point during the epoch, there was a human-based annotation of apnea, the entire
epoch is labeled as apnea-positive. Apnea epochs are less common than normal sleep leading
to an imbalanced data problem. For training, the dataset is balanced via random balanced
sampling. For testing and validation, the dataset is not altered to accurately represent the
real-life problem case.

The generated datasets are used to benchmark the performance of the different methods
presented in Section 3. Each of these methods is tested using a CNN-based model as well as
using an LSTM-based model. For each of the four input signals, a separate CNN and LSTM
model with the SIM is constructed. The four signals are also combined to generate a CNN
and LSTM model with the MIM, BFM and BFM-SC. This results in 14 different model
configurations being analyzed. Each configuration is trained using the binary-crossentropy
loss function with an Adam optimizer (Kingma and Ba, 2014) with learning rate set to
0.001 for 25 epochs. Gradients are clipped at 0.5 to improve learning. Early stopping based
on the validation set is applied (Morgan and Bourlard, 1990; Caruana et al., 2001).

To accurately assess the performance, the different model configurations are trained and
evaluated five times using a different group of patients. In addition, the robustness of the
configurations is assessed by training and evaluating the models an additional four times on
the first group of patients. This results in a total of nine experiments for each configuration.

The primary endpoint of this study is the performance of the model for detecting sleep
apnea events. As these experiment deal with an unbalanced dataset, the area under the
precision-recall curve (AUPR) is used as is recommended in literature (Kotsiantis et al.,
2006; He and Garcia, 2009). To test the statistical significance of any improvement of the
BFM-SC over the other configurations, a paired T-test is used. In addition, the robustness
of the improvement of the BFM-SC over the different other configurations is analyzed using
a heteroscedastic T-test over the five repetitions on the first group of patients. For each
experiment, a significance level of p < 0.05 is required.
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5. Results and Discussion

All experiments showed convergence before the 25 epoch threshold. The results of the
five runs to test the performance of the models are shown in Table 2 and Table 3 for the
CNN-based and LSTM-based configurations respectively. These results demonstrate that
the BFM-SC approach consistently performs better than the other approaches. Figure 4
summarizes the performance of the different approaches.

Table 2: AUPR scores for the different tested approaches using the CNN-based model. The
BFM-SC outperforms all other configurations.

group 0 group 1 group 2 group 3 group 4

SIM abdores 0.70 0.59 0.55 0.51 0.51
SIM thorres 0.64 0.55 0.69 0.54 0.41
SIM hr 0.44 0.35 0.54 0.37 0.37
SIM SaO2 0.63 0.58 0.70 0.53 0.47
MIM 0.62 0.58 0.61 0.48 0.47
BFM 0.67 0.66 0.69 0.53 0.45
BFM-SC 0.74 0.68 0.75 0.57 0.58

Table 3: AUPR scores for the different tested approaches using the LSTM-based model.
The BFM-SC outperforms all other configurations.

group 0 group 1 group 2 group 3 group 4

SIM abdores 0.73 0.68 0.65 0.57 0.29
SIM thorres 0.71 0.53 0.73 0.54 0.34
SIM hr 0.36 0.37 0.50 0.29 0.33
SIM SaO2 0.65 0.57 0.71 0.31 0.46
MIM 0.72 0.63 0.72 0.57 0.31
BFM 0.76 0.67 0.76 0.61 0.56
BFM-SC 0.78 0.70 0.78 0.64 0.61

The variation in performance across the groups can be explained by the sensitivity of
the AUPR metric to the positive-negative balance in the labels. For an accurate estimation
of the performance, these scores need to be compared against the performance of a random
binomial model with predictions based on the balance of positive and negative events in
the training data. These scores are presented in Table 4 for each of the groups. As would
be expected, there is a strong correlation with the AHI values of each group presented in
Table 1.
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(b) LSTM-based model.

Figure 4: Summary of the performance of the different models across the different datasets.
The BFM-SC approach results in an improvement over all other methods. The
red line indicates the mean score of the BFM-SC.

Table 4: AUPR scores for a random binomial prediction model based on the intrinsic im-
balance in each training data set. The difference in balance influences the baseline
performance for each group.

group 0 group 1 group 2 group 3 group 4

0.36 0.36 0.42 0.31 0.29

The robustness of the methods, analyzed by training and evaluating the different con-
figurations five times on the first group of patients is summarized in Figure 5. Most of the
configurations have robust performance except for the BFM with the CNN-based model
and the MIM with the LSTM-based model. This demonstrates the impact of the different
underlying base models.

The BFM-SC results in a consistent increase in performance over the single input models
as well as over the other sensor fusion configurations. Statistical significance is assessed using
the T-test and Table 5 demonstrates the resulting p-values for comparing the AUPR scores
of each of the configurations to the AUPR scores of the BFM-SC configuration. For each
experiment, the result is a p < 0.05, demonstrating a statistically significant improvement
of the BFM-SC over the other approaches.

An added advantage of the BFM-SC approach is that it can be used to improve the
interpretability of the results. Such interpretability and explainability is crucial to enable the
deep learning methods to be used in clinical practice. The backward shortcut connections
that are used during training can be removed at evaluation time. However, they can also
be used to get a prediction per input sensor on top of the general fusion-based prediction.
Figure 6 demonstrates the performance of the individual branches in the BFM-SC setting
for the detection of sleep apnea. The performance is close to that of a SIM model for each
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(a) CNN-based model.
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(b) LSTM-based model.

Figure 5: Summary of the robustness of the methods assessed by training and evaluating
each configuration five times on the same dataset. The red line indicates the
mean score of the BFM-SC.

Table 5: Resulting p-values of the statistical significance tests using a paired T-test for
performance analysis and a heteroscedastic T-test for robustness analysis. All ex-
periments demonstrate a significant improvement of the BFM-SC over the original
approaches.

CNN LSTM

performance robustness performance robustness

SIM abdores 0.016 0.001 0.049 0.000
SIM thorres 0.009 0.001 0.013 0.000
SIM hr 0.000 0.000 0.000 0.000
SIM SaO2 0.003 0.000 0.010 0.000
MIM 0.000 0.000 0.037 0.039
BFM 0.014 0.017 0.001 0.013

corresponding input. These extra outputs can lead to additional insights into the model
decision and into which parameters are contributing to the detection.

There are some limitations to this study that warrant careful interpretation of the re-
sults. Although the performance of the BFM-SC and the other approaches was tested on
five non-overlapping datasets, the analysis is still based on a single database. Validating
these results on other sleep apnea databases could provide more weight to the posed conclu-
sions. However, the SHHS-1 database is general and there is not a lot of variation in PSG
measurements across other databases. The generalizability of the BFM-SC approach should
also be tested on other use-cases than sleep apnea. In addition, the hyperparameters of the
different models and configurations were based on the current state-of-the-art in literature.
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Figure 6: Performance of the individual branches in the BFM-SC for the prediction of
sleep apnea events, compared to individual SIM models. The performance of
each branch is close to the performance of a separately trained SIM model.

A complete analysis would require the hyperparameters to be optimized for each model,
configuration and dataset. This would result in a significant computational cost. Initial
experiments demonstrated that small changes to these parameters have limited impact on
the results as the models have sufficient learning capacity in their current setting.

The proposed BFM-SC can be extended in several different ways. At the moment,
each of the input signals is required to have the same sampling frequency. However, some
signals are more informative at a higher sampling frequency whereas the learning process
with other signals could be more efficient at lower frequencies. Further research should
analyze methods of incorporating multi-frequency data into a BFM-SC setting. Moreover,
the performance of the current configurations is impacted by the hard labeling strategy
based on human annotations. The exact start and endpoints of an apnea event is not
precise. Further research should include smooth labeling. Finally, the current BFM-SC
setup does not enable any data-level correlations to be learned. An interesting extension to
the current work is the combination of data-level fusion and feature-level fusion.

6. Conclusion

Sleep apnea is typically diagnosed using multi-sensor data from a polysomnography device.
As personnel is limited and waiting times are long, automated scoring methods are being
developed. Deep learning algorithms have demonstrated good performance for sleep apnea
detection in a single channel of respiratory data. However, these approaches ignore relevant
and important markers in other signals. Various types of sensor fusion methods have been
presented for medical use-cases and for other domains. In this work, the different types of
sensor fusion were analyzed and a novel method based on backward shortcut connections
was presented. It was demonstrated that the BFM-SC shows a significant and consistent
improvement for automated sleep apnea detection in multi-sensor data. These results enable
a more reliable automated sleep apnea detection method and present an opportunity for
improving sensor fusion methods in other domains.
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