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Computing tradeoffs

* Different kinds of computational problems

e Different kind of architecture solutions
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Introduction to High-
Level Synthesis



Hardware description languages

 Complex digital systems are made of basic
logic elements (AND, NOT, FF, etc.)

* Designers use Hardware Description
Languages to describe logic blocks

* Use C-like syntax to express hardware

module toplevel(clock,reset,out);
input clock;
Input reset;
output reg out;
reg flopl;
reg flop2;
always @ (posedge reset or posedge clock
If (reset) begin
flopl <= 0;
flop2 <=1;
end else begin
flopl <= flop2;
flop2 <= flop1;
out <= flop2 " flop1;
end
endmodule




The problem with HDL

Need to 'think' hardware

* All parts of the circuit operate at the same time
* Explicit notion of time (clock, synchronization)

* Explicit notion of space (size and connectivity of
components)

Extremely long compilation cycle
Difficult to develop and verify
Details, Details, Details ...



High-level synthesis

* HLS: Compilation of high-level languages, such
as C, to Hardware Description Languages.

e Easier to write and test code in C
e Use asubset of C

— No 10, recursion, jump by value, etc.
— Standard hardware/software interface

module toplevel(clock,reset,out);
input clock;
input reset;
(tru e) { output reg out;
reg flopl;
reg flop2;

OUt - Va.ll N Va|2, always @ (posedge reset or
posedge clock
I:‘l> If (reset) begin
e flopl <=0; flop2 <=1;

end else begin
} flopl <= flop2; flop2 <= flop1;
out <= flop2 ~ flop1;
end
endmodule




C-to-Verilog.com

LLVM-based high-level synthesis system
Developed as a graduate research project

Website is web-interface for the synthesis
system

Free, Open, etc.




High-Level Synthesis using LLVM
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HLS using LLVM

— Use Clang and LLVM to parse and optimize the

code

— Special LLVM passes optimize the code at IR level

— HLS backend synthesize the code to Verilog
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HLS backend for LLVM



Simple High-Level Synthesis

— It is trivial to compile sequential C-like code to HDL
— A state-machine can represent the original code

(

— We can create a state for each 'opcode

case (state)

— . STO: begin
Example: A<= Ba
state <= ST1;

end
: begin

C<=(A==0
entry: state (<: )

%A = add 132 %B, 5 o begin
%C =icmp eq 132 %A, O ‘ f(C)

. state <=
%br i1 %C, label %next, label %entry else

state <=
end

endcase




High-Level synthesis challenges

* The simple state-machine translation is
inefficient

* We want to optimize:
— Fast designs (few clock cycles to complete)
— High-frequency (low clock latency)

— Size and resource efficient (few gates, memory
ports)

— Low-power



Scheduling pipelined resources

— Generally, in HLS resources can be synthesized
* Unlimited registers, arithmetic ops, etc.
— Some resources are limited, and need to be
shared.
e External memory ports
e ASIC Multipliers (for FPGA synthesis)
— Often, hardware resources are 'pipelined’, to gain
high frequencies.
 Multiplier — 5 stages, Memory — 2 stages, etc.
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List Scheduling

— Schedule a single basic block
— Convert a DDG into a [Time x Resource] table

— Requirements:
* Preserve DDG dependencies
* Expose parallelism
* Conserve resources, use pipelined resources

— After scheduling, HDL syntax generation is simple



Example (bad)

 Multiplier — 3 cycles +§
+

* Load/Store —2 cycles +2
+3

 Other—1 cycle +3
+3
+1
+1
+2
+2

21 cycles




Time

Mult

Mem Other

> 13 cycles

Mult




IR Optimizations for hardware



Reduce-bitwidth-opt

e CPUs have fixed execution units

* |n hardware synthesis, arithmetic operations
are synthesized into circuits

* Fewer bit width arithmetic operations
translate to smaller circuits which operate at
higher frequencies



Reduce-bitwidth-opt

* Reduce bit width in several cases:
1. Detect local bit reducing patterns (masks)
2. Reduce constant integers to lowest bit-width

3. Use smallest possible arithmetic operation based
on input width

 Simple LLVM Pass

1I8+i8 =19

Y = X & OXFF L A e

3
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Arithmetic tree height reduction

Short dependency chain, Long dependency chain,
High parallelism Low parallelism



Arithmetic tree height reduction

Simple LLVM pass

Collect long chains of arithmetic operations
and balance them

Only for commutative arithmetic and logic
operations

Not suitable for software where number of
registers is unlimited



HLS flow example



Pop-count example

// count the number of 1’s in a word
unsigned popCnt(unsigned input) {
unsigned sum = 0;
(unsigned i = 0; 1 < 32; i++) {
sum += (input) & 1;
input = input/2;

sum;



Pop-count

Runtime:

— The program has a loop, which executes 32 times.
Size:

— Has several 32-bit registers.

— Has control-flow logic.

Frequency:
— Has 32bit-adders, long carry-chains.

IR-level optimizations can be very beneficial



Pop - count

* First, we let LLVM unroll and optimize the
loop

// count the number of 1’s in a word
unsigned popCnt(unsigned input) {
unsigned sum = 0;
sum += (input»>»>0) & 1;
sum += (input>>1) & 1;
sum += (input»>>2) & 1;

sum;



Pop - count

 Next, we balance the long-chain of adders to
become a tree of 31-additions

| Balance >




Pop - count

// count the number of 1°s in a word
unsigned popCnt(unsigned input) {

unsigned sum@,suml, sum2, sum3 ..

t0 = (input>>0) & 1;
tl = (input>>1) & 1;
t2 = (input>>2) & 1;

Sumo
suml

to + t1;
t2 + t3;

sum30 = sum29 + sum 28;
sum;

to,..



Pop - count

* Finally, we’ll reduce the bit-width of each
operation

i <— &1 results in 1-bit value
< Addition of 1 bit inputs < 2-bit

< Addition of 2 bit inputs < 3-bit

< Addition of 5 bit inputs < 6-bit



Pop - count

// count the number of 1°s in a word
unsigned popCnt(unsigned input) {
uintl t to, t1 ..
uint2 t sum@,suml, sum2, sum3 ..

uint3 t suml7,suml8, suml9, sum20 ..

uinteé_t sum3l;
t0 = (input>>0) & 1;
sumd = to + til;

sum31l = sum29 + sum 30;
sum;



Pop — count

* Finally, we pass the hw-optimized IR to the
backend for scheduling and syntax generation

— Small operations can
be scheduled into a
single clock cycle




Pop - count

* |R-level optimizations are very beneficial
— Size: fewer and smaller registers, no control flow
— Frequency: smaller arithmetic ops (32bit -> 6 bits)
— Cycles: Fewer cycles (32 -> 4)



Conclusion

* High-level synthesis automates circuit design

 LLVM is an invaluable tool when developing a
HLS compiler

 HLS compiler is made of IR-level optimization
passes and a scheduling backend




Questions ?
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